Uncertainty and Dynamicity in Real-World Vehicle Routing

SCANIA

MUNT FACULTY OF INFORMATICS

Václav Sobotka

Faculty of Informatics, Masaryk University Brno, Czech Republic

MUNI
Fi Vehicle Routing Problem

MUNI
Fi **Vehicle Routing Problem**

MUNI Real-World Vehicle Routing ΪŤ

Problem and data provided by company \mathbf{W}^{ϱ} weneldo.com

- **•** Pickup-Delivery VRP
- **o** Time windows
- **•** Capacities
- Multiple depots
- **e** Route duration limit
- Heterogenous fleet

 \bullet ...

MUN1 Existing solver

- **•** Original version from the thesis of Vojtěch Sassmann
- Adaptive large neighborhood search
	- Remove part of existing solution
	- Repair the solution
	- Accept/reject as a new solution
	- Repeat for many iterations
	- **•** Return the best solution
- **•** Challenge: efficient implementation
	- Bottleneck: finding the best position for a customer within a route
	- Constraint checking
- Currently: all constraints are checked in $O(1)$

MUN1 Issues in practice

- Existing solver already used in production
	- Assistive tool helping dispatchers plan routes
- Limitation: solutions not always applicable in practice
	- The input provided to the solver is subject to uncertainty
	- The input is incomplete

- **•** Inspiration by human dispatchers
	- Intuitively understand risky routing patterns
	- Assess plans with incoming changes in mind
- **•** Current solver
	- Lacks any notion of risks (capacities, time)
	- Completely blind to incoming changes

Goal: solver producing solutions that the dispatchers like

- Risk-awareness
- Planning with input incompleteness in mind
- Requirements:
	- Natural extension to the existing solver
	- Minimal/no performance overhead
	- Minimum assumptions about the data on uncertainties \bullet
	- Intuitive modeling

[Uncertainties](#page-7-0)

Capacities vs. demands

- Regular customers: require service every day, but demand highly varies
- Freight loading: $1 + 1 \neq 2$
	- **•** Balancing truck axles
	- ^a 3D Tetris

Times

- **Q** Travel times: traffic
- Service times: freight (un)loading

$\frac{\text{num}}{\text{F1}}$ Sad pallets and angry drivers

Source: https://www.matthewsauctioneers.com/auctions/26398/lot/76606-pallet-of-c-grade-read-description

M **U** N **I** Uncertainties and risks

Incorporate the knowledge about the uncertainties by either

- Inflating the demands
- Deflating the resource
- Quantify and penalize/forbid the risk

Capacities

Times

- ¹ Plan with larger loads
- ² Plan with smaller vehicles
- **3** Penalize/forbid routes risking vehicle capacity overflow
- ¹ Plan with larger travel/service times
- ² Plan with smaller time windows
- ³ Penalize/forbid routes risking late arrival to customers

MUNI
Fi Generic approaches to uncertainties – examples

M **U** N **I** Generic approaches to uncertainties – examples

MUNI
Fi Generic approaches to uncertainties – examples

M **U** N **I** Generic approaches to uncertainties – examples

M uni Generic approaches to uncertainties – examples

M uni Generic approaches to uncertainties – examples

M uni Generic approaches to uncertainties – examples

MUNI Modeling and implementation E.T.

• Inputs about uncertainty: $E(X)$, $Var(X)$

- Minimum information to express reasoning about uncertainties
- Minimum assumptions on the data
- Approachable level of abstraction for the end users

Minimum performance overhead

- Capacities: all additional computations in $O(1)$
- Times: same as capacities with the exception of risk penalties
- Simple integration of all three methods:
	- Demand inflation: data manipulation
	- Resource deflation: data manipulation
	- Risk penalty/constraints: implementation similar to existing constraints

Preliminary experiments with capacities

- Comparable results may be achieved with all three methods
	- Parameter choice is crucial
	- Parameters strongly correlated with routing plan fail rates ($\rho \approx 0.75$)
- Theoretically, methods have different properties (and weaknesses)
	- Vehicle deflation: large uncertainties, heterogeneous fleet
	- Load inflation: adversarial instances

[Dynamicity](#page-27-0)

Dynamic customers

- Some customers call on the day of delivery
	- These customers are not known at the time of route planning
	- The information is revealed during the execution of our routing plan
	- Adjustments to our routing plan are needed

Realization of random variables

- Previously uncertain values (demands, times) are revealed during the day
	- We may update our risk-related calculations
	- We may adjust our routing based on the new information

MUNI Anticipation of potential changes ËΤ

Goal: build the routing plan with potential changes in mind

- · Introduce dummy requests
	- **•** Optional service for reward
- **•** Spatiotemporal coverage
	- Space: locations of past customers
	- ^o Time???

Routing algorithm capable of assisting dispatchers with the daily operations

- **1** Initial routing plan (day before)
	- Proactively prepare for potential dynamic events and uncertainties
	- The final routing should largely overlap with the initial plan
- 2 (Preferably) small adjustments during the day of execution
	- Ideally stick to the initial plan as much as possible
	- Continually use the revealed information to improve the plan and reasoning about it

Ultimate objective: optimization of the result at the end of the day