
IA159 Formal Methods for Software Analysis
Abstract Interpretation

Jan Strejček

Faculty of Informatics
Masaryk University

Focus and sources

focus
lattices and fixpoints
abstract interpretation with examples
widening and narrowing

source
P. Cousot and R. Cousot: Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints,
POPL 1977.

Special thanks to Marek Trtík for providing me with his slides.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 2/72

Motivation for static analysis

Floyd’s conjecture

To prove static properties of program it is often sufficient to consider sets of states
associated with each program point.

examples
to check safety properties (reachability of an error state), one only needs to
know reachable states
for many optimizations during compilation, static information is sufficient
(e.g. detection of live variables, available expressions, etc.)

IA159 Formal Methods for Software Analysis: Abstract Interpretation 3/72

Motivation for static analysis

operational semantics
defines how a state changes along program execution
it is concerned about computational sequences
computes a function relating input and output states

static semantic
observes which states pass which program location
it is concerned with observed sets of states at locations
computes a function assigning a set of states to each program location

IA159 Formal Methods for Software Analysis: Abstract Interpretation 4/72

Motivation for static analysis

operational semantics
defines how a state changes along program execution
it is concerned about computational sequences
computes a function relating input and output states

static semantic
observes which states pass which program location
it is concerned with observed sets of states at locations
computes a function assigning a set of states to each program location

IA159 Formal Methods for Software Analysis: Abstract Interpretation 5/72

Motivation for abstract interpretation

it is usually impossible to compute the sets of reachable states precisely
we can compute them on some level of abstraction
for example, instead with precise numbers we work only with abstract values
{+,0,−}
abstraction brings some level of imprecission, for example, 15− 17 is seen as
(+)− (+), which can be +,0,−

IA159 Formal Methods for Software Analysis: Abstract Interpretation 6/72

Preliminaries: lattices and fixpoints

Introduction to lattices

Let (L,≤) be a partially ordered set and M ⊆ L.
x ∈ L is an upper bound of M iff y ≤ x holds for all y ∈ M
x ∈ L is a lower bound of M iff x ≤ y holds for all y ∈ M
supremum of M is the least upper bound of M
infimum of M is the greatest lower bound of M
sup(M) and inf (M) denote supremum and infimum of M, respectively

Definition (Complete lattice)

An ordered set (L,≤) is called complete lattice, if for each M ⊆ L there exist both
sup(M) and inf (M).

IA159 Formal Methods for Software Analysis: Abstract Interpretation 8/72

Introduction to lattices

Let (L,≤) be a partially ordered set and M ⊆ L.
x ∈ L is an upper bound of M iff y ≤ x holds for all y ∈ M
x ∈ L is a lower bound of M iff x ≤ y holds for all y ∈ M
supremum of M is the least upper bound of M
infimum of M is the greatest lower bound of M
sup(M) and inf (M) denote supremum and infimum of M, respectively

Definition (Complete lattice)

An ordered set (L,≤) is called complete lattice, if for each M ⊆ L there exist both
sup(M) and inf (M).

IA159 Formal Methods for Software Analysis: Abstract Interpretation 9/72

Introduction to lattices

Which of the partially ordered sets are complete lattices?

(All of the top row and the left of the bottom row.)

IA159 Formal Methods for Software Analysis: Abstract Interpretation 10/72

Introduction to lattices

Which of the partially ordered sets are complete lattices?
(All of the top row and the left of the bottom row.)

IA159 Formal Methods for Software Analysis: Abstract Interpretation 11/72

Introduction to lattices

For every set S, the powerset P(S) with the partial order ⊆ is a complete lattice.

For example, (P({0,1,2,3}),⊆) looks like:

∅

{0} {1} {2} {3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1,2,3}

IA159 Formal Methods for Software Analysis: Abstract Interpretation 12/72

Introduction to lattices

Let (L,≤) be a complete lattice.
the greatest element ⊤ = sup(L) is called one of L
the least element ⊥ = inf (L) of L is called zero of L
the lattice is of finite height if there exists h ∈ N such that the length of each
strictly increasing chain of elements of L is less than or equal to h
minimal such h is called lattice height

IA159 Formal Methods for Software Analysis: Abstract Interpretation 13/72

Fixpoint and Knaster-Tarski fixpoint theorem

Let (L,≤) be a complete lattice.
a function f : L→ L is monotone if for all x , y ∈ L it holds

x ≤ y =⇒ f (x) ≤ f (y)

x ∈ L is called a fixpoint of f if f (x) = x

Theorem (Knaster-Tarski)

Let (L,≤) be a complete lattice and f : L→ L be a monotone function. Then the
set of fixpoints of f with partial order ≤ is also a complete lattice.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 14/72

Fixpoint and Knaster-Tarski fixpoint theorem

Let (L,≤) be a complete lattice.
a function f : L→ L is monotone if for all x , y ∈ L it holds

x ≤ y =⇒ f (x) ≤ f (y)

x ∈ L is called a fixpoint of f if f (x) = x

Theorem (Knaster-Tarski)

Let (L,≤) be a complete lattice and f : L→ L be a monotone function. Then the
set of fixpoints of f with partial order ≤ is also a complete lattice.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 15/72

Kleene fixpoint theorem

Theorem (Kleene)

Let (L,≤) be a complete lattice of finite height and f : L→ L a monotone function.
Then there exists n ∈ N such that for all k ∈ N it is f n(⊥) = f n+k (⊥) and f n(⊥) is
the least fixpoint of f .

Proof: Since ⊥ is the least element of L, we have ⊥ ≤ f (⊥). Since f is monotone,
them f (⊥) ≤ f (f (⊥)) and by induction f i(⊥) ≤ f i+1(⊥). Thus, we have a
nondecreasing chain ⊥ ≤ f (⊥) ≤ f 2(⊥) ≤ Since L is assumed to be of a finite
height, there must exist n ∈ N such that f n(⊥) = f n+1(⊥). To show that f n(⊥) is a
least fixpoint of f , let us assume x is another fixpoint of f . Since ⊥ ≤ x and
f (⊥) ≤ f (x) = x from monotonicity of f , we get by induction f n(⊥) ≤ x . □

IA159 Formal Methods for Software Analysis: Abstract Interpretation 16/72

Kleene fixpoint theorem

Theorem (Kleene)

Let (L,≤) be a complete lattice of finite height and f : L→ L a monotone function.
Then there exists n ∈ N such that for all k ∈ N it is f n(⊥) = f n+k (⊥) and f n(⊥) is
the least fixpoint of f .

Proof: Since ⊥ is the least element of L, we have ⊥ ≤ f (⊥). Since f is monotone,
them f (⊥) ≤ f (f (⊥)) and by induction f i(⊥) ≤ f i+1(⊥). Thus, we have a
nondecreasing chain ⊥ ≤ f (⊥) ≤ f 2(⊥) ≤ Since L is assumed to be of a finite
height, there must exist n ∈ N such that f n(⊥) = f n+1(⊥). To show that f n(⊥) is a
least fixpoint of f , let us assume x is another fixpoint of f . Since ⊥ ≤ x and
f (⊥) ≤ f (x) = x from monotonicity of f , we get by induction f n(⊥) ≤ x . □

IA159 Formal Methods for Software Analysis: Abstract Interpretation 17/72

Fixpoint computation

algorithm for the least fixpoint computation

1 x ← ⊥
2 do
3 t ← x
4 x ← f (x)
5 while x ̸= t

If we replace the first line with x ← ⊤, we get the greatest fixpoint.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 18/72

Product lattice

Lemma (Product lattice)

Let (L1,≤1), . . . , (Ln,≤n) be complete lattices and order ≤ on L1 × . . .× Ln is
defined as (x1, . . . , xn) ≤ (y1, . . . , yn) iff

x1 ≤1 y1 ∧ . . . ∧ xn ≤n yn.

Then (L1 × . . .× Ln,≤) is a complete lattice.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 19/72

Fixpoints on product lattices

Let (L,≤) be a complete lattice and (Ln,⊑) be the corresponding product lattice.
Further, let F1, . . . ,Fn : Ln → L be monotone functions,
i.e. (x1, . . . , xn) ⊑ (y1, . . . , yn) implies Fi(x1, . . . , xn) ≤ Fi(y1, . . . , yn) for each
1 ≤ i ≤ n. Then the function F : Ln → Ln defined as

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . ,Fn(x1, . . . , xn))

is a monotone function in (Ln,⊑). Further, the least fixpoint of F is the least
solution of the system:

x1 = F1(x1, . . . , xn)
...

xn = Fn(x1, . . . , xn)

IA159 Formal Methods for Software Analysis: Abstract Interpretation 20/72

Fixpoint computation of product lattices

naive algorithm for fixpoint computation

1 x⃗ ← ⊥⃗
2 do
3 t⃗ ← x⃗
4 x⃗ ← F (x⃗)
5 while x⃗ ̸= t⃗

better algorithm for fixpoint computation (faster convergence)

1 x⃗ ← ⊥⃗
2 do
3 t⃗ ← x⃗
4 x1 ← F1(x1, . . . , xn)

5
...

6 xn ← Fn(x1, . . . , xn)

7 while x⃗ ̸= t⃗

IA159 Formal Methods for Software Analysis: Abstract Interpretation 21/72

Fixpoint computation of product lattices

naive algorithm for fixpoint computation

1 x⃗ ← ⊥⃗
2 do
3 t⃗ ← x⃗
4 x⃗ ← F (x⃗)
5 while x⃗ ̸= t⃗

better algorithm for fixpoint computation (faster convergence)

1 x⃗ ← ⊥⃗
2 do
3 t⃗ ← x⃗
4 x1 ← F1(x1, . . . , xn)

5
...

6 xn ← Fn(x1, . . . , xn)

7 while x⃗ ̸= t⃗
IA159 Formal Methods for Software Analysis: Abstract Interpretation 22/72

Abstract interpretation

Abstract interpretation

an abstract interpretation of a program is kind of a static semantic, where
original data domains are replaced with abstract ones
abstract data domain must constitute a complete lattice
semantic of program instructions have to be changed as well: we define
unique monotone function for each program instruction

IA159 Formal Methods for Software Analysis: Abstract Interpretation 24/72

Abstract interpretation: Definition

Definition (Abstract interpretation)

An abstract interpretation I of a program P with n program locations is a tuple

I = ⟨L, ◦,≤,⊤,⊥,F ⟩

where (L,≤) is complete lattice, ⊤ and ⊥ are one and zero of (L,≤), ◦ is equal
either to join or meet operation, and F is a monotone function on product lattice
(Ln,≤) defining the interpretation of basic instructions.

meet operator is defined as a ◦ b = inf ({a,b})
join operator is defined as a ◦ b = sup({a,b}).

Typically, F (x⃗) = (F1(x⃗), . . . ,Fn(x⃗)), where each Fi : Ln → L defines effect of i-th
program instruction.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 25/72

Abstract interpretation: Definition

Definition (Abstract interpretation)

An abstract interpretation I of a program P with n program locations is a tuple

I = ⟨L, ◦,≤,⊤,⊥,F ⟩

where (L,≤) is complete lattice, ⊤ and ⊥ are one and zero of (L,≤), ◦ is equal
either to join or meet operation, and F is a monotone function on product lattice
(Ln,≤) defining the interpretation of basic instructions.

meet operator is defined as a ◦ b = inf ({a,b})
join operator is defined as a ◦ b = sup({a,b}).

Typically, F (x⃗) = (F1(x⃗), . . . ,Fn(x⃗)), where each Fi : Ln → L defines effect of i-th
program instruction.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 26/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b;

x1 = F1(x⃗) = ∅

z = a+b;

x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅

y = a*b;

x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}

while (y > a+b) {

x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1;

x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs

x = a+b;

x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

IA159 Formal Methods for Software Analysis: Abstract Interpretation 27/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b;

x1 = F1(x⃗) = ∅

z = a+b;

x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅

y = a*b;

x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}

while (y > a+b) {

x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1;

x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs

x = a+b;

x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

IA159 Formal Methods for Software Analysis: Abstract Interpretation 28/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}

A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b;

x1 = F1(x⃗) = ∅

z = a+b;

x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅

y = a*b;

x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}

while (y > a+b) {

x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1;

x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs

x = a+b;

x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

IA159 Formal Methods for Software Analysis: Abstract Interpretation 29/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩

Product lattice: (P6(AExprs),≤).

var x,y,z,a,b;

x1 = F1(x⃗) = ∅

z = a+b;

x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅

y = a*b;

x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}

while (y > a+b) {

x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1;

x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs

x = a+b;

x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

IA159 Formal Methods for Software Analysis: Abstract Interpretation 30/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b; x1

= F1(x⃗) = ∅

z = a+b; x2

= F2(x⃗) = (x1 ∪ {a+b})∖ ∅

y = a*b; x3

= F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}

while (y > a+b) { x4

= F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1; x5

= F5(x⃗) = (x4 ∪ {a+1})∖ AExprs

x = a+b; x6

= F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

IA159 Formal Methods for Software Analysis: Abstract Interpretation 31/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b; x1 = F1(x⃗) = ∅
z = a+b; x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅
y = a*b; x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}
while (y > a+b) { x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1; x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs
x = a+b; x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

IA159 Formal Methods for Software Analysis: Abstract Interpretation 32/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b; x1 = F1(x⃗) = ∅
z = a+b; x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅
y = a*b; x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}
while (y > a+b) { x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1; x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs
x = a+b; x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

Direction: Forward

IA159 Formal Methods for Software Analysis: Abstract Interpretation 33/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b; x1 = F1(x⃗) = ∅
z = a+b; x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅
y = a*b; x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}
while (y > a+b) { x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1; x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs
x = a+b; x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

Analysis: Must

IA159 Formal Methods for Software Analysis: Abstract Interpretation 34/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b; x1 = F1(x⃗) = ∅
z = a+b; x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅
y = a*b; x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}
while (y > a+b) { x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1; x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs
x = a+b; x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

Are all functions Fi monotone?

IA159 Formal Methods for Software Analysis: Abstract Interpretation 35/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b; x1 = F1(x⃗) = ∅
z = a+b; x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅
y = a*b; x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}
while (y > a+b) { x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1; x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs
x = a+b; x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

Proof F4: Let x⃗ , y⃗ ∈ P6(AExprs) such that x⃗ ≤ y⃗

IA159 Formal Methods for Software Analysis: Abstract Interpretation 36/72

Example: Available expressions

A nontrivial expression in a program is available at a program location if its current
value has already been computed earlier in the execution.

Available expressions: AExprs = {a+b,a*b,y>a+b,a+1}
A.I.: I = ⟨P(AExprs),∩,⊆,AExprs, ∅, λx⃗ .(F1(x⃗), . . . ,F6(x⃗))⟩
Product lattice: (P6(AExprs),≤).

var x,y,z,a,b; x1 = F1(x⃗) = ∅
z = a+b; x2 = F2(x⃗) = (x1 ∪ {a+b})∖ ∅
y = a*b; x3 = F3(x⃗) = (x2 ∪ {a*b})∖ {y>a+b}
while (y > a+b) { x4 = F4(x⃗) = (x3 ∩ x6) ∪ {a+b,y>a+b}

a = a+1; x5 = F5(x⃗) = (x4 ∪ {a+1})∖ AExprs
x = a+b; x6 = F6(x⃗) = (x5 ∪ {a+b})∖ ∅

}

Then x3 ⊆ y3 and x6 ⊆ y6, which implies (x3 ∩ x6) ⊆ (y3 ∩ y6). . .

IA159 Formal Methods for Software Analysis: Abstract Interpretation 37/72

Example: Available expressions

After fixpoint computation ...

var x,y,z,a,b; x1 = ∅
z = a+b; x2 = {a+b}
y = a*b; x3 = {a+b,a*b}
while (y > a+b) { x4 = {a+b,y>a+b}

a = a+1; x5 = ∅
x = a+b; x6 = {a+b}

}

Solution: Minimal

IA159 Formal Methods for Software Analysis: Abstract Interpretation 38/72

Example: Available expressions

After fixpoint computation ...

var x,y,z,a,b; x1 = ∅
z = a+b; x2 = {a+b}
y = a*b; x3 = {a+b,a*b}
while (y > a+b) { x4 = {a+b,y>a+b}

a = a+1; x5 = ∅
x = a+b; x6 = {a+b}

}

The expression a+b in the loop head is available (does not have to be computed).

IA159 Formal Methods for Software Analysis: Abstract Interpretation 39/72

Example: Live variables

A variable is live at a program point if its current value may be read during the
remaining execution of the program.

x1 = ∅ x1 = x2 ∖ {x,y,z}

var x,y,z;

x2 = ∅ x2 = x3 ∖ {x}

x = input();

x3 = {x} x3 = (x4 ∪ x11) ∪ {x}

while (x > 1) {

x4 = {x} x4 = (x5 ∖ {y}) ∪ {x}

y = x/2;

x5 = {x,y} x5 = (x6 ∪ x7) ∪ {y}

if (y > 3)

x6 = {x,y} x6 = (x7 ∖ {x}) ∪ {x,y}

x = x-y;

x7 = {x} x7 = (x8 ∖ {z}) ∪ {x}

z = x-4;

x8 = {x,z} x8 = (x9 ∪ x10) ∪ {z}

if (z > 0)

x9 = {x,z} x9 = (x10 ∖ {x}) ∪ {x}

x = x/2;

x10 = {x,z} x10 = (x3 ∖ {z}) ∪ {z}

z = z-1; }

x11 = {x} x11 = {x}

output(x);

IA159 Formal Methods for Software Analysis: Abstract Interpretation 40/72

Example: Live variables

A variable is live at a program point if its current value may be read during the
remaining execution of the program.

Vars = {x,y,z} and I = ⟨P(Vars),∪,⊆,Vars, ∅, λx⃗ .(F1(x⃗), . . . ,F11(x⃗))⟩

x1 = ∅ x1 = x2 ∖ {x,y,z}

var x,y,z;

x2 = ∅ x2 = x3 ∖ {x}

x = input();

x3 = {x} x3 = (x4 ∪ x11) ∪ {x}

while (x > 1) {

x4 = {x} x4 = (x5 ∖ {y}) ∪ {x}

y = x/2;

x5 = {x,y} x5 = (x6 ∪ x7) ∪ {y}

if (y > 3)

x6 = {x,y} x6 = (x7 ∖ {x}) ∪ {x,y}

x = x-y;

x7 = {x} x7 = (x8 ∖ {z}) ∪ {x}

z = x-4;

x8 = {x,z} x8 = (x9 ∪ x10) ∪ {z}

if (z > 0)

x9 = {x,z} x9 = (x10 ∖ {x}) ∪ {x}

x = x/2;

x10 = {x,z} x10 = (x3 ∖ {z}) ∪ {z}

z = z-1; }

x11 = {x} x11 = {x}

output(x);

IA159 Formal Methods for Software Analysis: Abstract Interpretation 41/72

Example: Live variables

A variable is live at a program point if its current value may be read during the
remaining execution of the program.

Product lattice is (P11(Vars),≤).

x1 = ∅

x1 = x2 ∖ {x,y,z} var x,y,z;

x2 = ∅

x2 = x3 ∖ {x} x = input();

x3 = {x}

x3 = (x4 ∪ x11) ∪ {x} while (x > 1) {

x4 = {x}

x4 = (x5 ∖ {y}) ∪ {x} y = x/2;

x5 = {x,y}

x5 = (x6 ∪ x7) ∪ {y} if (y > 3)

x6 = {x,y}

x6 = (x7 ∖ {x}) ∪ {x,y} x = x-y;

x7 = {x}

x7 = (x8 ∖ {z}) ∪ {x} z = x-4;

x8 = {x,z}

x8 = (x9 ∪ x10) ∪ {z} if (z > 0)

x9 = {x,z}

x9 = (x10 ∖ {x}) ∪ {x} x = x/2;

x10 = {x,z}

x10 = (x3 ∖ {z}) ∪ {z} z = z-1; }

x11 = {x}

x11 = {x} output(x);

IA159 Formal Methods for Software Analysis: Abstract Interpretation 42/72

Example: Live variables

A variable is live at a program point if its current value may be read during the
remaining execution of the program.

Direction: Backward

x1 = ∅

x1 = x2 ∖ {x,y,z} var x,y,z;

x2 = ∅

x2 = x3 ∖ {x} x = input();

x3 = {x}

x3 = (x4 ∪ x11) ∪ {x} while (x > 1) {

x4 = {x}

x4 = (x5 ∖ {y}) ∪ {x} y = x/2;

x5 = {x,y}

x5 = (x6 ∪ x7) ∪ {y} if (y > 3)

x6 = {x,y}

x6 = (x7 ∖ {x}) ∪ {x,y} x = x-y;

x7 = {x}

x7 = (x8 ∖ {z}) ∪ {x} z = x-4;

x8 = {x,z}

x8 = (x9 ∪ x10) ∪ {z} if (z > 0)

x9 = {x,z}

x9 = (x10 ∖ {x}) ∪ {x} x = x/2;

x10 = {x,z}

x10 = (x3 ∖ {z}) ∪ {z} z = z-1; }

x11 = {x}

x11 = {x} output(x);

IA159 Formal Methods for Software Analysis: Abstract Interpretation 43/72

Example: Live variables

A variable is live at a program point if its current value may be read during the
remaining execution of the program.

Analysis: May

x1 = ∅

x1 = x2 ∖ {x,y,z} var x,y,z;

x2 = ∅

x2 = x3 ∖ {x} x = input();

x3 = {x}

x3 = (x4 ∪ x11) ∪ {x} while (x > 1) {

x4 = {x}

x4 = (x5 ∖ {y}) ∪ {x} y = x/2;

x5 = {x,y}

x5 = (x6 ∪ x7) ∪ {y} if (y > 3)

x6 = {x,y}

x6 = (x7 ∖ {x}) ∪ {x,y} x = x-y;

x7 = {x}

x7 = (x8 ∖ {z}) ∪ {x} z = x-4;

x8 = {x,z}

x8 = (x9 ∪ x10) ∪ {z} if (z > 0)

x9 = {x,z}

x9 = (x10 ∖ {x}) ∪ {x} x = x/2;

x10 = {x,z}

x10 = (x3 ∖ {z}) ∪ {z} z = z-1; }

x11 = {x}

x11 = {x} output(x);

IA159 Formal Methods for Software Analysis: Abstract Interpretation 44/72

Example: Live variables

A variable is live at a program point if its current value may be read during the
remaining execution of the program.

Solution: Minimal

x1 = ∅ x1 = x2 ∖ {x,y,z} var x,y,z;
x2 = ∅ x2 = x3 ∖ {x} x = input();
x3 = {x} x3 = (x4 ∪ x11) ∪ {x} while (x > 1) {
x4 = {x} x4 = (x5 ∖ {y}) ∪ {x} y = x/2;
x5 = {x,y} x5 = (x6 ∪ x7) ∪ {y} if (y > 3)
x6 = {x,y} x6 = (x7 ∖ {x}) ∪ {x,y} x = x-y;
x7 = {x} x7 = (x8 ∖ {z}) ∪ {x} z = x-4;
x8 = {x,z} x8 = (x9 ∪ x10) ∪ {z} if (z > 0)
x9 = {x,z} x9 = (x10 ∖ {x}) ∪ {x} x = x/2;
x10 = {x,z} x10 = (x3 ∖ {z}) ∪ {z} z = z-1; }
x11 = {x} x11 = {x} output(x);

IA159 Formal Methods for Software Analysis: Abstract Interpretation 45/72

Example: Live variables

A variable is live at a program point if its current value may be read during the
remaining execution of the program.

Variables y,z are never live together.

x1 = ∅ x1 = x2 ∖ {x,y,z} var x,y,z;
x2 = ∅ x2 = x3 ∖ {x} x = input();
x3 = {x} x3 = (x4 ∪ x11) ∪ {x} while (x > 1) {
x4 = {x} x4 = (x5 ∖ {y}) ∪ {x} y = x/2;
x5 = {x,y} x5 = (x6 ∪ x7) ∪ {y} if (y > 3)
x6 = {x,y} x6 = (x7 ∖ {x}) ∪ {x,y} x = x-y;
x7 = {x} x7 = (x8 ∖ {z}) ∪ {x} z = x-4;
x8 = {x,z} x8 = (x9 ∪ x10) ∪ {z} if (z > 0)
x9 = {x,z} x9 = (x10 ∖ {x}) ∪ {x} x = x/2;
x10 = {x,z} x10 = (x3 ∖ {z}) ∪ {z} z = z-1; }
x11 = {x} x11 = {x} output(x);

IA159 Formal Methods for Software Analysis: Abstract Interpretation 46/72

Example: Reaching definitions

The reaching definitions for a given program point are those assignments that may
have defined the current values of variables.

var x,y,z;
x = input();
while (x > 1) {

y = x/2;
if (y > 3)

x = x-y;
z = x-4;
if (z > 0)

x = x/2;
z = z-1; }

output(x);

Assignments:
Asgns = {x = input(), y = x/2, x = x-y,

z = x-4, x = x/2, z = z-1}

I = ⟨P(Asgns),∪,⊆,Asgns, ∅,
λx⃗ .(F1(x⃗), . . . ,F11(x⃗))⟩

Product lattice: (P11(Asgns),⊆)

Direction: Forward
Analysis: May
Solution: Minimal

IA159 Formal Methods for Software Analysis: Abstract Interpretation 47/72

Example: Reaching definitions

The reaching definitions for a given program point are those assignments that may
have defined the current values of variables.

var x,y,z;
x = input();
while (x > 1) {

y = x/2;
if (y > 3)

x = x-y;
z = x-4;
if (z > 0)

x = x/2;
z = z-1; }

output(x);

Assignments:
Asgns = {x = input(), y = x/2, x = x-y,

z = x-4, x = x/2, z = z-1}

I = ⟨P(Asgns),∪,⊆,Asgns, ∅,
λx⃗ .(F1(x⃗), . . . ,F11(x⃗))⟩

Product lattice: (P11(Asgns),⊆)

Direction: Forward
Analysis: May
Solution: Minimal

IA159 Formal Methods for Software Analysis: Abstract Interpretation 48/72

Example: Reaching definitions

The reaching definitions for a given program point are those assignments that may
have defined the current values of variables.

var x,y,z;
x = input();
while (x > 1) {

y = x/2;
if (y > 3)

x = x-y;
z = x-4;
if (z > 0)

x = x/2;
z = z-1; }

output(x);

Assignments:
Asgns = {x = input(), y = x/2, x = x-y,

z = x-4, x = x/2, z = z-1}

I = ⟨P(Asgns),∪,⊆,Asgns, ∅,
λx⃗ .(F1(x⃗), . . . ,F11(x⃗))⟩

Product lattice: (P11(Asgns),⊆)

Direction: Forward
Analysis: May
Solution: Minimal

IA159 Formal Methods for Software Analysis: Abstract Interpretation 49/72

Example: Reaching definitions

The reaching definitions for a given program point are those assignments that may
have defined the current values of variables.

var x,y,z;
x = input();
while (x > 1) {

y = x/2;
if (y > 3)

x = x-y;
z = x-4;
if (z > 0)

x = x/2;
z = z-1; }

output(x);

Assignments:
Asgns = {x = input(), y = x/2, x = x-y,

z = x-4, x = x/2, z = z-1}

I = ⟨P(Asgns),∪,⊆,Asgns, ∅,
λx⃗ .(F1(x⃗), . . . ,F11(x⃗))⟩

Product lattice: (P11(Asgns),⊆)

Direction: Forward
Analysis: May
Solution: Minimal

IA159 Formal Methods for Software Analysis: Abstract Interpretation 50/72

Example: Reaching definitions

The reaching definitions for a given program point are those assignments that may
have defined the current values of variables.

var x,y,z;
x = input();
while (x > 1) {

y = x/2;
if (y > 3)

x = x-y;
z = x-4;
if (z > 0)

x = x/2;
z = z-1; }

output(x);

Assignments:
Asgns = {x = input(), y = x/2, x = x-y,

z = x-4, x = x/2, z = z-1}

I = ⟨P(Asgns),∪,⊆,Asgns, ∅,
λx⃗ .(F1(x⃗), . . . ,F11(x⃗))⟩

Product lattice: (P11(Asgns),⊆)

Direction: Forward
Analysis: May
Solution: Minimal

IA159 Formal Methods for Software Analysis: Abstract Interpretation 51/72

Example: Busy expressions

An expression is busy if it will definitely be evaluated again before its value
changes.

Direction: Backward
Analysis: Must
Solution: Minimal

IA159 Formal Methods for Software Analysis: Abstract Interpretation 52/72

Example: Busy expressions

An expression is busy if it will definitely be evaluated again before its value
changes.

Direction: Backward
Analysis: Must
Solution: Minimal

IA159 Formal Methods for Software Analysis: Abstract Interpretation 53/72

Computing variable values: different abstraction levels

We may consider different abstraction levels of variable values:
sets of integer values: P(Z)
intervals: {[l ,u] | l ,u ∈ Z ∪ {−∞,∞}, l ≤ u} ∪ {⊥}
only signs with zero: P({−,0,+})
initialized or not: {⊥,⊤}

Which abstraction is more precise than other?

IA159 Formal Methods for Software Analysis: Abstract Interpretation 54/72

Computing variable values: different abstraction levels

We may consider different abstraction levels of variable values:
sets of integer values: P(Z)
intervals: {[l ,u] | l ,u ∈ Z ∪ {−∞,∞}, l ≤ u} ∪ {⊥}
only signs with zero: P({−,0,+})
initialized or not: {⊥,⊤}

Which abstraction is more precise than other?

IA159 Formal Methods for Software Analysis: Abstract Interpretation 55/72

Fixpoint approximation techniques: widening and narrowing

Fixpoint approximation techniques

When the extreme fixpoints of the system of equations cannot be computed in
finitely many steps, they can be approximated.

Generally, we have these two approaches:
1 we can find more abstract interpretation
2 we can make approximations in the current interpretation to accelerate

convergence of Kleene’s sequence

Here we are concerned with the second approach – the technique called widening.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 57/72

Fixpoint approximation techniques

Widening makes Kleene’s sequence to converge
to a fixpoint possibly greater than the least one or
to an element s, such that s > F (s).

In the second case, since s is greater then the least fixpoint, we can use narrowing
to make the solution more precise – i.e. to find some fixpoint smaller than s but
possibly greater than the least fixpoint.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 58/72

Widening

If the Kleene’s sequence does not converge, then there exists a location xi on
a program loop where the sequence does not converge.
We need a widening function ▽ : L× L→ L, which is applied every time the
location xi is updated: xi = xi▽Fi(x⃗).
We must define ▽ such that

for each x , y ∈ L, x ◦ y ≤ x▽y , i.e. ▽ overapproximates operation ◦,
it ensures that every infinite sequence of elements occurring in xi is not strictly
increasing.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 59/72

Widening

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Widening operator ▽: [i , j]▽[k , l] = [ite(k < i ,−∞, i), ite(l > j ,∞, j)]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{x3 = x3▽(x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iterations

IA159 Formal Methods for Software Analysis: Abstract Interpretation 60/72

Widening

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Widening operator ▽: [i , j]▽[k , l] = [ite(k < i ,−∞, i), ite(l > j ,∞, j)]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{x3 = x3▽(x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iterations

IA159 Formal Methods for Software Analysis: Abstract Interpretation 61/72

Widening

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Widening operator ▽: [i , j]▽[k , l] = [ite(k < i ,−∞, i), ite(l > j ,∞, j)]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{x3 = x3▽(x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iterations

IA159 Formal Methods for Software Analysis: Abstract Interpretation 62/72

Widening

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Widening operator ▽: [i , j]▽[k , l] = [ite(k < i ,−∞, i), ite(l > j ,∞, j)]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{x3 = x3▽(x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iterations

IA159 Formal Methods for Software Analysis: Abstract Interpretation 63/72

Widening

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Widening operator ▽: [i , j]▽[k , l] = [ite(k < i ,−∞, i), ite(l > j ,∞, j)]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{x3 = x3▽(x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iterations

IA159 Formal Methods for Software Analysis: Abstract Interpretation 64/72

Widening

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Widening operator ▽: [i , j]▽[k , l] = [ite(k < i ,−∞, i), ite(l > j ,∞, j)]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{x3 = x3▽(x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iterations

IA159 Formal Methods for Software Analysis: Abstract Interpretation 65/72

Narrowing

When widening ends with s > F (s), we improve solution s as follows:
s ≥ F (s) ≥ . . . ≥ F n(s) ≥ . . . ≥ s0, where s0 is the least fixpoint.
When the sequence is finite, its limit is better approximation of s0.
If the sequence is infinite, we apply narrowing function △: L× L→ L at not
stabilizing location xi such that xi = xi △ Fi(x⃗).
Operator △ must satisfy:

for each x , y ∈ L, x > y → (x ≥ x △ y ≥ y), i.e. △ tries to slow down the
decreasing of the sequence,
it ensures, that every infinite sequence of elements starting from any s is not
strictly decreasing.

IA159 Formal Methods for Software Analysis: Abstract Interpretation 66/72

Narrowing

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Narrowing operator △:
[i , j] △ [k , l] = [ite(i = −∞, k ,min(i , k)), ite(j =∞, l ,max(j , l))]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iteration

{x3 = x3 △ (x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
+1 iteration

IA159 Formal Methods for Software Analysis: Abstract Interpretation 67/72

Narrowing

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Narrowing operator △:
[i , j] △ [k , l] = [ite(i = −∞, k ,min(i , k)), ite(j =∞, l ,max(j , l))]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iteration

{x3 = x3 △ (x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
+1 iteration

IA159 Formal Methods for Software Analysis: Abstract Interpretation 68/72

Narrowing

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Narrowing operator △:
[i , j] △ [k , l] = [ite(i = −∞, k ,min(i , k)), ite(j =∞, l ,max(j , l))]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iteration

{x3 = x3 △ (x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
+1 iteration

IA159 Formal Methods for Software Analysis: Abstract Interpretation 69/72

Narrowing

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Narrowing operator △:
[i , j] △ [k , l] = [ite(i = −∞, k ,min(i , k)), ite(j =∞, l ,max(j , l))]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iteration

{x3 = x3 △ (x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
+1 iteration

IA159 Formal Methods for Software Analysis: Abstract Interpretation 70/72

Narrowing

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Narrowing operator △:
[i , j] △ [k , l] = [ite(i = −∞, k ,min(i , k)), ite(j =∞, l ,max(j , l))]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iteration

{x3 = x3 △ (x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
+1 iteration

IA159 Formal Methods for Software Analysis: Abstract Interpretation 71/72

Narrowing

Example: Interval bounds of integer variable x

{locations are after}
1 x = 1;
2 while (x <= 100) {
3 x = x + 1;
4 }

{functions}
x1 = [1,1]
x2 = (x1 ∪ x3) ∩ [−∞,100]
x3 = x2 + [1,1]
x4 = (x1 ∪ x3) ∩ [101,∞]

Narrowing operator △:
[i , j] △ [k , l] = [ite(i = −∞, k ,min(i , k)), ite(j =∞, l ,max(j , l))]

{no widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
100 iterations

{widening}
x1 = [1,1]
x2 = [1,100]
x3 = [2,∞]
x4 = [101,∞]
2 iteration

{x3 = x3 △ (x2 + [1,1])}
x1 = [1,1]
x2 = [1,100]
x3 = [2,101]
x4 = [101,101]
+1 iteration

IA159 Formal Methods for Software Analysis: Abstract Interpretation 72/72

