
IA159 Formal Methods for Software Analysis
American Fuzzy Lop

Jan Strejček

Faculty of Informatics
Masaryk University



Focus and sources

focus
main concepts under AFL
demo of AFL++

sources
https://github.com/google/AFL/blob/master/docs/technical_
details.txt

https://en.wikipedia.org/wiki/American_fuzzy_lop_(fuzzer)

A. Fioraldi, A. Mantovani, D. Maier, and D. Balzarotti: Dissecting American
Fuzzy Lop: A FuzzBench Evaluation, ACM TOSEM 2023.

Thanks to Marek Trtík for help with demonstration preparation.

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 2/27

https://github.com/google/AFL/blob/master/docs/technical_details.txt
https://github.com/google/AFL/blob/master/docs/technical_details.txt
https://en.wikipedia.org/wiki/American_fuzzy_lop_(fuzzer)


Basic facts about AFL

developed by Michał Zalewski, initial release in 2013
last version by the original author: 2.52b (2017)
current stable version: 2.57b (2020)
open source, available under Apache License 2.0
considered as a state of the art fuzzer for many years
discovered bugs in OpenSSH, Firefox, Safari, MySQL, . . .
many clones with various features, in particular AFL++

American Fuzzy Lop is a rabbit breed

Kguzman99, CC BY-SA 3.0

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 3/27

https://creativecommons.org/licenses/by-sa/3.0/


Basic facts about AFL

developed by Michał Zalewski, initial release in 2013
last version by the original author: 2.52b (2017)
current stable version: 2.57b (2020)
open source, available under Apache License 2.0
considered as a state of the art fuzzer for many years
discovered bugs in OpenSSH, Firefox, Safari, MySQL, . . .
many clones with various features, in particular AFL++
American Fuzzy Lop is a rabbit breed

Kguzman99, CC BY-SA 3.0

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 4/27

https://creativecommons.org/licenses/by-sa/3.0/


Basic ideas

“The only governing principles are
speed, reliability, and ease of use”

(M. Zalewski)

afl-fuzz is a greybox fuzzer: program (target) is instrumented to measure
the coverage of each run
given input seeds are mutated
inputs that discover something new are collected and mutated again
don’t do anything too expensive or specific for some program class

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 5/27



Coverage measurement

the instrumented program captures edge coverage (for each edge between
basic blocks, we track the number of visits in the current execution)

each basic block is instrumented with

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

random location identifiers simplify linking complex projects and keep XOR
(^) uniformly distributed
shared_mem array is a 64 kB region (fits into L2 cache)

indices (2 bytes) represent pairs (prev_location, cur_location)
values (1 byte) represent numbers of edge visits (hitcounts)
indices can collide, hitcounts can overflow

shift (>>) used because of loops: A^A = B^B = 0x00

shared memory survives a crash of the program (another thread can read it)

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 6/27



Coverage measurement

the instrumented program captures edge coverage (for each edge between
basic blocks, we track the number of visits in the current execution)
each basic block is instrumented with

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

random location identifiers simplify linking complex projects and keep XOR
(^) uniformly distributed
shared_mem array is a 64 kB region (fits into L2 cache)

indices (2 bytes) represent pairs (prev_location, cur_location)
values (1 byte) represent numbers of edge visits (hitcounts)
indices can collide, hitcounts can overflow

shift (>>) used because of loops: A^A = B^B = 0x00

shared memory survives a crash of the program (another thread can read it)

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 7/27



Hitcounts bucketing

positive edge hitcounts are assigned to the buckets

1 2 3 4-7 8-15 16-31 31-127 128-255

behavior of the run is given by these bucketed hitcounts
fuzzer maintains another 64 kB table that remembers the bucketed hitcounts
for individual edges seen so far
an input is interesting if it produces a new bucketed hitcount for some edge; it
is discarded otherwise
differences within one bucket are considered not important

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 8/27



Algorithm

takes the instrumented program and at least one input
inputs are consumed via standard input or as an input file

1 foreach input ∈ seeds do // initial phase
2 execute the program on the input
3 trim the input such that the behavior is not changed
4 insert the trimmed input to queue
5 set up limits for a single execution (e.g. timeout)
6 while true do // the main fuzzing loop
7 while queue is not empty do
8 take input from queue
9 if input should be skipped then continue

10 trim the input
11 mutate the input, execute, add interesting mutants to queue
12 put all inputs that were in queue back to queue
13 determine favored inputs

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 9/27



Algorithm

takes the instrumented program and at least one input
inputs are consumed via standard input or as an input file

1 foreach input ∈ seeds do // initial phase
2 execute the program on the input
3 trim the input such that the behavior is not changed
4 insert the trimmed input to queue
5 set up limits for a single execution (e.g. timeout)
6 while true do // the main fuzzing loop
7 while queue is not empty do
8 take input from queue
9 if input should be skipped then continue

10 trim the input
11 mutate the input, execute, add interesting mutants to queue
12 put all inputs that were in queue back to queue
13 determine favored inputs

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 10/27



Trimming inputs

small inputs = less mutations and faster executions
some mutations increase input size

1 do
2 oldinput← input
3 remove some block from the input
4 while the behavior remains unchanged
5 return oldinput

removed blocks are of increasing size
average per input gain is 5–20%
tool afl-tmin implements a more expensive algorithm, used e.g. to
minimize inputs that exhibit some program bug

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 11/27



Trimming inputs

small inputs = less mutations and faster executions
some mutations increase input size

1 do
2 oldinput← input
3 remove some block from the input
4 while the behavior remains unchanged
5 return oldinput

removed blocks are of increasing size
average per input gain is 5–20%
tool afl-tmin implements a more expensive algorithm, used e.g. to
minimize inputs that exhibit some program bug

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 12/27



Trimming inputs

small inputs = less mutations and faster executions
some mutations increase input size

1 do
2 oldinput← input
3 remove some block from the input
4 while the behavior remains unchanged
5 return oldinput

removed blocks are of increasing size
average per input gain is 5–20%
tool afl-tmin implements a more expensive algorithm, used e.g. to
minimize inputs that exhibit some program bug

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 13/27



Skipping inputs

inputs are skipped to get to the favored ones faster

1 if the current input is favored then
2 do not skip
3 else
4 if the queue contains favored inputs then
5 skip the input with probability 99%
6 else
7 if the current input was mutated before (in previous cycles) then
8 skip the input with probability 95%
9 else

10 skip the input with probability 75%

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 14/27



Skipping inputs

inputs are skipped to get to the favored ones faster

1 if the current input is favored then
2 do not skip
3 else
4 if the queue contains favored inputs then
5 skip the input with probability 99%
6 else
7 if the current input was mutated before (in previous cycles) then
8 skip the input with probability 95%
9 else

10 skip the input with probability 75%

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 15/27



Favored inputs computation (aka culling the corpus)

favored inputs have to jointly cover all edges covered so far
small inputs with short execution times are preferred

1 mark all inputs as non-favored
2 to each input assign a score propositional to execution time and input size
3 foreach edge covered by the inputs so far do
4 if the edge is not covered by any favored input then
5 select the input with the lowest score that covers the edge
6 mark this input as favored

usually 10–20% of inputs are marked as favored
tool afl-cmin provides a more sophisticated and slower algorithm (e.g. for
prunning the resulting corpus of inputs)

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 16/27



Favored inputs computation (aka culling the corpus)

favored inputs have to jointly cover all edges covered so far
small inputs with short execution times are preferred

1 mark all inputs as non-favored
2 to each input assign a score propositional to execution time and input size
3 foreach edge covered by the inputs so far do
4 if the edge is not covered by any favored input then
5 select the input with the lowest score that covers the edge
6 mark this input as favored

usually 10–20% of inputs are marked as favored
tool afl-cmin provides a more sophisticated and slower algorithm (e.g. for
prunning the resulting corpus of inputs)

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 17/27



Favored inputs computation (aka culling the corpus)

favored inputs have to jointly cover all edges covered so far
small inputs with short execution times are preferred

1 mark all inputs as non-favored
2 to each input assign a score propositional to execution time and input size
3 foreach edge covered by the inputs so far do
4 if the edge is not covered by any favored input then
5 select the input with the lowest score that covers the edge
6 mark this input as favored

usually 10–20% of inputs are marked as favored
tool afl-cmin provides a more sophisticated and slower algorithm (e.g. for
prunning the resulting corpus of inputs)

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 18/27



Mutating inputs (aka fuzzing)

mutations are generated in this order
1 deterministic mutations
2 nondeterministic mutations (havoc)
3 splicing (combines two inputs into one)

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 19/27



Deterministic mutations

flipping (i.e., inverting) 1-32 bits with various stepovers
incrementing or decrementing 8-, 16-, and 32-bit integers, in both little- and
big-endian encodings
overwriting parts of the input with “approximately two dozen ’interesting’
values”, including 0 and maximum and minimum signed and unsigned
integers of various widths, again in both little- and big-endian encodings
replacing parts of the input with data drawn from a dictionary of user-specified
or auto-detected tokens

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 20/27



Havoc mutations

new input is produced by 2 to 128 mutations of the following types
the deterministic mutations described before
overwriting bytes with random values
deleting a multi-byte block
duplicating a multi-byte block
setting each byte in a block to a single value

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 21/27



Mutations by splicing

activated only after the fuzzer goes through a full cycle of the entire queue
without any new finding
combines the current input with another input in the queue
truncates both of them at arbitrary positions, concatenates them together, and
applies the havoc stage to the result

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 22/27



De-duplication of crashes

need to identify different reasons of crashes
identification by the faulting instruction is insufficient
(e.g. when the instruction is in a common library function)
afl-fuzz considers a crash unique if

the crash trace includes an edge not seen in any of the previous crashes or
the crash trace is missing an edge that was always present in earlier crashes

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 23/27



Architecture

repeated execve(), linking and libc initialization of the instrumented
program takes time
afl-fuzz uses fork-server that forks the execution of the instrumented code
using copy-on-write
performance gain on fast programs is usually between 1.5x and 2x

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 24/27



Notes

parallel fuzzing: use of multiple cores or remote machines
if sources are not available, instrumentation of binaries is used
dictionaries are very important

AFL++ is available as a package
sudo apt install afl++

documentation available at
https://github.com/AFLplusplus/AFLplusplus

Try it on your code!

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 25/27

https://github.com/AFLplusplus/AFLplusplus


Notes

parallel fuzzing: use of multiple cores or remote machines
if sources are not available, instrumentation of binaries is used
dictionaries are very important

AFL++ is available as a package
sudo apt install afl++

documentation available at
https://github.com/AFLplusplus/AFLplusplus

Try it on your code!

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 26/27

https://github.com/AFLplusplus/AFLplusplus


Advertisement

Fizzer
fuzzer developed at FI MU since 2023 by Marek Trtík and students
slower program executions, more targeted input generation
more information obtained from executions, aimed to flip the results of
branching statements
success in Test-Comp
topics for bachelor and master theses

IA159 Formal Methods for Software Analysis: American Fuzzy Lop 27/27


