Adobe Systems Estimation of vegetation parameters from hyperspectral data ̶T. Slanináková, 15.9.2023, SitSem ̶ 1 Context Estimation of vegetation parameters from Hyperspectral Data 2 EnviLab: Platform for providing data, visualizations and analyses of ecosystems in CZ ̶Why? Features: ̶Aggregating and providing geo data from remote sensing via Web, API ̶Hosting visualizations, analyses, and results of various research groups ̶Providing data analyses ̶Analysis/visualization of bark beetle’s reproduction/spread over Czech forests ̶Vegetation parameters Context ̶Lots of multi/hyperspectral data from remote sensing ̶ Estimation of vegetation parameters from Hyperspectral Data 3 Source: Single-Cell Analysis Using Hyperspectral Imaging Modalities. Context ̶Lots of multi/hyperspectral data from remote sensing ̶ ̶ESA – Sentinel 1,2,3,5P missions (program COPERNICUS) ̶Many more data sources in the future (FLEX ‘25, CHIME ‘28) ̶CzechGlobe (CAS) – Airborne missions ̶ ̶Use of such data: ̶Mining/geology ̶Urban land-use mapping ̶Agriculture: health of the crops ̶Vegetation analysis ̶ ̶ Estimation of vegetation parameters from Hyperspectral Data 4 Review of Top-of-Canopy Sun-Induced Fluorescence (SIF) Studies from Ground, UAV, Airborne to Spaceborne Observations Context ̶Monitoring the health of forests through assessing vegetation parameters ̶Why: ̶Interesting for CzechGlobe, foresters ̶Attractive for us as a nice use case for EnviLab ̶Interesting research problem with active scientific community ̶ ̶ Estimation of vegetation parameters from Hyperspectral Data 5 Outline 1.Context 2.Problem definition 3.Approach 4.Results 5.Next steps ̶ Estimation of vegetation parameters from Hyperspectral Data 6 Problem definition ̶Given data from remote sensing (satellite, airborne) train a model to predict vegetation parameters ̶ ̶ Estimation of vegetation parameters from Hyperspectral Data 7 Data A diagram of a different color spectrum Description automatically generated with medium confidence Problem definition ̶Given data from remote sensing (satellite, airborne) and simulated spectra, train a model to predict vegetation parameters ̶ ̶ Estimation of vegetation parameters from Hyperspectral Data 8 Data Simulated spectra Vegetation parameters Spectra A diagram of a different color spectrum Description automatically generated with medium confidence Approach Estimation of vegetation parameters from Hyperspectral Data 9 Our approach Approach Estimation of vegetation parameters from Hyperspectral Data 10 Our approach Approach Estimation of vegetation parameters from Hyperspectral Data 11 Our approach Approach Estimation of vegetation parameters from Hyperspectral Data 12 Our approach Approach Estimation of vegetation parameters from Hyperspectral Data 13 CzechGlobe’s approach Results Estimation of vegetation parameters from Hyperspectral Data 14 Chlorophyll Carotenoids Water content A graph with blue dots and a line Description automatically generated A graph with blue dots Description automatically generated On hand-collected validation data (different locations, different times) Best model based on (n)rmse Rmse nrmse 1.27 8.63 0.00087 0.2 0.184 0.301 A graph with blue dots Description automatically generated Next steps ̶Improve the quality of labels ̶More detailed simulated spectra ̶Involve more validation data into the process ̶Include more data ̶Extend with data from different time segments (unclouded) ̶Extend with airborne data ̶Try more robust models ̶Prithvi-100M-multi-temporal-crop-classification ̶ Estimation of vegetation parameters from Hyperspectral Data 15