
IA159 Formal Methods for Software Analysis
Program Slicing and Points-to Analysis

Jan Strejček

Faculty of Informatics
Masaryk University

Focus and sources

focus
slicing via dependence graphs
points-to analysis
static single assignment (SSA)
data dependencies
control dependencies

source
M. Chalupa: Program Slicing and Symbolic Execution for Verification, PhD
thesis, 2021.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 2/65

Program slicing

Program slicing reduces a given program by removing statements that are
irrelevant for a given slicing criterion.

A typical slicing criterion is a specific statement or a set of statements. Sliced
program should preserve all executions of these statements, i.e., preserve the
reachability of these statements and all data they process.

introduced in M. D. Weiser: Program Slicing, ICSE 1981
the approach based on dependence graphs presented in K. J. Ottenstein and
L. M. Ottenstein: The Program Dependence Graph in a Software
Development Environment, SDE 1984

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 3/65

Program slicing

Program slicing reduces a given program by removing statements that are
irrelevant for a given slicing criterion.

A typical slicing criterion is a specific statement or a set of statements. Sliced
program should preserve all executions of these statements, i.e., preserve the
reachability of these statements and all data they process.

introduced in M. D. Weiser: Program Slicing, ICSE 1981
the approach based on dependence graphs presented in K. J. Ottenstein and
L. M. Ottenstein: The Program Dependence Graph in a Software
Development Environment, SDE 1984

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 4/65

Program slicing

Program slicing reduces a given program by removing statements that are
irrelevant for a given slicing criterion.

A typical slicing criterion is a specific statement or a set of statements. Sliced
program should preserve all executions of these statements, i.e., preserve the
reachability of these statements and all data they process.

introduced in M. D. Weiser: Program Slicing, ICSE 1981
the approach based on dependence graphs presented in K. J. Ottenstein and
L. M. Ottenstein: The Program Dependence Graph in a Software
Development Environment, SDE 1984

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 5/65

Applications of program slicing

program debugging
code comprehension
code optimization including automatic parallelization
software verification
. . .

a typical application in software verification (implemented in Symbiotic)
1 find potentially erroneous statements by a cheap analysis
2 slice the program to preserve all executions of these statements
3 verify the sliced program

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 6/65

Applications of program slicing

program debugging
code comprehension
code optimization including automatic parallelization
software verification
. . .

a typical application in software verification (implemented in Symbiotic)
1 find potentially erroneous statements by a cheap analysis
2 slice the program to preserve all executions of these statements
3 verify the sliced program

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 7/65

Simple example

Which statements are irrelevant for the assert?

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4 z = 3 * x;
5 } else {
6 y = z + 5;
7 x = x * x - z;
8 }
9 if (x > y)

10 z = x - 1;
11 assert(x > 0);

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 8/65

Simple example

Which statements are irrelevant for the assert?

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4 z = 3 * x;
5 } else {
6 y = z + 5;
7 x = x * x - z;
8 }
9 if (x > y)

10 z = x - 1;
11 assert(x > 0);

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 9/65

Basic slicing algorithm

1 build a dependence graph for the given program
nodes are statements
edges correspond to data and control dependencies

2 sliced program corresponds to the nodes that are backward reachable from
the slicing criterion(s)

intuitive meanings
a statement r is data dependent on a statement w if there exists a program
execution where r reads a value from a memory that has been written by w
a statement n is control dependent on a statement b if b is the closest point
where a program execution may go some way that misses n
in practice, we compute overapproximations

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 10/65

Simple dependency graph

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

z = 3 * x;

y = z + 5;

if (x > y)
z = x - 1;

1: z = z + 3

2: if (z > 0)

3: x = z + 1

4: z = 3 * x

6: y = z + 5

7: x = x * x - z

9: if (x > y)

10: z = x - 1

11: assert(x > 0)

r is data dependent on w if there exists a program execution
where r reads a value from a memory that has been written by w

w
r

n is control dependent on b if b is the closest point
where the program may go some way that misses n

b
n

1: z = z + 3

2: if (z > 0)

3: x = z + 1

7: x = x * x - z

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 11/65

Simple dependency graph

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

z = 3 * x;

y = z + 5;

if (x > y)
z = x - 1;

1: z = z + 3

2: if (z > 0)

3: x = z + 1

4: z = 3 * x

6: y = z + 5

7: x = x * x - z

9: if (x > y)

10: z = x - 1

11: assert(x > 0)

r is data dependent on w if there exists a program execution
where r reads a value from a memory that has been written by w

w
r

n is control dependent on b if b is the closest point
where the program may go some way that misses n

b
n

1: z = z + 3

2: if (z > 0)

3: x = z + 1

7: x = x * x - z

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 12/65

Simple dependency graph

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

z = 3 * x;

y = z + 5;

if (x > y)
z = x - 1;

1: z = z + 3

2: if (z > 0)

3: x = z + 1

4: z = 3 * x

6: y = z + 5

7: x = x * x - z

9: if (x > y)

10: z = x - 1

11: assert(x > 0)

r is data dependent on w if there exists a program execution
where r reads a value from a memory that has been written by w

w
r

n is control dependent on b if b is the closest point
where the program may go some way that misses n

b
n

1: z = z + 3

2: if (z > 0)

3: x = z + 1

7: x = x * x - z

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 13/65

Simple dependency graph

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

z = 3 * x;

y = z + 5;

if (x > y)
z = x - 1;

1: z = z + 3

2: if (z > 0)

3: x = z + 1

4: z = 3 * x

6: y = z + 5

7: x = x * x - z

9: if (x > y)

10: z = x - 1

11: assert(x > 0)

r is data dependent on w if there exists a program execution
where r reads a value from a memory that has been written by w

w
r

n is control dependent on b if b is the closest point
where the program may go some way that misses n

b
n

1: z = z + 3

2: if (z > 0)

3: x = z + 1

7: x = x * x - z

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 14/65

Simple dependency graph

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

z = 3 * x;

y = z + 5;

if (x > y)
z = x - 1;

1: z = z + 3

2: if (z > 0)

3: x = z + 1

4: z = 3 * x

6: y = z + 5

7: x = x * x - z

9: if (x > y)

10: z = x - 1

11: assert(x > 0)

r is data dependent on w if there exists a program execution
where r reads a value from a memory that has been written by w

w
r

n is control dependent on b if b is the closest point
where the program may go some way that misses n

b
n

11: assert(x > 0)

1: z = z + 3

2: if (z > 0)

3: x = z + 1

7: x = x * x - z

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 15/65

Simple dependency graph

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

z = 3 * x;

y = z + 5;

if (x > y)
z = x - 1;

1: z = z + 3

2: if (z > 0)

3: x = z + 1

4: z = 3 * x

6: y = z + 5

7: x = x * x - z

9: if (x > y)

10: z = x - 1

11: assert(x > 0)

r is data dependent on w if there exists a program execution
where r reads a value from a memory that has been written by w

w
r

n is control dependent on b if b is the closest point
where the program may go some way that misses n

b
n

11: assert(x > 0)

1: z = z + 3

2: if (z > 0)

3: x = z + 1

7: x = x * x - z

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 16/65

Simple dependency graph

1 z = z + 3;
2 if (z > 0) {
3 x = z + 1;
4
5 } else {
6
7 x = x * x - z;
8 }
9

10
11 assert(x > 0);

1: z = z + 3

2: if (z > 0)

3: x = z + 1

4: z = 3 * x

6: y = z + 5

7: x = x * x - z

9: if (x > y)

10: z = x - 1

11: assert(x > 0)

r is data dependent on w if there exists a program execution
where r reads a value from a memory that has been written by w

w
r

n is control dependent on b if b is the closest point
where the program may go some way that misses n

b
n

11: assert(x > 0)

1: z = z + 3

2: if (z > 0)

3: x = z + 1

7: x = x * x - z

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 17/65

Points-to analysis aka pointer analysis

Motivation

How data dependencies look like?

1 int x;
2 int *p;
3 int *q;
4 x = 5;
5 p = &x;
6 q = p;
7 *q = 7;
8 assert(x > 6);

...

4: x = 5

5: p = &x

6: q = p

7: *q = 7

8: assert(x > 6)

where this
data dependency

edge starts?

points-to analysis
needed

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 19/65

Motivation

How data dependencies look like?

1 int x;
2 int *p;
3 int *q;
4 x = 5;
5 p = &x;
6 q = p;
7 *q = 7;
8 assert(x > 6);

...

4: x = 5

5: p = &x

6: q = p

7: *q = 7

8: assert(x > 6)

where this
data dependency

edge starts?

points-to analysis
needed

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 20/65

Motivation

How data dependencies look like?

1 int x;
2 int *p;
3 int *q;
4 x = 5;
5 p = &x;
6 q = p;
7 *q = 7;
8 assert(x > 6);

...

4: x = 5

5: p = &x

6: q = p

7: *q = 7

8: assert(x > 6)

where this
data dependency

edge starts?

points-to analysis
needed

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 21/65

Motivation

How data dependencies look like?

1 int x;
2 int *p;
3 int *q;
4 x = 5;
5 p = &x;
6 q = p;
7 *q = 7;
8 assert(x > 6);

...

4: x = 5

5: p = &x

6: q = p

7: *q = 7

8: assert(x > 6)

where this
data dependency

edge starts?

points-to analysis
needed

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 22/65

Points-to analysis

assigns to each pointer p the points-to set that contains all memory locations
p may point to
memory locations are abstractions of concrete objects located in memory
during program execution

often identified with allocation statements like 1: int x or 35: malloc(128)
can represent more concrete objects, e.g., for malloc in cycle

we use two additional memory locations
null representing a pointer value NULL
unknown saying that the pointer can point anywhere

additionally, it tracks which memory locations represent one concrete memory
object and which are abstract
can be computed by an abstract interpretation

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 23/65

Points-to analysis

assigns to each pointer p the points-to set that contains all memory locations
p may point to
memory locations are abstractions of concrete objects located in memory
during program execution

often identified with allocation statements like 1: int x or 35: malloc(128)
can represent more concrete objects, e.g., for malloc in cycle

we use two additional memory locations
null representing a pointer value NULL
unknown saying that the pointer can point anywhere

additionally, it tracks which memory locations represent one concrete memory
object and which are abstract
can be computed by an abstract interpretation

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 24/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

flow insensitive

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 25/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

flow insensitive

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 26/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

p → {1: int y}

flow insensitive

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 27/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

p → {1: int y}

p → {null}

flow insensitive

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 28/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

p → {1: int y}

p → {null}

p → {2: malloc(40)}

flow insensitive

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 29/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

p → {1: int y}

p → {null}

p → {2: malloc(40)}

q → {null, 2: malloc(40)}

flow insensitive

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 30/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

p → {1: int y}

p → {null}

p → {2: malloc(40)}

q → {null, 2: malloc(40)} flow insensitive

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 31/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

p → {1: int y}

p → {null}

p → {2: malloc(40)}

q → {null, 2: malloc(40)} flow insensitive

p,q → {1: int y, null,
2: malloc(40)}

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 32/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

p → {1: int y}

p → {null}

p → {2: malloc(40)}

q → {null, 2: malloc(40)} flow insensitive

p,q → {1: int y, null,
2: malloc(40)}

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 33/65

Points-to analysis

can be flow sensitive or insensitive
flow sensitive analysis assigns a points-to set to a pointer and a program
location (more precise but more expensive)
flow insensitive analysis used mainly for programs in static single assignment
(SSA) form

can be field insensitive or sensitive
field sensitive analysis tracks also offsets
field sensitive analysis is more precise but more expensive

1 int y;
2 int *data = malloc(40);
3 ...
4 int *p = &y;
5 if (y > 2) {
6 p = NULL;
7 } else {
8 p = data + 2;
9 }

10 int *q = p;

flow sensitive

p → {null}

flow insensitive

field insensitive

field insensitive

field sensitive

field sensitive

p → {(1: int y,0)}

p → {(2: malloc(40),8)}

q → {null, (2: malloc(40),8)}

p,q → {(1: int y,0), null,
(2: malloc(40),8)}

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 34/65

Notes

a popular algorithm for points-to analysis presented in L. O. Andersen:
Program Analysis and Specialization for the C Programming Language, PhD
thesis, 1994
applications of points-to analysis

can prove that a program is memory safe, i.e., it contains no invalid pointer
dereference and no invalid memory deallocation
can be used for computation of data dependencies
can help to identify functions called via a function pointer
. . .

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 35/65

Static single assignment (SSA)

Static single assignment (SSA)

a program form with only one assignment statement for each variable
the assignment statement can be evaluated repeatedly
special instructions called ϕ-nodes added

1 x = input();
2 z = x + 3;
3 if (z > 0) {
4 x = z + 1;
5 z = 3 * x;
6 } else {
7 z = z + 5;
8 }
9

10
11 z = z + x;

1 x1 = input();
2 z1 = x1 + 3;
3 if (z1 > 0) {
4 x2 = z1 + 1;
5 z2 = 3 * x2;
6 } else {
7 z3 = z1 + 5;
8 }
9 x3 = ϕ(x2,x1);

10 z4 = ϕ(z2,z3);
11 z5 = z4 + x3;

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 37/65

Static single assignment (SSA)

a program form with only one assignment statement for each variable
the assignment statement can be evaluated repeatedly
special instructions called ϕ-nodes added

1 x = input();
2 z = x + 3;
3 if (z > 0) {
4 x = z + 1;
5 z = 3 * x;
6 } else {
7 z = z + 5;
8 }
9

10
11 z = z + x;

1 x1 = input();
2 z1 = x1 + 3;
3 if (z1 > 0) {
4 x2 = z1 + 1;
5 z2 = 3 * x2;
6 } else {
7 z3 = z1 + 5;
8 }
9 x3 = ϕ(x2,x1);

10 z4 = ϕ(z2,z3);
11 z5 = z4 + x3;

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 38/65

Static single assignment (SSA)

a program form with only one assignment statement for each variable
the assignment statement can be evaluated repeatedly
special instructions called ϕ-nodes added

1 x = input();
2 z = x + 3;
3 if (z > 0) {
4 x = z + 1;
5 z = 3 * x;
6 } else {
7 z = z + 5;
8 }
9

10
11 z = z + x;

1 x1 = input();
2 z1 = x1 + 3;
3 if (z1 > 0) {
4 x2 = z1 + 1;
5 z2 = 3 * x2;
6 } else {
7 z3 = z1 + 5;
8 }
9 x3 = ϕ(x2,x1);

10 z4 = ϕ(z2,z3);
11 z5 = z4 + x3;

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 39/65

Applications of SSA

simplifies static analysis
without SSA, x may have different values in different locations
with SSA, xi has the same value everywhere
flow-insensitive analyses provide better results for programs in SSA

used in many verification tools and also in compilers
LLVM IR also uses SSA (sort of)

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 40/65

Data dependence

Data dependence

Consider a fixed control flow graph (CFG) with nodes V . We assume that for each
node n ∈ V , we have sets:

sdef (n) of memory locations that must be written by n
wdef (n) of memory locations that may be written by n
ref (n) of memory locations that may be read by n

null,unknown ̸∈ sdef (n) and null ̸∈ wdef (n) ∪ ref (n)
sdef (n) ⊆ wdef (n)
sdef (n) contains only memory locations that represent one concrete object
each time n is executed
the sets can be computed by a field-sensitive points-to analysis

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 42/65

Data dependence

Consider a fixed control flow graph (CFG) with nodes V . We assume that for each
node n ∈ V , we have sets:

sdef (n) of memory locations that must be written by n
wdef (n) of memory locations that may be written by n
ref (n) of memory locations that may be read by n

null,unknown ̸∈ sdef (n) and null ̸∈ wdef (n) ∪ ref (n)
sdef (n) ⊆ wdef (n)
sdef (n) contains only memory locations that represent one concrete object
each time n is executed
the sets can be computed by a field-sensitive points-to analysis

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 43/65

Data dependence

Definition (data dependence)

Let V be the set of nodes of a CFG. A node nr ∈ V is data dependent on a node
nw ∈ V if there is a path nw = n1,n2, . . . ,nk = nr in the CFG such that

unknown ̸∈ wdef (nw)∪ ref (nr) and wdef (nw)∩ ref (nr) ̸⊆
⋃

1<i<k sdef (ni) or
unknown ∈ wdef (nw) and ref (nr) ̸⊆

⋃
1<i<k sdef (ni) or

unknown ∈ ref (nr) and wdef (nw) ̸⊆
⋃

1<i<k sdef (ni).

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 44/65

Data dependence

Definition (reaching definition)

Consider a node nw and e ∈ wdef (nw). We say that the definition of e at nw
reaches a node n if there is a path nw = n1,n2, . . . ,nk = n and
e ̸∈

⋃
1<i<k sdef (ni).

reaching definitions can be computed by an abstract interpretation
unknown ∈ wdef (nw) reaches all nodes reachable from nw

Theorem

If nr is data dependent on nw , then
the definition of some e ∈ wdef (nw) at nw reaches nr and e ∈ ref (nr), or
unknown ∈ wdef (nw) ∪ ref (nr) and wdef (nw) ̸= ∅ and ref (nr) ̸= ∅.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 45/65

Data dependence

Definition (reaching definition)

Consider a node nw and e ∈ wdef (nw). We say that the definition of e at nw
reaches a node n if there is a path nw = n1,n2, . . . ,nk = n and
e ̸∈

⋃
1<i<k sdef (ni).

reaching definitions can be computed by an abstract interpretation
unknown ∈ wdef (nw) reaches all nodes reachable from nw

Theorem

If nr is data dependent on nw , then
the definition of some e ∈ wdef (nw) at nw reaches nr and e ∈ ref (nr), or
unknown ∈ wdef (nw) ∪ ref (nr) and wdef (nw) ̸= ∅ and ref (nr) ̸= ∅.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 46/65

Data dependence

Definition (reaching definition)

Consider a node nw and e ∈ wdef (nw). We say that the definition of e at nw
reaches a node n if there is a path nw = n1,n2, . . . ,nk = n and
e ̸∈

⋃
1<i<k sdef (ni).

reaching definitions can be computed by an abstract interpretation
unknown ∈ wdef (nw) reaches all nodes reachable from nw

Theorem

If nr is data dependent on nw , then
the definition of some e ∈ wdef (nw) at nw reaches nr and e ∈ ref (nr), or
unknown ∈ wdef (nw) ∪ ref (nr) and wdef (nw) ̸= ∅ and ref (nr) ̸= ∅.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 47/65

Data dependence

the previous theorem allows to compute an overapproximation of data
dependencies with use reaching definitions
computation is relatively slow because it computes more information than
needed
there are faster algorithms, e.g., byte-memory SSA algorithm presented in
M. Chalupa: Program Slicing and Symbolic Execution for Verification, PhD
thesis, 2021

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 48/65

Control dependence

Motivation

Which statements are irrelevant for the assert?

1
2
3
4
5
6
7 assert(false);

unsigned int i,n;
n = input();
i = 0;
while (i < n) {
i++;

}

1 unsigned int i,n;
2 n = input();
3 i = 0;
4 while (i >= n) {
5 i++;
6 }
7 assert(false);

removing a potentially non-terminating cycle can transform an unrechable
code into a reachable
line 7 on the right is unreachable if input() always returns 0

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 50/65

Motivation

Which statements are irrelevant for the assert?

1
2
3
4
5
6
7 assert(false);

1 unsigned int i,n;
2 n = input();
3 i = 0;
4 while (i >= n) {
5 i++;
6 }
7 assert(false);

removing a potentially non-terminating cycle can transform an unrechable
code into a reachable
line 7 on the right is unreachable if input() always returns 0

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 51/65

Motivation

Which statements are irrelevant for the assert?

1
2
3
4
5
6
7 assert(false);

1 unsigned int i,n;
2 n = input();
3 i = 0;
4 while (i >= n) {
5 i++;
6 }
7 assert(false);

removing a potentially non-terminating cycle can transform an unrechable
code into a reachable
line 7 on the right is unreachable if input() always returns 0

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 52/65

Two notions of control dependence

Intuitively, a statement n is control dependent on a statement b if b is the closest
point where the program may go some way that misses n.

weak control dependence
assumes that every execution is finite
an instance: standard control dependence

strong control dependence
sensitive to program non-termination: there can be a dependence between
two statements if one can infinitely delay the execution of the other
an instance: non-termination sensitive control dependence

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 53/65

Two notions of control dependence

Intuitively, a statement n is control dependent on a statement b if b is the closest
point where the program may go some way that misses n.

weak control dependence
assumes that every execution is finite
an instance: standard control dependence

strong control dependence
sensitive to program non-termination: there can be a dependence between
two statements if one can infinitely delay the execution of the other
an instance: non-termination sensitive control dependence

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 54/65

Two notions of control dependence

Intuitively, a statement n is control dependent on a statement b if b is the closest
point where the program may go some way that misses n.

weak control dependence
assumes that every execution is finite
an instance: standard control dependence

strong control dependence
sensitive to program non-termination: there can be a dependence between
two statements if one can infinitely delay the execution of the other
an instance: non-termination sensitive control dependence

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 55/65

Standard control dependence

An exit-CFG is a CFG with a unique exit node that is reachable from every other
node.

Definition (post-dominance)

Given an exit-CFG, its node b post-dominates a node a if b is on every path from a
to exit. If a ̸= b, we say that b strictly post-dominates a.

Definition (standard control dependence)

Given an exit-CFG, we say that node n is standard control dependent (SCD) on
node b if

1 there exists a non-trivial path π from b to n with any node on π (excluding b)
post-dominated by n and

2 b is not strictly post-dominated by n.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 56/65

Standard control dependence

An exit-CFG is a CFG with a unique exit node that is reachable from every other
node.

Definition (post-dominance)

Given an exit-CFG, its node b post-dominates a node a if b is on every path from a
to exit. If a ̸= b, we say that b strictly post-dominates a.

Definition (standard control dependence)

Given an exit-CFG, we say that node n is standard control dependent (SCD) on
node b if

1 there exists a non-trivial path π from b to n with any node on π (excluding b)
post-dominated by n and

2 b is not strictly post-dominated by n.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 57/65

Standard control dependence

An exit-CFG is a CFG with a unique exit node that is reachable from every other
node.

Definition (post-dominance)

Given an exit-CFG, its node b post-dominates a node a if b is on every path from a
to exit. If a ̸= b, we say that b strictly post-dominates a.

Definition (standard control dependence)

Given an exit-CFG, we say that node n is standard control dependent (SCD) on
node b if

1 there exists a non-trivial path π from b to n with any node on π (excluding b)
post-dominated by n and

2 b is not strictly post-dominated by n.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 58/65

Standard control dependence

1

2 3

4 5

exit

the SCD relation for an exit-CFG (V ,E) can be computed in time O(|E |) using
the algorithm of J. Ferrante et al.: The Program Dependence Graph and Its
Use in Optimization, TOPLAS 1987
each CFG can be transformed into an exit-CFG

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 59/65

Standard control dependence

1

2 3

4 5

exit

the SCD relation for an exit-CFG (V ,E) can be computed in time O(|E |) using
the algorithm of J. Ferrante et al.: The Program Dependence Graph and Its
Use in Optimization, TOPLAS 1987
each CFG can be transformed into an exit-CFG

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 60/65

Non-termination sensitive control dependence

predicate nodes in CFG are nodes corresponding to branching statements
maximal path is a path that cannot be further prolonged, i.e., it is infinite or it
ends in a node without any successor

Definition (non-termination sensitive control dependence)

Given a CFG, a node n is non-termination sensitive control dependent (NTSCD)
on a predicate node p if p has two successors s1 and s2 such that

1 all maximal paths from s1 contain n and
2 there exists a maximal path from s2 that does not contain n.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 61/65

Non-termination sensitive control dependence

predicate nodes in CFG are nodes corresponding to branching statements
maximal path is a path that cannot be further prolonged, i.e., it is infinite or it
ends in a node without any successor

Definition (non-termination sensitive control dependence)

Given a CFG, a node n is non-termination sensitive control dependent (NTSCD)
on a predicate node p if p has two successors s1 and s2 such that

1 all maximal paths from s1 contain n and
2 there exists a maximal path from s2 that does not contain n.

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 62/65

Non-termination sensitive control dependence

1

2 3

4 5

exit

the NTSCD relation for a CFG (V ,E) can be computed in time O(|V |2) using
the algorithm of M. Chalupa et al.: Fast Computation of Strong Control
Dependencies, CAV 2021
NTSCD treats every program cycle as potentialy non-terminating

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 63/65

Non-termination sensitive control dependence

1

2 3

4 5

exit

the NTSCD relation for a CFG (V ,E) can be computed in time O(|V |2) using
the algorithm of M. Chalupa et al.: Fast Computation of Strong Control
Dependencies, CAV 2021
NTSCD treats every program cycle as potentialy non-terminating

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 64/65

Notes

we used program dependence graphs for programs without procedure calls
there are also system dependence graphs for programs with procedure calls
both NTSCD and SCD have applications in program slicing for software
verification: SCD leads to smaller sliced programs and can only lead to
produce false alarms, but not to false negatives
there are other notions of control dependence, e.g., decisive order
dependence (DOD)
points-to analysis and slicer for LLVM implemented in DG
https://github.com/mchalupa/dg

IA159 Formal Methods for Software Analysis: Program Slicing and Points-to Analysis 65/65

https://github.com/mchalupa/dg

