
IA159 Formal Methods for Software Analysis
Shape Analysis via 3-Valued Logic

Jan Strejček

Faculty of Informatics
Masaryk University



Focus and sources

focus
shape analysis in general
3-valued logic approach

the logic and shape graphs
algorithm
TVLA and (semi)demo

other approaches

sources
M. Sagiv, T. Reps, R. Wilhelm: Parametric Shape Analysis via 3-Valued Logic,
ACM Trans. Program. Lang. Syst. 24(3), 2002.
B. Jeannet, A. Loginov, T. Reps, M. Sagiv: A Relational Approach to
Interprocedural Shape Analysis, SAS 2004.

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 2/47



Goal

Shape analysis is a static analysis focused on program properties related to
dynamically allocated memory. In particular, it aims to detect or verify the absence
of heap-specific errors like

null dereference
memory leaking
dangling pointer – a pointer to a deallocated memory
violation of expected properties of dynamic datastructures (e.g., the
datastructure is a cyclic list)
. . .

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 3/47



Basic idea

For each program location, we want to compute all reachable memory
configurations.

list1

list2

x

NULL

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 4/47



Realistic approach

The number of reachable memory configurations can be very large or even
unbounded.
We need to find finite representations of potentially infinite sets of memory
configurations.
We compute over-approximations of sets of reachable memory configurations
(an abstraction).
The over-approximations are represented by finite shape graphs.
Shape graphs can be represented using logics, graph structures,
automata, . . .

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 5/47



Representing concrete memory configurations
with 2-valued logical structures



Logical representation of concrete configurations

configurations are represented by predicate logic formulas over the following
core predicates:
unary predicate x(v) for each pointer variable x
binary predicate n(v1, v2) for each structure field n serving as a pointer
binary predicate eq(v1, v2)

predicate intended meaning
x(v) variable x points to memory cell v

n(v1, v2) field n of v1 (i.e., v1.n) points to v2
eq(v1, v2) v1 and v2 denote the same memory cell

memory configurations correspond to interpretations
allocated memory cells correspond to domain elements

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 7/47



Example

typedef struct node {
struct node *n;
int data;

} *List;

x
y

NULL
5 3 11 8

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 8/47



Example

x
y

NULL
5 3 11 8

logical representation
domain {u1,u2,u3,u4}
x(u1) = y(u1) = 1
n(u1,u2) = n(u2,u3) = n(u3,u4) = 1
eq(u1,u1) = eq(u2,u2) = eq(u3,u3) = eq(u4,u4) = 1
values of all predicates on other arguments is 0

visualisation of the logical representation

u1 u2 u3 u4

x

y

n n n

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 9/47



Notes

storeless approach – it does not model precise location of allocated cells in
the memory
it cannot handle pointer arithmetics

some interpretations do not represent any memory configuration, e.g., if
n(u, v) = n(u,w) = 1 for some v ̸= w
these interpretations are eliminated by formulas called integrity constraints,
e.g., n(u, v) ∧ n(u,w) =⇒ eq(v ,w)

the size of a configuration (and its logical representation) can be unbounded
−→ we use an abstraction to get a less precise, but bounded representation

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 10/47



3-valued logical structures and shape graphs



3-valued logic

1/2

0 1

uses 3 truth values: 0, 1, 1/2 (indefinite value)
new operation the least upper bound ⊔
operations ∧,∨,¬ are extended

⊔ 0 1 1/2
0 0 1/2 1/2
1 1/2 1 1/2

1/2 1/2 1/2 1/2

∧ 0 1 1/2
0 0 0 0
1 0 1 1/2

1/2 0 1/2 1/2

∨ 0 1 1/2
0 0 1 1/2
1 1 1 1

1/2 1/2 1 1/2

¬
0 1
1 0

1/2 1/2

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 12/47



Abstraction of concrete configurations

abstraction
we merge cells with identical values of all unary predicates
values of unary predicates on merged cells keep unchanged (these are
always 0 or 1)
values of binary predicates on merged cells are defined as the least upper
bound of the values on the original cells

Example: if u2,u3,u4 is merged into u′ and u1 is not, then

n(u1,u′) = n(u1,u2) ⊔ n(u1,u3) ⊔ n(u1,u4)

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 13/47



Example

u1 u2 u3 u4

x

y

n n n

let u2, u3, and u4 be merged into u′

eq(u′,u′) = eq(u2,u2) ⊔ eq(u2,u3) ⊔ . . . ⊔ eq(u4,u4) = 1/2
cells with eq(u,u) = 1/2 are called summary nodes
n(u1,u′) = 1/2 and n(u′,u′) = 1/2

u1 u′

u′

x

y

n
n

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 14/47



Example

u1 u2 u3 u4

x

y

n n n

let u2, u3, and u4 be merged into u′

eq(u′,u′) = eq(u2,u2) ⊔ eq(u2,u3) ⊔ . . . ⊔ eq(u4,u4) = 1/2
cells with eq(u,u) = 1/2 are called summary nodes

n(u1,u′) = 1/2 and n(u′,u′) = 1/2

u1

u′

u′
x

y

n
n

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 15/47



Example

u1 u2 u3 u4

x

y

n n n

let u2, u3, and u4 be merged into u′

eq(u′,u′) = eq(u2,u2) ⊔ eq(u2,u3) ⊔ . . . ⊔ eq(u4,u4) = 1/2
cells with eq(u,u) = 1/2 are called summary nodes
n(u1,u′) = 1/2 and n(u′,u′) = 1/2

u1

u′

u′
x

y

n
n

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 16/47



Shape graph interpretation

u1 u′
x

y

n
n

This shape graph may represent:
an acyclic list of 2+ elements pointed by x and y
a cyclic list of 2+ elements pointed by x and y , with the first element not lying
on the cycle
besides of these, u′ can also represent another cyclic or acyclic lists not
pointed by anything (i.e., garbage)

To refine the abstraction, we add instrumentation predicates.

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 17/47



Instrumentation predicates

instrumentation predicates
are defined by first-order formulas over core predicates
may also use transitive (or reflexive and transitive) closures of binary
predicates

typical instrumentation predicates for linked lists

predicate meaning definition

t [n](v1, v2) v2 is reachable from v1 via n-fields n∗(v1, v2)

r [n, x ](v) v is reachable from variable x via n-fields ∃v1 . x(v1) ∧ t [n](v1, v)

c[n](v) v lies on a cycle of n-fields ∃v1 .n(v , v1) ∧ t [n](v1, v)

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 18/47



Example

we add instrumentation predicates r [n, x ] a c[n]

u1
r [n, x ]

u2
r [n, x ]

u3
r [n, x ]

u4
r [n, x ]

x

y

n n n

there are more unary predicates determining cell merging

u1
r [n, x ]

u′

r [n, x ]

x

y

n
n

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 19/47



Example

u1
r [n, x ]

u′

r [n, x ]

x

y

n
n

Now it represents exactly all acyclic lists of 2+ elements:
all nodes satisfy r [n, x ], hence they are reachable from x (i.e., there is no
garbage)
c[n] does not hold in any node, hence the list is acyclic

The choice of instrumentation predicates is crucial for obtaining some useful
output.

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 20/47



Example

Compute the shape graph given by core predicates and instrumentation
predicates r [n, x ], r [n, y ]:

u1 u2 u3 u4 u5

v1

x

y

n n n n

n

Decide whether the shape graph represents also the configuration below.

u1 u2 u3 u4 u5 u6

v1

x

y

n n n n n

n

Suggest an instrumentation predicate that would make shape graphs for the two
configurations different.

Solution: is[n](v) defined by ∃v1, v2 .n(v1, v) ∧ n(v2, v) ∧ v1 ̸= v2

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 21/47



Example

Compute the shape graph given by core predicates and instrumentation
predicates r [n, x ], r [n, y ]:

u1 u2 u3 u4 u5

v1

x

y

n n n n

n

Decide whether the shape graph represents also the configuration below.

u1 u2 u3 u4 u5 u6

v1

x

y

n n n n n

n

Suggest an instrumentation predicate that would make shape graphs for the two
configurations different.

Solution: is[n](v) defined by ∃v1, v2 .n(v1, v) ∧ n(v2, v) ∧ v1 ̸= v2

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 22/47



Example

Compute the shape graph given by core predicates and instrumentation
predicates r [n, x ], r [n, y ]:

u1 u2 u3 u4 u5

v1

x

y

n n n n

n

Decide whether the shape graph represents also the configuration below.

u1 u2 u3 u4 u5 u6

v1

x

y

n n n n n

n

Suggest an instrumentation predicate that would make shape graphs for the two
configurations different.

Solution: is[n](v) defined by ∃v1, v2 .n(v1, v) ∧ n(v2, v) ∧ v1 ̸= v2

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 23/47



Example

Compute the shape graph given by core predicates and instrumentation
predicates r [n, x ], r [n, y ]:

u1 u2 u3 u4 u5

v1

x

y

n n n n

n

Decide whether the shape graph represents also the configuration below.

u1 u2 u3 u4 u5 u6

v1

x

y

n n n n n

n

Suggest an instrumentation predicate that would make shape graphs for the two
configurations different.

Solution: is[n](v) defined by ∃v1, v2 .n(v1, v) ∧ n(v2, v) ∧ v1 ̸= v2
IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 24/47



Algorithm: the first look



Algorithm: the first look

there are only finitely many different shape graphs for a fixed finite set of core
and instrumentation predicates
the algorithm is a standard abstract interpretation

algorithm
input: a program and

shape graphs describing possible initial memory configurations

1 assign the input shape graphs to the initial program location
2 repeat
3 foreach program statement do
4 take the shape graphs assigned to the location before the statement
5 and update shape graphs in the locations after the statement
6 until a fixpoint is reached

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 26/47



Step 2

for each core predicate and each program statement, there is a
predicate-update formula describing the values of the predicate after the
statement using the values of core predicates before the statement
using the predicate-update formulae, it is easy to compute the effect of the
statement on concrete memory configurations
to compute the effect of a statement on shape graphs is harder: values of
instrumentation predicates are given by their definition formulas and values of
core predicates, but this approach would quickly lead to loss of precision
(values 1/2)
to get better results, we define also predicate-update formulas for
instrumentation predicates, which may use values of both core and
instrumentation predicates before the statement

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 27/47



TVLA and (semi)demo



TVLA

= Three Valued Logic Analysis Engine
developed at Tel Aviv University under supervision of Mooly Sagiv
written in Java
currently in version 3 (extended with heap decomposition)
available for academic purposes
http://www.cs.tau.ac.il/~tvla/

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 29/47

http://www.cs.tau.ac.il/~tvla/


Input

program has to be specified in four parts
1 declaration of predicates and integrity constraints

core predicates are just declared
instrumentation predicates have to be defined by formulas

2 operation semantics of all program statements
for each statement used in the program, the corresponding predicate-update
formulas have to be given
each statement can be accompanied by an error detection formula (e.g., null
dereference)

3 program flowgraph (including asserts)
4 the list of locations for which we want to get all reachable shape graphs

parts 1 and 2 can be used repeatedly and they are available for certain
classes of programs (e.g., for programs manipulating linked lists or trees)
part 4 is optional

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 30/47



Input

initial shape graphs
described using a simple text format

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 31/47



Execution and output

tvla <program> <initial_graphs>

output file contains
picture of the program flowgraph
reachable shape graphs for specified locations
potential error messages

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 32/47



Example

typedef struct node {
struct node *n;
int data;

} *List;

List reverse(List x) {
List y, t;
y = NULL;
while (x != NULL) {
t = x->n;
x->n = y;
y = x;
x = t;

}
return y;

}

(SEMI)DEMO

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 33/47



Example

typedef struct node {
struct node *n;
int data;

} *List;

List reverse(List x) {
List y, t;
y = NULL;
while (x != NULL) {
t = x->n;
x->n = y;
y = x;
x = t;

}
return y;

}

(SEMI)DEMO

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 34/47



Algorithm: a closer look



Computing the effect of a statement on a shape graph

1 operation Focus
2 evaluation of statement guards
3 computing new values of predicates
4 operation Coerce
5 operation Blur

We will compute the effect of t = x->n on the shape graph:

u1
r [n, x ]

v
r [n, x ]x

n
n

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 36/47



Operation Focus

applied on statements with defined focus formula, which is a formula with
exactly one free variable
operation Focus takes the shape graph and returns the set of shape graphs
representing the same configurations and such that the focus formula is not
evaluated to 1/2 on any node of any of the graphs.
operation Focus modifies only values of predicates in the focus formula,
values of other predicates are not recomputed
hence, some resulting graphs may not satisfy integrity constraints

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 37/47



Operation Focus: example

focus formula for t = x->n is f (w) = ∃v1 . x(v1) ∧ n(v1,w)

formula ensures that after the statement, the predicate t(v) cannot have
value 1/2

input output

u
r [n, x ]

v
r [n, x ]

n

n

x

u
r [n, x ]

v
r [n, x ]

n

x

u
r [n, x ]

v
r [n, x ]

n

n

x

u
r [n, x ]

v1
r [n, x ]

n

n

x

v0
r [n, x ]

n

n

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 38/47



Evaluation of statement guards

for each statement, there can be defined a guard, which is again a formula
the statements is not performed on the shape graphs for which the guard
evaluates to 0
it is typically used to handle program branching
statement t = x->n has no guard

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 39/47



Computing new values of predicates

we use predicate-update formulas corresponding to the statement to compute
new predicate values
predicates with no predicate-update formulas keep their value

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 40/47



Computing new values of predicates: example

Predicate-update formulas for t = x->n

predicate predicate-update formula

t(v) ∃v1 . x(v1) ∧ n(v1, v)

r [n, t ](v) r [n, x ](v) ∧ (c[n](v) ∨ ¬x(v))

output

u
r [n, x ]

v
r [n, x ]

n

x

u
r [n, x ]

v
r [n, x ]
r [n, t ]

n

n

x

t

u
r [n, x ]

v1
r [n, x ]
r [n, t ]

n

n

x

t

v0
r [n, x ]
r [n, t ]

n

n

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 41/47



Operation Coerce

removes shape graphs not satisfying integrity constraints
makes values of some predicates more precise

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 42/47



Operation Coerce: example

shape graph on the left is corrupted as r [n, x ](v) cannot hold =⇒ the graph is
removed
in the shape graph in the middle, v cannot be a summary node as t(v) holds
on the right, v1 cannot be a summary node for the same reason, and
moreover c[n](v1) does not hold and thus n(v1, v1),n(v0, v1) cannot hold

u
r [n, x ]

v
r [n, x ]
r [n, t ]

n

x

t

u
r [n, x ]

v1
r [n, x ]
r [n, t ]

n

x

t

v0
r [n, x ]
r [n, t ]

nn

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 43/47



Operation Blur

can further merge nodes with same values of unary predicates
consequently, some shape graphs can become identical
in our example, Blur has no effect

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 44/47



Notes

TVLA works automatically, but the user has to
provide semantics of program statements
select/supply suitable instrumentation predicates
process the results and filter out false alarms

studied extensions and applications
interprocedural shape analysis (can handle also recursive programs)
lazy shape analysis
shape analysis and CEGAR
shape analysis for parallel processes
mix of shape analysis and data-related abstract interpretation (can be used e.g.,
to prove that sorting algorithms output sorted linked lists)
can be used also to analyse liveness of java objects and their timely deallocation
. . .

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 45/47



Other approaches and tools for shape analysis



Other approaches and tools

Other approaches to analysis of dynamically allocated memory are based on
separation logic and (bi-)abduction (Infer)
translation to first-order logic and automated theorem proving (HAVOC)
symbolic memory graphs (Predator)
tree automata (Forester)
. . .

IA159 Formal Methods for Software Analysis: Shape Analysis via 3-Valued Logic 47/47


