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Focus and sources

focus
first formal approach to verification of algorithms and computer programs
partial and total correctness
formal system for verification of flowcharts by Floyd (1967)
axiomatic program verification by Hoare (1969)

source
Chapter 7 of D. A. Peled: Software Reliability Methods, Springer, 2001.
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Assumptions and basic terminology

for simplicity we consider only deterministic programs where the initial values
of a program are stored in input variables x0, x1, . . . and these variables do
not change their values during any execution of the program
a state of a program is an assignment to the program variables
given a program P and its states a,b, by P(a,b) we denote the fact that the
execution of P starting from the state a terminates with the state b
a |= φ denotes that the state a satisfies the formula φ
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Terminology

in this lecture, a specification (or a desired property) of a program P is given by
two first order formulae

initial condition φ is a formula with free variables among input variables of P
final assertion ψ
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Two notions of correctness

Definition (partial correctness)

A program P is partially correct with respect to φ and ψ, written {φ}P{ψ}, iff for all
states a,b it holds

P(a,b) ∧ a |= φ =⇒ b |= ψ.

Intuitiely, if the program starts with a state satisfying φ and then terminates, then
the terminal state satisfies ψ.

Definition (total correctness)

A program P is totally correct with respect to φ and ψ, written ⟨φ⟩P⟨ψ⟩, iff
{φ}P{ψ} and for every state a satisfying φ the program terminates.

Intuitiely, if the program starts with a state satisfying φ, then it terminates and the
terminal state satisfies ψ.

IA159 Formal Methods for Software Analysis: Deductive Software Verification 5/44



Two notions of correctness

Definition (partial correctness)

A program P is partially correct with respect to φ and ψ, written {φ}P{ψ}, iff for all
states a,b it holds

P(a,b) ∧ a |= φ =⇒ b |= ψ.

Intuitiely, if the program starts with a state satisfying φ and then terminates, then
the terminal state satisfies ψ.

Definition (total correctness)

A program P is totally correct with respect to φ and ψ, written ⟨φ⟩P⟨ψ⟩, iff
{φ}P{ψ} and for every state a satisfying φ the program terminates.

Intuitiely, if the program starts with a state satisfying φ, then it terminates and the
terminal state satisfies ψ.

IA159 Formal Methods for Software Analysis: Deductive Software Verification 6/44



Formal system for verification of flowcharts

by Robert W Floyd (1936–2001)
1965: associate professor at Carnegie–Mellon University
1968: full professor at Stanford University, without Ph.D.
Floyd–Warshall algorithm: shortest paths in a graph
Floyd–Steinberg dithering: rendering images
program verification, parsing, sorting
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Flowcharts: four kinds of nodes

begin end v = e p

begin one outgoing edge, no incoming edges
end one incoming edge, no outgoing edges

assignment v = e, where v is a variable, e is a first order term;
one or more incoming edges, one outgoing edge

decision predicate p is a quantifier-free first order formula;
one or more incoming edges, two outgoing edges marked with true
and false
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Example: what is this program good for?

begin

y1 = 0

y2 = x1

y2 >= x2

y1 = y1+1

y2 = y2-x2

end

true false

initial condition
φ ≡ x1 ≥ 0 ∧ x2 > 0

final assertion
ψ ≡ (x1 = y1 ∗ x2 + y2) ∧

∧ y2 ≥ 0 ∧ y2 < x2

It computes an integer division.
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Formal system for verification of flowcharts

Proving partial correctness
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Proving partial correctness

A location of a flowchart program is an edge connecting two flowchart nodes.

To verify that a program P is partially correct with respect to an initial condition φ
and a final assertion ψ, it is sufficient to perform the following two steps.
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Proving partial correctness: step 1

Step 1
to each location of the flowchart we attach a first order formula called
assertion or invariants
to the location exiting from begin we attach φ
to the location entering end we attach ψ

Idea

These assertions should be satisfied by every state reachable in the
corresponding location by an execution starting in a state satisfying φ.
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Proving partial correctness: step 2

Given an assignment or decision node c, every assumption on
an incoming edge is called precondition, written pre(c)
an outgoing edge is called postcondition, written post(c)

Idea of step 2

We have to prove that whenever the control of the program is just before a node c
with a state satisfying pre(c) and execution of c moves the control to the location
annotated with post(c), then the state after the move satisfies post(c).
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Proving partial correctness: step 2

Step 2

Every triple pre(c), c,post(c) is treated according to its form.
1 c is a decision node with a predicate p and post(c) is associated to the

outgoing edge marked with true.

Then we need to prove:

pre(c) ∧ p =⇒ post(c)

2 c is a decision node with a predicate p and post(c) is associated to the
outgoing edge marked with false.

Then we need to prove:

pre(c) ∧ ¬p =⇒ post(c)
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Proving partial correctness: step 2

3 c is an assignment of the form v = e, where v is a variable and e an
expression.

The states before and after the assignment are different (i.e. pre(c) and
post(c) reason about different states). Therefore, we relativize the
postcondition to assert about the states before the assignment.

Hence, we have to prove

pre(c) =⇒ post(c)[v/e]

where post(c)[v/e] is the assertion post(c) where all occurrences of v are
replaced with e.

IA159 Formal Methods for Software Analysis: Deductive Software Verification 17/44



Proving partial correctness

proving the consistency between each precondition and postcondition of all
nodes guarantees that {φ}P{ψ}
in fact, it guarantees even a stronger property:

In each execution that starts with a state satisfying the initial condition of the
program, when the control of the program is at some location, the assumption
attached to that location holds.
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Example: partial correctness

begin

y1 = 0

y2 = x1

y2 >= x2

y1 = y1+1

y2 = y2-x2

end

true false

φ ≡ x1 ≥ 0 ∧ x2 > 0
ψ ≡ (x1 = y1 ∗ x2 + y2)∧

∧ y2 ≥ 0 ∧ y2 < x2

φA ≡ φ

φB ≡ x1 ≥ 0 ∧ x2 > 0 ∧ y1 = 0
φC ≡ (x1 = y1 ∗ x2 + y2)∧

∧ y2 ≥ 0
φD ≡ (x1 = y1 ∗ x2 + y2)∧

∧ y2 ≥ x2
φE ≡ (x1 = y1 ∗ x2 + y2 − x2)∧

∧ y2 − x2 ≥ 0
φF ≡ ψ

Step 2: check the consistency
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Notes

finding assertions for the proof may be a difficult task
there are some heuristics and tools suggesting invariants
there cannot be a fully automatic way of finding them (the problem is
undecidable)
in some programming languages, assertions can be inserted into the code as
additional runtime checks so that the program will break with a warning
message whenever an invariant is violated
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Programs with array variables: a problem

Example
precondition pre(c) ≡ x [1] = 1 ∧ x [2] = 3
assignment x [x [1]] = 2
postcondition post(c) ≡ x [x [1]] = 2
it is easy to prove

pre(c) =⇒ post(c)[x [x [1]]/2]

as post(c)[x [x [1]]/2] is in fact 2 = 2
but if pre(c) holds and the assignment is performed, then x [1] = 2 and
x [x [1]] = 3 and post(c) does not hold

To handle programs with array variables, the method has to be modified in one
point: relativization of postconditions of assignment nodes.
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Modification for array variables

let x be an array variable and e1,e2,e3 terms
the syntax of terms is extended with a new construct (x ;e1:e2)[e3], where
(x ;e1:e2) represents almost the same array as x , only the element with the
index e1 has been set to e2
to check the consistency of an assignment x [e1] = e2 with a precondition
pre(c) and postcondition post(c), we have to prove

pre(c) =⇒ post(c)[x/(x ;e1:e2)]

the added construct does not increase the expressiveness of the logic: a
formula ρ containing (x ;e1:e2)[e3] can be translated into an equivalent
formula

(e1 = e3 ∧ ρ[(x ;e1:e2)[e3]/e2]) ∨
∨ (¬(e1 = e3) ∧ ρ[(x ;e1:e2)[e3]/x [e3])
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Formal system for verification of flowcharts

Proving termination
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Proving termination: terminology

a partially ordered domain is a pair (W ,≺) where W is a set and ≺ is a strict
partial order relation over W (i.e. irreflexive, asymmetric, and transitive)
u ≻ v has the same meaning as v ≺ u
we denote u ⪰ v when u ≻ v or u = v
a well founded domain is a partially ordered domain containing no infinite
sequence of the form

w0 ≻ w1 ≻ w2 ≻ w3 ≻ . . .

(i.e. no infinite decreasing sequence)
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Proving termination

To prove the termination with respect to the initial condition φ, we need to do the
following steps.

1 We select a well founded domain (W ,≺) such that W is a subset of the
domain of program variables and ≺ is expressible using the signature of the
program.

2 To each location in the flowchart we attach an invariant and an expression. To
the location exiting from begin we attach φ.

3 We show the consistency for each triple pre(c), c,post(c), as in the partial
correctness proof.
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Proving termination

4 We show that whenever an execution starting in a state satisfying φ reaches
some location, the value of the expression associated to this location is
within W .

Formally, we prove that for each location with the associated invariant ρ and
expression e it holds:

ρ =⇒ (e ∈ W )

Note that e ∈ W is not, in general, a first order logic formula. However, it can
often be translated into a first order formula.
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Proving termination

5 We show that in each execution of the program, when proceeding from a
location to its successor location, the value of the associated expressions
does not increase.

Formally, for every node c, an incoming edge with the associated invariant
pre(c) and expression e1, and an outgoing edge with the associated
expression e2

if c is a decision node with a predicate p and e2 is associated with the true
edge, then we prove:

pre(c) ∧ p =⇒ e1 ⪰ e2

if c is a decision node with a predicate p and e2 is associated with the false
edge, then we prove:

pre(c) ∧ ¬p =⇒ e1 ⪰ e2

if c is an assignment v = e, then we prove:

pre(c) =⇒ e1 ⪰ e2[v/e]
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Proving termination

6 In each execution of the program, during each traversal of a cycle (a loop) in
the flowchart there is some point where a decrease occurs in the value of the
associated expressions from one location to its successor.

Formally, for each path through any cycle we have to find a node with an
incoming and an outgoing edge such that the corresponding implication
above holds even if ⪰ is replaced with ≻.

IA159 Formal Methods for Software Analysis: Deductive Software Verification 30/44



Example: termination

begin

y1 = 0

y2 = x1

y2 >= x2

y1 = y1+1

y2 = y2-x2

end

A

B

C
true

D

E

false
F

initial condition
φ ≡ x1 ≥ 0 ∧ x2 > 0

φA ≡ φ
φB ≡ x1 ≥ 0 ∧ x2 > 0
φC ≡ x2 > 0 ∧ y2 ≥ 0
φD ≡ x2 > 0 ∧ y2 ≥ x2
φE ≡ x2 > 0 ∧ y2 ≥ x2
φF ≡ y2 ≥ 0

eA = x1
eB = x1
eC = y2
eD = y2
eE = y2
eF = y2
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Notes

it may be difficult to find the right well founded domain, invariants, and
expressions
termination and partial correctness can be proven simultaneously
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Axiomatic program verification

by sir Charles Antony Richard Hoare (1934)
studied in Oxford University and Moscow State University
Quicksort algorithm (1960)
Hoare logic: program verification
Communicating Sequential Processes (CSP)
null pointer
now in Microsoft Research
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Hoare logic

a proof system that includes both logic and pieces of code
allows to prove different sequential parts of the program separately (and
combine the proofs later)
constructed on top of some first order deduction system
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Hoare logic

contains Hoare triples of the form {φ}S{ψ}, where φ,ψ are first order
formulae and S is (a part of) a program with the syntax:

S ::= v = e | skip | S;S | if p then S else S fi |
while p do S end | begin S end

where v is a variable, e is a first order expression, and p is a quantifier-free
first order formula
a Hoare triple {φ}S{ψ} means that if an execution of S starts with a state
satisfying φ and S terminates from that state, then a state satisfying ψ is
reached
if S is the entire program, then {φ}S{ψ} claims that S is partially correct with
respect to initial condition φ and final assertion ψ
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Axioms and proof rules

Assignment axiom
{φ[v/e]}v = e{φ}

Skip axiom
{φ}skip{φ}

Left strengthening rule
φ =⇒ φ′ {φ′}S{ψ}

{φ}S{ψ}

Right weakening rule
{φ}S{ψ′} ψ′ =⇒ ψ

{φ}S{ψ}
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Axioms and proof rules

Sequential composition rule
{φ}S1{η} {η}S2{ψ}

{φ}S1;S2{ψ}

If-then-else rule
{φ ∧ p}S1{ψ} {φ ∧ ¬p}S2{ψ}
{φ}if p then S1 else S2 fi{ψ}

While rule
{φ ∧ p}S{φ}

{φ}while p do S end{φ ∧ ¬p}

Begin-end rule
{φ}S{ψ}

{φ}begin S end{ψ}
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Derived rules

Assignment axiom + left strengthening rule

φ =⇒ ψ[v/e] {ψ[v/e]}v = e{ψ} (axiom)
{φ}v = e{ψ}

Sequential composition + right weakening rule

{ψ}S1{η1} η1 =⇒ η2 {η2}S2{ψ}
{φ}S1;S2{ψ}

The proof trees are constructed as usual...
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Extensions of Hoare logic

Extensions of the Hoare proof system for verifying concurrent programs provide
axioms for

dealing with shared variables
synchronous and asynchronous communication
procedure calls

They are usually tailored for a particular programming language, e.g. Pascal or
CSP.
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Soundness and completeness

Hoare’s proof system is sound.
It is not complete due to incompleteness of first order logic with natural
numbers and basic arithmetic operations over them (Gödel’s incompleteness
theorem).
It is relatively complete, i.e. any correct assertion can be proved under the
following two (sometimes unrealistic) conditions:

Every correct (first order) logic assertion that is needed in the proof is already
included as an axiom in the proof system. (Alternatively: there is an oracle
(e.g. a human) deciding whether such an assertion is correct or not.)
Every invariant and intermediate assertion that we need for the proof can be
expressed using the underlying (first order) logic.

The relative completeness implies that the system is complete for first order
logic with natural numbers with addition and subtraction as the only operators.
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Notes

deductive verification
is not limited to finite state systems
can handle programs of various domains and datastructures (and even
parametrized programs)
can be applied directly to the code (in principle)
can verify that the program is correct (but a bug can occur in compiler, in
hardware, due to a wrong initial condition or difference between an assumed
semantics of code and the real one, etc.)
is not scalable
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Notes

in practice, deductive verification
needs a great mental effort as it is mostly manual (the result depends strongly
on the ingenuity of the people performing verification)
is significantly slower than the typical speed of effective programming
is not performed frequently on the actual code (this is changing with new
tools)
can be performed on basic algorithms or on abstractions of the code (the
faithfulness of the translation of a program into an abstracted one can
sometimes also be formally verified)

Dafny
a verification-aware programming language with native support for recording
specifications and equipped with a static program verifier
VSCode plugin available
look at https://dafny.org
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