
Machine Learning in LTL Synthesis

October 18, 2024

1 Introduction

In safety-critical systems, such as the controllers of rockets or pacemakers, se-
cure software is essential as failures can have severe financial or even deadly
consequences. To ensure the reliability of such systems, we often resort to
verification, as ordinary software testing can yield false positives. Verification
involves taking a formal program specification, typically expressed in a suitable
logic, and checking that the program adheres to this specification. Note that
this process provides a rigorous mathematical proof, ensuring that the program
behaves as intended under every possible circumstance.

Reactive Systems Often the specification includes uncontrollable inputs to
our system, which is to model interaction with the outside world (the environ-
ment). We call these systems reactive and verifying them amounts to proving
that they adhere to the specification, no matter how the uncontrollable inputs
look like. The classical example for a reactive system is an arbiter for the dis-
tribution of a critical resource. This is a system that receives requests from the
outside world and can issue grants, i.e. reacting to a request by giving access
to the critical resource. Further, these grants need to be issued correctly (no
two parties may have access to the critical resource at the same time), but also
fairly (every request will eventually be answered by a grant).

Linear Temporal Logic (LTL) A particularly common logic for program
specifications is linear temporal logic [10], which is interpreted over discrete
timesteps in each of which some atomic propositions are either true or false.
Using appropriate propositions, this allows us to specify “good” and “bad”
execution paths of a program. For example, the specification for our arbiter from
above (for two parties) would look like the following: G(¬(g1 ∧ g2)) ∧G(r1 →
F(g1)) ∧G(r2 → F(g2)), where ri and gi denote requests from - and grants to
party i, and G, F are LTL operators that denote something holds always and at
some point, respectively. In particular, the first part of the formula means “It
never holds that g1 and g2 are true at the same time”, and the latter two parts
mean “It always holds that if a request for party i, at some point in the future
there is a grant to party i”. In this example we’d call r1, r2 the uncontrollable
environment variables, and g1, g2 the controllable system variables.

1



LTL Synthesis Synthesis is a prominent variant of verification, which was
incepted by Alonzo Church himself [2]. Instead of taking a program and a
specification as input and deciding whether the former adheres to the latter, in
synthesis the input is only given by the specification (i.e. a logical formula and
a partition of the variables into environment and system). The objective is to
derive (or synthesize) a system that adheres to the specification by construction,
or decide that no such system can exist. Employing LTL for the specification
yields the problem of LTL synthesis [11], which to this day is an active field of
research.

Automata Theoretic Approach Classically, (reactive) LTL synthesis is
solved via automata theory. The intuition is that we first want a formalism
that can distinguish between “good” and “bad” runs w.r.t. our LTL specifica-
tion, for which ω-automata as incepted by Büchi [1] are prime candidates. Using
this automaton, we can analyze how to obtain a spec-adhering (i.e. an accept-
ing) path from every possible situation. Thus, in a first step we convert the
LTL formula into a suitable deterministic ω-automaton which is known to be of
doubly exponential size in the worst case [7]. In a second step, we address the
partition of variables and check wether we can find an appropriate response to
every possible valuation of the environment variables. This antagonistic view of
the environment, motivates the usage of game theory, specifically graph games
(where the graph is given by the automaton). A solution to the graph game
then directly corresponds to a solution for the overall LTL Synthesis problem.

Partial Exploration Recall that the ω-automaton can be of double exponen-
tial size. Thus, constructing the entire automaton is often infeasible. Thank-
fully, constructing the entire automaton is also often not necessary. Through
decisions in the graph game, it can happen that entire regions of the automa-
ton become unreachable and thus unnecessary to construct. In other words,
we would like to know a priori what part of the automaton will be relevant to
solving the subsequent graph game, in order to only construct exactly that part.
Unfortunately, we cannot know that, as it depends on the solution of the over-
all graph game which is what we are searching for in the first place. However,
we can guess. Whenever, we construct a state of the graph game that has a
decision, we can ask an oracle what might be the correct choice and proceed
exploring only the suggested direction. If these guesses are correct, we indeed
can spare a lot of irrelevant automaton from being constructed. However, we
are not relying on the correctness of these guesses, as we can always backtrack
and explore another option. This duality of huge potential and non-required
reliability motivates the usage of machine learning for implementing this oracle.
However, this poses the question, on what basis this model decide which choice
looks better. The answer is semantic labelling.

Semantic Labelling In the earlier days of LTL synthesis, the automata con-
struction would involve a procedure called “Safra’s determinization” [12], which

2



yielded states whose meaning was utterly cryptic. However, over the last decade,
automata translations [3, 6, 13, 4] emerged, which identifies automaton states by
annotating them with semantic information. This so called semantic labelling
is essentially a structured collection of LTL formulae. In particular, there is one
formula denoting the overall objective of a state (the master formula). Intu-
itively, this denotes what there is left to be satisfied from this state onwards. Fur-
ther a state hosts multiple formulae, tracking the progress of subgoals (so called
monitors). For example, in our arbiter example, the first state of the automaton
would have a master formula of G(¬(g1∧g2))∧G(r1 → F(g1))∧G(r2 → F(g2))
(as that is the overall goal to be satisfied) and no monitors just yet. If we then
see a request r1, we move to a state that has the very same master formula (as
the overall objective has not changed) but that now also has a monitor F g1,
indicating that we still owe a grant. If on the other hand, we issue both grants
at the same time, we violate the G(¬(g1 ∧ g2)) subformula and move to a new
state where the master formula is false. An overall goal of false is impossible to
be satisfied and thus we lose the game if we reach this state. In particular, we
are thereby able to detect that g1 and g2 may never be true at the same time
just by looking at the semantic labelling. And this is the exact intuition that
machine learning can pick up on and exploit when guiding the exploration.

Current Contributions In a previous paper [5], we developed methods to
obtain ML-based exploration heuristics based on supervised learning. In partic-
ular we investigated suitable architectures, how to obtain a meaningful ground
truth labeling, as well as how to extract numerical features from the seman-
tic labelling (i.e. a structured collection of LTL formulae). Further, we evalu-
ated prototypes of such heuristics and demonstrated the huge potential of such
heuristics.

Naturally, in a subsequent (unpublished) tool paper, we implemented a com-
petitive tool for LTL Synthesis which makes use of such heuristics. This came
with several challenges. First, the methods of [5] needed to be adapted to the
state of the art automata construction, which hosts a vastly different semantic
labelling. Further, we needed to develop a novel exploration algorithm capable
of efficiently querying the ML heuristic and incorporating the responses. In par-
ticular, despite following a similar partial exploration approach, the algorithm
of the previous state of the art tool Strix [8, 9] is not capable of handling
such heuristics. Ultimately, we were able to present our tool SemML which
outperforms Strix significantly on multiple benchmark sets. Most importantly
we achieve a major improvement on the benchmarks of Syntcomp, the annual
synthesis competition held as a satellite event to the CAV conference. Here
SemML is able to solve 22 more instances than Strix, which given the diffi-
culty curve of Syntcomp’s benchmarks, is a very notable result. Further, on the
non-trivial instances both tools could solve, SemML solves significantly faster.
Interestingly, this speedup correlates with the complexity of the benchmarks,
indicating great scalability of our tool.

3



References

[1] Büchi, J.: On a decision method in restricted second-order arithmetic. In:
Nagel, E., Suppes, P., Tarski, A. (eds.) Proceedings of the First Interna-
tional Congress on Logic, Methodology, and Philosophy of Science 1960
(1962)

[2] Church, A.: Application of recursive arithmetic to the problem of circuit
synthesis. Journal of Symbolic Logic (1963)

[3] Esparza, J., Kret́ınský, J., Raskin, J., Sickert, S.: From linear tempo-
ral logic and limit-deterministic büchi automata to deterministic parity
automata. Int. J. Softw. Tools Technol. Transf. 24(4), 635–659 (2022).
https://doi.org/10.1007/s10009-022-00663-1

[4] Esparza, J., Kret́ınský, J., Sickert, S.: A unified translation of lin-
ear temporal logic to ω-automata. J. ACM 67(6), 33:1–33:61 (2020).
https://doi.org/10.1145/3417995

[5] Kret́ınský, J., Meggendorfer, T., Prokop, M., Rieder, S.: Guessing win-
ning policies in LTL synthesis by semantic learning. In: Enea, C., Lal,
A. (eds.) Computer Aided Verification - 35th International Conference,
CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 13964, pp. 390–414. Springer (2023).
https://doi.org/10.1007/978-3-031-37706-8 20

[6] Kret́ınský, J., Meggendorfer, T., Waldmann, C., Weininger,
M.: Index appearance record with preorders. Acta Informatica
59(5), 585–618 (2022). https://doi.org/10.1007/s00236-021-00412-y,
https://doi.org/10.1007/s00236-021-00412-y

[7] Kupferman, O., Rosenberg, A.: The blowup in translating LTL to deter-
ministic automata. In: van der Meyden, R., Smaus, J. (eds.) Model Check-
ing and Artificial Intelligence - 6th International Workshop, MoChArt 2010,
Atlanta, GA, USA, July 11, 2010, Revised Selected and Invited Papers.
Lecture Notes in Computer Science, vol. 6572, pp. 85–94. Springer (2010).
https://doi.org/10.1007/978-3-642-20674-0 6

[8] Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive
systems from LTL specifications via parity games. Acta Informatica 57(1-
2), 3–36 (2020). https://doi.org/10.1007/s00236-019-00349-3

[9] Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis
strikes back! In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10981, pp.
578–586. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3 31

4



[10] Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977. pp. 46–57. IEEE Computer Society (1977).
https://doi.org/10.1109/SFCS.1977.32

[11] Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reac-
tive module. In: Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D.
(eds.) Automata, Languages and Programming, 16th International Col-
loquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings. Lec-
ture Notes in Computer Science, vol. 372, pp. 652–671. Springer (1989).
https://doi.org/10.1007/BFb0035790

[12] Safra, S.: On the complexity of omega-automata. In: 29th Annual Sym-
posium on Foundations of Computer Science, White Plains, New York,
USA, 24-26 October 1988. pp. 319–327. IEEE Computer Society (1988).
https://doi.org/10.1109/SFCS.1988.21948

[13] Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic büchi
automata for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.)
Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 9780, pp. 312–332. Springer (2016).
https://doi.org/10.1007/978-3-319-41540-6 17

5


