Uncertainty and Dynamicity in Real-World Vehicle Routing MUNI FACULTY OF INFORMATICS

Václav Sobotka

Faculty of Informatics, Masaryk University Brno, Czech Republic

MUNI Fi Vehicle Routing Problem

Václav Sobotka

Vehicle Routing Problem

Václav Sobotka

Real-World Vehicle Routing

Problem and data provided by company **W**[®] weneldo.com

- Pickup-Delivery VRP
- Time windows
- Capacities
- Multiple depots
- Route duration limit
- Heterogenous fleet

Ο . . .

Existing solver

- Original version from the thesis of Vojtěch Sassmann
- Adaptive large neighborhood search
 - Remove part of existing solution
 - Repair the solution
 - Accept/reject as a new solution
 - Repeat for many iterations
 - Return the best solution
- Challenge: efficient implementation
 - Bottleneck: finding the best position for a customer within a route
 - Constraint checking
- Currently: all constraints are checked in O(1)

Václav Sobotka

Issues in practice

- Existing solver already used in production
 - Assistive tool helping dispatchers plan routes
- Limitation: solutions not always applicable in practice
 - The input provided to the solver is subject to uncertainty
 - The input is incomplete

- Inspiration by human dispatchers
 - Intuitively understand risky routing patterns
 - Assess plans with incoming changes in mind
- Current solver
 - Lacks any notion of risks (capacities, time)
 - Completely blind to incoming changes

Václav Sobotka

• Goal: solver producing solutions that the dispatchers like

- Risk-awareness
- Planning with input incompleteness in mind
- Requirements:
 - Natural extension to the existing solver
 - Minimal/no performance overhead
 - Minimum assumptions about the data on uncertainties
 - Intuitive modeling

Václav Sobotka

Uncertainties

Capacities vs. demands

- Regular customers: require service every day, but demand highly varies
- Freight loading: $1 + 1 \neq 2$
 - Balancing truck axles
 - 3D Tetris

Times

- Travel times: traffic
- Service times: freight (un)loading

Source: https://www.matthewsauctioneers.com/auctions/26398/lot/76606-pallet-of-c-grade-read-description

Václav Sobotka

Uncertainties and risks

Václav Sobotka

Incorporate the knowledge about the uncertainties by either

- Inflating the demands
- 2 Deflating the resource
- 3 Quantify and penalize/forbid the risk

Capacities

Times

- 9 Plan with larger loads
- 2 Plan with smaller vehicles
- Penalize/forbid routes risking vehicle capacity overflow
- Plan with larger travel/service times
- 2 Plan with smaller time windows
- Penalize/forbid routes risking late arrival to customers

Václav Sobotka

Václav Sobotka

Václav Sobotka

Modeling and implementation

• Inputs about uncertainty: E(X), Var(X)

- Minimum information to express reasoning about uncertainties
- Minimum assumptions on the data
- Approachable level of abstraction for the end users

• Minimum performance overhead

- Capacities: all additional computations in O(1)
- Times: same as capacities with the exception of risk penalties
- Simple integration of all three methods:
 - Demand inflation: data manipulation
 - Resource deflation: data manipulation
 - Risk penalty/constraints: implementation similar to existing constraints

Preliminary experiments with capacities

- Comparable results may be achieved with all three methods
 - Parameter choice is crucial
 - Parameters strongly correlated with routing plan fail rates ($ho \approx 0.75$)
- Theoretically, methods have different properties (and weaknesses)
 - Vehicle deflation: large uncertainties, heterogeneous fleet
 - Load inflation: adversarial instances

Dynamicity

Dynamic customers

- Some customers call on the day of delivery
 - These customers are not known at the time of route planning
 - The information is revealed during the execution of our routing plan
 - Adjustments to our routing plan are needed

Realization of random variables

- Previously uncertain values (demands, times) are revealed during the day
 - We may update our risk-related calculations
 - We may adjust our routing based on the new information

Anticipation of potential changes

Goal: build the routing plan with potential changes in mind

- Introduce dummy requests
 - Optional service for reward
- Spatiotemporal coverage
 - Space: locations of past customers
 - Time???

Routing algorithm capable of assisting dispatchers with the daily operations

- Initial routing plan (day before)
 - Proactively prepare for potential dynamic events and uncertainties
 - The final routing should largely overlap with the initial plan
- 2 (Preferably) small adjustments during the day of execution
 - Ideally stick to the initial plan as much as possible
 - Continually use the revealed information to improve the plan and reasoning about it

Ultimate objective: optimization of the result at the end of the day