
IA159 Formal Methods for Software Analysis
Symbolic Execution and Applications

Jan Strejček

Faculty of Informatics
Masaryk University

Focus and sources

focus
symbolic execution
automated whitebox fuzz testing
bounded model checking

sources
J. C. King: Symbolic Execution and Program Testing, Communications of
ACM, 1976.
P. Godefroid, M. Y. Levin, and D. Molnar: Automated whitebox fuzz testing,
NDSS 2008.

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 2/98

Motivation

1 int sum(int a, int b, int c) {
2 int x = a + b;
3 int y = b + c;
4 int z = x + y - b;
5 return z;
6 }

testing checks that the program behaves correctly on selected inputs
sum(1,1,1) returns 3
sum(1,2,3) returns 6
. . .

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 3/98

Motivation

1 int sum(int a, int b, int c) {
2 int x = a + b;
3 int y = b + c;
4 int z = x + y - b;
5 return z;
6 }

testing checks that the program behaves correctly on selected inputs
sum(1,1,1) returns 3
sum(1,2,3) returns 6
. . .

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 4/98

Motivation

1 int sum(int a, int b, int c) {
2 int x = a + b;
3 int y = b + c;
4 int z = x + y - b;
5 return z;
6 }

we can execute the program with symbols α1, α2, α3 representing arbitrary input
values

sum(α1, α2, α3) returns

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 5/98

Motivation

1 int sum(int a, int b, int c) {
2 int x = a + b;
3 int y = b + c;
4 int z = x + y - b;
5 return z;
6 }

we can execute the program with symbols α1, α2, α3 representing arbitrary input
values

sum(α1, α2, α3) returns α1 + α2 + α3 (if int interpreted as Z)

→ symbolic execution

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 6/98

Symbolic execution semantics in general

each programming language has an execution semantics describing
which data objects the program manipulates
how statements manipulate data objects
how control flows through the statements of a program

in symbolic execution semantics
real data objects are replaced by symbolic ones, which are typically
expressions over symbols α1, α2, . . . representing arbitrary input values
the semantics of statements is extended to accept symbolic input and
produce symbolic output
control flow is handled differently as some branching conditions can be
evaluated to both true and false depending on the values of symbols

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 7/98

Symbolic execution

assumptions and notation
consider a program that handles only integer (Z) variables and it is built from
assignments and branching statements
a special assignment x = * (or x = input()) corresponds to reading input
Vars = the set of variables in the considered program
Sym = {α, β, . . . , α1, α2, . . .} = countable set of symbols representing arbirary
input values
Exp(Sym) = expressions over Sym, integers, and arithmetic operations
for example, 2α+ β3 − 7 ∈ Exp(Sym)

Exp(Sym) are symbolic data objects

symbolic execution computes symbolic states consisting of
1 current program location
2 symbolic memory
3 path condition

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 8/98

Symbolic execution

assumptions and notation
consider a program that handles only integer (Z) variables and it is built from
assignments and branching statements
a special assignment x = * (or x = input()) corresponds to reading input
Vars = the set of variables in the considered program
Sym = {α, β, . . . , α1, α2, . . .} = countable set of symbols representing arbirary
input values
Exp(Sym) = expressions over Sym, integers, and arithmetic operations
for example, 2α+ β3 − 7 ∈ Exp(Sym)

Exp(Sym) are symbolic data objects

symbolic execution computes symbolic states consisting of
1 current program location
2 symbolic memory
3 path condition

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 9/98

Symbolic memory m

m : Vars → Exp(Sym)

assigns expressions of Exp(Sym) to program variables
a symbol α ∈ Sym is called fresh if it was not used before in the considered
computation
initial symbolic memory m0 assigns to each variable x ∈ Vars a fresh symbol
m(x) = α ∈ Sym
symbolic memory is modified by assignments
for any program expression exp (Boolean or integer), by m(exp) we denote
the expression where each program variable x ∈ Vars is replaced by m(x)

example
let m(x) = α+ 4 and m(y) = 2α+ β

m(5x− y+ 8) = 5(α+ 4)− (2α+ β) + 8 = 3α− β + 28
m(x ! = y) = (α+ 4 ̸= 2α+ β) = (α+ β ̸= 4)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 10/98

Symbolic memory m

m : Vars → Exp(Sym)

assigns expressions of Exp(Sym) to program variables
a symbol α ∈ Sym is called fresh if it was not used before in the considered
computation
initial symbolic memory m0 assigns to each variable x ∈ Vars a fresh symbol
m(x) = α ∈ Sym
symbolic memory is modified by assignments
for any program expression exp (Boolean or integer), by m(exp) we denote
the expression where each program variable x ∈ Vars is replaced by m(x)

example
let m(x) = α+ 4 and m(y) = 2α+ β

m(5x− y+ 8) = 5(α+ 4)− (2α+ β) + 8 = 3α− β + 28
m(x ! = y) = (α+ 4 ̸= 2α+ β) = (α+ β ̸= 4)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 11/98

Symbolic execution of assignments

a

b

x = exp;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = m(exp)

a

b

x = *;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = γ where γ is fresh

example
a

b

c

y = 5x-y+8;

x = *;

m(x) = α+ 4
m(y) = 2α+ β

m′(x) = m(x) = α+ 4
m′(y) = m(5x− y+ 8) = 3α− β + 28

m′′(x) = γ
m′′(y) = 3α− β + 28

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 12/98

Symbolic execution of assignments

a

b

x = exp;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = m(exp)

a

b

x = *;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = γ where γ is fresh

example
a

b

c

y = 5x-y+8;

x = *;

m(x) = α+ 4
m(y) = 2α+ β

m′(x) = m(x) = α+ 4
m′(y) = m(5x− y+ 8) = 3α− β + 28

m′′(x) = γ
m′′(y) = 3α− β + 28

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 13/98

Symbolic execution of assignments

a

b

x = exp;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = m(exp)

a

b

x = *;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = γ where γ is fresh

example
a

b

c

y = 5x-y+8;

x = *;

m(x) = α+ 4
m(y) = 2α+ β

m′(x) = m(x) = α+ 4
m′(y) = m(5x− y+ 8) = 3α− β + 28

m′′(x) = γ
m′′(y) = 3α− β + 28

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 14/98

Symbolic execution of assignments

a

b

x = exp;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = m(exp)

a

b

x = *;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = γ where γ is fresh

example
a

b

c

y = 5x-y+8;

x = *;

m(x) = α+ 4
m(y) = 2α+ β

m′(x) = m(x) = α+ 4
m′(y) = m(5x− y+ 8) = 3α− β + 28

m′′(x) = γ
m′′(y) = 3α− β + 28

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 15/98

Symbolic execution of assignments

a

b

x = exp;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = m(exp)

a

b

x = *;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = γ where γ is fresh

example
a

b

c

y = 5x-y+8;

x = *;

m(x) = α+ 4
m(y) = 2α+ β

m′(x) = m(x) = α+ 4
m′(y) = m(5x− y+ 8) = 3α− β + 28

m′′(x) = γ
m′′(y) = 3α− β + 28

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 16/98

Symbolic execution of assignments

a

b

x = exp;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = m(exp)

a

b

x = *;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = γ where γ is fresh

example
a

b

c

y = 5x-y+8;

x = *;

m(x) = α+ 4
m(y) = 2α+ β

m′(x) = m(x) = α+ 4
m′(y) = m(5x− y+ 8) = 3α− β + 28

m′′(x) = γ
m′′(y) = 3α− β + 28

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 17/98

Symbolic execution of assignments

a

b

x = exp;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = m(exp)

a

b

x = *;

symbolic memory m

symbolic memory m′ identical to m
except for m′(x) = γ where γ is fresh

example
a

b

c

y = 5x-y+8;

x = *;

m(x) = α+ 4
m(y) = 2α+ β

m′(x) = m(x) = α+ 4
m′(y) = m(5x− y+ 8) = 3α− β + 28

m′′(x) = γ
m′′(y) = 3α− β + 28

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 18/98

Path condition pc

a quantifier-free predicate formula over Sym corresponding to a program path
pc is the necessary and sufficient condition on input values to navige the
program execution along the current path
if pc is not satisfiable the corresponding path is unfeasible
pc is initially set to true
pc is modified by evaluation of branching statements

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 19/98

Symbolic execution of branching statements

if (bexp) {...} else {...}

a

b c

(bexp) !(bexp)

symbolic memory m
path condition pc

pc ∧m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧ ¬m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧m(bexp) and pc ∧ ¬m(bexp)
are SAT

symbolic memory m
pc ∧m(bexp)

symbolic memory m
pc ∧ ¬m(bexp)

1 check feasability of the true branch:
if pc ∧m(bexp) is not satisfiable, continue to the false branch

2 check feasability of the false branch:
if pc ∧ ¬m(bexp) is not satisfiable, continue to the true branch

3 if both are satisfiable, fork the symbolic execution
set pc in true branch to pc ∧m(bexp)
set pc in false branch to pc ∧ negm(bexp)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 20/98

Symbolic execution of branching statements

if (bexp) {...} else {...}

a

b c

(bexp) !(bexp)

symbolic memory m
path condition pc

pc ∧m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧ ¬m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧m(bexp) and pc ∧ ¬m(bexp)
are SAT

symbolic memory m
pc ∧m(bexp)

symbolic memory m
pc ∧ ¬m(bexp)

1 check feasability of the true branch:
if pc ∧m(bexp) is not satisfiable, continue to the false branch

2 check feasability of the false branch:
if pc ∧ ¬m(bexp) is not satisfiable, continue to the true branch

3 if both are satisfiable, fork the symbolic execution
set pc in true branch to pc ∧m(bexp)
set pc in false branch to pc ∧ negm(bexp)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 21/98

Symbolic execution of branching statements

if (bexp) {...} else {...}

a

b c

(bexp)X !(bexp)

symbolic memory m
path condition pc

pc ∧m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧ ¬m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧m(bexp) and pc ∧ ¬m(bexp)
are SAT

symbolic memory m
pc ∧m(bexp)

symbolic memory m
pc ∧ ¬m(bexp)

1 check feasability of the true branch:
if pc ∧m(bexp) is not satisfiable, continue to the false branch

2 check feasability of the false branch:
if pc ∧ ¬m(bexp) is not satisfiable, continue to the true branch

3 if both are satisfiable, fork the symbolic execution
set pc in true branch to pc ∧m(bexp)
set pc in false branch to pc ∧ negm(bexp)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 22/98

Symbolic execution of branching statements

if (bexp) {...} else {...}

a

b c

(bexp) !(bexp)

symbolic memory m
path condition pc

pc ∧m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧ ¬m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧m(bexp) and pc ∧ ¬m(bexp)
are SAT

symbolic memory m
pc ∧m(bexp)

symbolic memory m
pc ∧ ¬m(bexp)

1 check feasability of the true branch:
if pc ∧m(bexp) is not satisfiable, continue to the false branch

2 check feasability of the false branch:
if pc ∧ ¬m(bexp) is not satisfiable, continue to the true branch

3 if both are satisfiable, fork the symbolic execution
set pc in true branch to pc ∧m(bexp)
set pc in false branch to pc ∧ negm(bexp)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 23/98

Symbolic execution of branching statements

if (bexp) {...} else {...}

a

b c

(bexp) !(bexp)X

symbolic memory m
path condition pc

pc ∧m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧ ¬m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧m(bexp) and pc ∧ ¬m(bexp)
are SAT

symbolic memory m
pc ∧m(bexp)

symbolic memory m
pc ∧ ¬m(bexp)

1 check feasability of the true branch:
if pc ∧m(bexp) is not satisfiable, continue to the false branch

2 check feasability of the false branch:
if pc ∧ ¬m(bexp) is not satisfiable, continue to the true branch

3 if both are satisfiable, fork the symbolic execution
set pc in true branch to pc ∧m(bexp)
set pc in false branch to pc ∧ negm(bexp)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 24/98

Symbolic execution of branching statements

if (bexp) {...} else {...}

a

b c

(bexp) !(bexp)

symbolic memory m
path condition pc

pc ∧m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧ ¬m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧m(bexp) and pc ∧ ¬m(bexp)
are SAT

symbolic memory m
pc ∧m(bexp)

symbolic memory m
pc ∧ ¬m(bexp)

1 check feasability of the true branch:
if pc ∧m(bexp) is not satisfiable, continue to the false branch

2 check feasability of the false branch:
if pc ∧ ¬m(bexp) is not satisfiable, continue to the true branch

3 if both are satisfiable, fork the symbolic execution
set pc in true branch to pc ∧m(bexp)
set pc in false branch to pc ∧ negm(bexp)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 25/98

Symbolic execution of branching statements

if (bexp) {...} else {...}

a

b c

(bexp) !(bexp)

symbolic memory m
path condition pc

pc ∧m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧ ¬m(bexp)
is UNSAT

symbolic memory m
path condition pc

pc ∧m(bexp) and pc ∧ ¬m(bexp)
are SAT

symbolic memory m
pc ∧m(bexp)

symbolic memory m
pc ∧ ¬m(bexp)

1 check feasability of the true branch:
if pc ∧m(bexp) is not satisfiable, continue to the false branch

2 check feasability of the false branch:
if pc ∧ ¬m(bexp) is not satisfiable, continue to the true branch

3 if both are satisfiable, fork the symbolic execution
set pc in true branch to pc ∧m(bexp)
set pc in false branch to pc ∧ negm(bexp)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 26/98

Symbolic execution of branching statements: example

if (n>5) {...} else {...}

a

b c

(n>5) !(n>5)

m(n) = 2α+ 3
pc:

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 > 5
≡ α < 10 ∧ α > 1

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 ≤ 5
≡ α ≤ 1

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α ≤ 0

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 27/98

Symbolic execution of branching statements: example

if (n>5) {...} else {...}

a

b c

(n>5) !(n>5)

m(n) = 2α+ 3
pc: α < 10

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 > 5
≡ α < 10 ∧ α > 1

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 ≤ 5
≡ α ≤ 1

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α ≤ 0

pc is α < 10
true branch is feasible as α < 10 ∧ m(n > 5) ≡ α < 10 ∧ 2α+ 3 > 5 is
satisfiable (e.g. by α = 3)
false branch is feasible as α < 10 ∧ ¬m(n > 5) ≡ α < 10 ∧ 2α+ 3 ≤ 5 is
satisfiable (e.g. by α = 0)
fork execution and update pc on both branches

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 28/98

Symbolic execution of branching statements: example

if (n>5) {...} else {...}

a

b c

(n>5) !(n>5)

m(n) = 2α+ 3
pc: α < 10

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 > 5
≡ α < 10 ∧ α > 1

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 ≤ 5
≡ α ≤ 1

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α ≤ 0

pc is α < 10
true branch is feasible as α < 10 ∧ m(n > 5) ≡ α < 10 ∧ 2α+ 3 > 5 is
satisfiable (e.g. by α = 3)
false branch is feasible as α < 10 ∧ ¬m(n > 5) ≡ α < 10 ∧ 2α+ 3 ≤ 5 is
satisfiable (e.g. by α = 0)
fork execution and update pc on both branches

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 29/98

Symbolic execution of branching statements: example

if (n>5) {...} else {...}

a

b c

(n>5) !(n>5)

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 > 5
≡ α < 10 ∧ α > 1

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 ≤ 5
≡ α ≤ 1

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α ≤ 0

pc is α > 10
false branch is unfeasible as
α > 10 ∧ ¬m(n > 5) ≡ α > 10 ∧ 2α+ 3 ≤ 5 ≡ false
continue to true branch with the same pc

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 30/98

Symbolic execution of branching statements: example

if (n>5) {...} else {...}

a

b c

(n>5) !(n>5)X

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 > 5
≡ α < 10 ∧ α > 1

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 ≤ 5
≡ α ≤ 1

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α ≤ 0

pc is α > 10
false branch is unfeasible as
α > 10 ∧ ¬m(n > 5) ≡ α > 10 ∧ 2α+ 3 ≤ 5 ≡ false
continue to true branch with the same pc

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 31/98

Symbolic execution of branching statements: example

if (n>5) {...} else {...}

a

b c

(n>5) !(n>5)

m(n) = 2α+ 3
pc: α ≤ 0

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 > 5
≡ α < 10 ∧ α > 1

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 ≤ 5
≡ α ≤ 1

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α ≤ 0

pc is α ≤ 0
true branch is unfeasible as
α ≤ 0 ∧ m(n > 5) ≡ α ≤ 0 ∧ 2α+ 3 > 5 ≡ false
continue to false branch with the same pc

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 32/98

Symbolic execution of branching statements: example

if (n>5) {...} else {...}

a

b c

(n>5)X !(n>5)

m(n) = 2α+ 3
pc: α ≤ 0

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 > 5
≡ α < 10 ∧ α > 1

m(n) = 2α+ 3
pc: α < 10 ∧ 2α+ 3 ≤ 5
≡ α ≤ 1

m(n) = 2α+ 3
pc: α > 10

m(n) = 2α+ 3
pc: α ≤ 0

pc is α ≤ 0
true branch is unfeasible as
α ≤ 0 ∧ m(n > 5) ≡ α ≤ 0 ∧ 2α+ 3 > 5 ≡ false
continue to false branch with the same pc

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 33/98

Symbolic execution tree

nodes are states of symbolic execution, i.e., triples (l ,m,pc) of program
location l , symbolic memory m, and path condition pc
root node (l0,m0, true) consists of initial program location l0, initial symbolic
memory m0 assigning fresh symbols, and initial path condition true
successors are computed by symbolic execution of the assignment or
branching statement corresponding to the current location
only locations with branching statement can have more successors

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 34/98

Symbolic execution tree: example 1

1 int foo(int x, int y) {
2 if (x>y) {
3 y = x;
4 }
5 y = y-x;
6 if (y>7) {
7 x = *;
8 }
9 return x+y;

10 }

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 35/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 36/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 37/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 38/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 39/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 40/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 41/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 42/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 43/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 44/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 45/98

Symbolic execution tree: example 1

2

3

5

6

7

9

10

(x>y)

y = x;

y = y-x;

(y>7)

x = *;

r = x+y;

!(x>y)

!(y>7)

2 x 7→α y 7→β true

3 x 7→α y 7→β α > β 5 x 7→α y 7→β α ≤ β

5 x 7→α y 7→α α > β

6 x 7→α y 7→0 α > β

9 x 7→α y 7→0 α > β

10 x 7→α y 7→0
r 7→α

α > β

6 x 7→α y 7→β − α α ≤ β

7 x 7→α y 7→β − α α+ 7 < β 9 x 7→α y 7→β − α α ≤ β ≤ α+ 7

9 x 7→γ y 7→β − α α+ 7 < β

10
x 7→γ y 7→β − α
r 7→γ + β − α

α+ 7 < β

10
x 7→α y 7→β − α
r 7→β

α ≤ β ≤ α+ 7

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 46/98

Symbolic execution tree: example 2

1 int power(int x) {
2 int z = 1;
3 while (x>0) {
4 x = x-1;
5 z = 2*z;
6 }
7 return z;
8 }

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 47/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 48/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 49/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 50/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0

8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 51/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 52/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 53/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 54/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1

8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 55/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 56/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 57/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 58/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2

8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 59/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 60/98

Symbolic execution tree: example 2

2

3

4

5

7

8

z = 1;

(x>0)

x = x-1;

!(x>0)

r = z;

z = 2*z;

2 x 7→α true

3 x 7→α z 7→1 true

4 x 7→α z 7→1 α > 0 7 x 7→α z 7→1 α ≤ 0

5 x 7→α−1 z 7→1 α > 0 8 x 7→α z 7→1
r 7→1 α ≤ 0

3 x 7→α−1 z 7→2 α > 0

4 x 7→α−1 z 7→2 α > 1 7 x 7→α−1 z 7→2 α = 1

5 x 7→α−2 z 7→2 α > 1 8 x 7→α−1 z 7→2
r 7→2 α = 1

3 x 7→α−2 z 7→4 α > 1

4 x 7→α−2 z 7→4 α > 2 7 x 7→α−2 z 7→4 α = 2

5 x 7→α−3 z 7→4 α > 2 8 x 7→α−2 z 7→4
r 7→4 α = 2

3 x 7→α−3 z 7→8 α > 2

...
IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 61/98

Properties of symbolic execution

there is a bijection between paths in the symbolic execution tree (starting in its
root) and feasible execution paths of the program
the path condition gives the necessary and sufficient condition on input values
to drive the execution along the corresponding path

in each symbolic execution, the path condition is satisfiable
initially, pc is set to true
pc is changed only when both branches of a branching statements are feasible
pc is extended with a conjunct corresponding to the corresponding branch and
the new conjunction is satisfiable as the branch is feasible

path conditions pc1,pc2 corresponding to two distinct leaves of the symbolic
execution tree are mutually exclusiove, i.e., pc1 ∧ pc2 ≡ false
if the symbolic executon tree is finite, then the disjunction of all path
conditions in its leaves is equivalent to true

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 62/98

Properties of symbolic execution

there is a bijection between paths in the symbolic execution tree (starting in its
root) and feasible execution paths of the program
the path condition gives the necessary and sufficient condition on input values
to drive the execution along the corresponding path
in each symbolic execution, the path condition is satisfiable

initially, pc is set to true
pc is changed only when both branches of a branching statements are feasible
pc is extended with a conjunct corresponding to the corresponding branch and
the new conjunction is satisfiable as the branch is feasible

path conditions pc1,pc2 corresponding to two distinct leaves of the symbolic
execution tree are mutually exclusiove, i.e., pc1 ∧ pc2 ≡ false
if the symbolic executon tree is finite, then the disjunction of all path
conditions in its leaves is equivalent to true

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 63/98

Applications in verification

Programs can be enriched with assume(φ) and assert(φ) statements. When
symbolic execution passes through

assume(φ), it executes pc ← pc ∧ φ.
assert(φ) and pc =⇒ φ is not valid, it reports an error.

With these constructs, symbolic execution can be used with a modification of
Floyd’s proof method to prove program correctness.

This application is straightforward for any program whose symbolic execution tree
is finite.

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 64/98

Practical issues

deciding validity or satisfiability of formulas can be expensive or even
impossible (e.g. for our simple language with unbounded data types)
in practice, symbolic execution uses expressions and formulas over bitvector
theory (operations and relations correspond to CPU instructions,
e.g. artihmetic operations with overflows, bitwise operations, etc.), where
validity and satisfiability are decidable (but expensive)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 65/98

Practical issues

variable storage referencing problem
when i is dependent on input, then A[i] can point to various locations in
memory
unsatisfactory solution:
handle A[i] as ITE(i = 1,A[1], ITE(i = 2,A[2], . . .))

other memory related problems
reading/writing via pointers
comparison of addresses (inner program nondeterminism)
allocation of memory blocks of symbolic size

solution: fully symbolic memory model
performance issues

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 66/98

Practical issues

variable storage referencing problem
when i is dependent on input, then A[i] can point to various locations in
memory
unsatisfactory solution:
handle A[i] as ITE(i = 1,A[1], ITE(i = 2,A[2], . . .))

other memory related problems
reading/writing via pointers
comparison of addresses (inner program nondeterminism)
allocation of memory blocks of symbolic size

solution: fully symbolic memory model
performance issues

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 67/98

Practical issues

variable storage referencing problem
when i is dependent on input, then A[i] can point to various locations in
memory
unsatisfactory solution:
handle A[i] as ITE(i = 1,A[1], ITE(i = 2,A[2], . . .))

other memory related problems
reading/writing via pointers
comparison of addresses (inner program nondeterminism)
allocation of memory blocks of symbolic size

solution: fully symbolic memory model
performance issues

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 68/98

Practical issues

path explosion problem
the number of branches in the symbolic execution tree can be extremely high or
even infinite
typical for program cycles with the number of iterations depending on the input
(symbolic execution forks again and again)
construction of full symbolic execution tree is often infeasible

issues with complex arithmetic operations (e.g. in hashing, encryption or
decryption), calls to the operating system and libraries
practical solutions

concretization
concolic execution

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 69/98

Concolic execution

concolic = concrete + symbolic
program is executed on a real input and on symbolic input simultaneously
symbolic execution does not fork, it always follows the concrete execution and
computes pc
if a symbolic value is not available, we can switch to a concrete one

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 70/98

Real applications

typical applications
bug finding
test generation
analysis of abstract error traces

often combined with other techniques
used in many tools including Klee, PEX, SAGE, SLAM, Ultimate Automizer,
Symbiotic

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 71/98

Automated whitebox fuzz testing

Automated whitebox fuzz testing

an example of modern and sophisticated testing method
implemented in SAGE (Scalable, Automated, Guided Execution)
discovered 30+ new bugs in large-shipped (and thus intensively tested)
file-reading Windows applications including image processors, media players,
file decoders
combines fuzz testing and symbolic execution

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 73/98

Key ideas

symbolic execution is expensive compared to running tests
thus we want to generate as many new inputs from one symbolic execution as
possible
input for the next symbolic execution is selected by some scoring function
applied to all generated inputs
in particular, the input that explored the most (so-far uncovered) pieces of
code is chosen for the next symbolic execution

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 74/98

The main algorithm

1 procedure GenerateInputs(inputSeed)
2 inputSeed.bound← 0
3 workList← {inputSeed}
4 Run&Check(program, inputSeed)
5 while workList ̸= ∅ do
6 input← PickFirstItem(workList)
7 childInputs← ExpandExecution(input)
8 foreach newInput ∈ childInputs do
9 Run&Check(program,newInput)

10 Score(newInput)
11 workList← workList ∪ {newInput}

Score(newInput) counts the newly covered blocks
workList is ordered by the score of inputs
PickFirstItem(workList) returns the input with the highest score

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 75/98

Application of symbolic execution

1 procedure ExpandExecution(input)
2 childInputs← ∅
3 PC← SymbolicExecution(program, input)
4 for j ← input.bound to |PC| − 1 do
5 if

∧j−1
i=0 PC[i] ∧ ¬PC[j] has solution M then

6 newInput← Combine(input,M)
7 newInput.bound← j
8 childInputs← childInputs ∪ {newInput}
9 return childInputs

Combine(input,M)

creates a new input from the original input and M
Combine("abcde", input[3] 7→ "F") returns "abcFe"

path conditions are represented as arrays PC of conjuncts

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 76/98

Example

1 void top(char input[4]) {
2 int cnt=0;
3 if (input[0] == ’b’) cnt++;
4 if (input[1] == ’a’) cnt++;
5 if (input[2] == ’d’) cnt++;
6 if (input[3] == ’!’) cnt++;
7 if (cnt >= 3) abort(); // error
8 }

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

good
goo!

godd
god!

gaod
gao!

gadd
gad!

bood
boo!

bodd
bod!

baod
bao!

badd
bad!

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 77/98

Example

1 void top(char input[4]) {
2 int cnt=0;
3 if (input[0] == ’b’) cnt++;
4 if (input[1] == ’a’) cnt++;
5 if (input[2] == ’d’) cnt++;
6 if (input[3] == ’!’) cnt++;
7 if (cnt >= 3) abort(); // error
8 }

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

good
goo!

godd
god!

gaod
gao!

gadd
gad!

bood
boo!

bodd
bod!

baod
bao!

badd
bad!

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 78/98

Notes

the algorithm can be parallelized: only workList and the overall block coverage
need to be shared
SAGE recovers easily from divergencies (situations when an execution
deviates from the assumed execution path) induced e.g. by inner program
nondeterminism
SAGE runs 24/7 on large clusters, available for Microsoft developers

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 79/98

Bounded model checking

Memoryless version of symbolic execution

the assignments can be also stored directly to path condition
to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance
let ver : Vars → N be the function keeping the current instances
initially, ver(x) = 1 for each x ∈ Vars

a

b

y = 2*x+y+5;

path condition pc
function ver

path condition pc ∧ yver(y)+1 = 2 ∗ xver(x) + yver(y) + 5
function ver with incresed value of ver(y) by one

a

b

y = *;

path condition pc
function ver

path condition pc
function ver with incresed value of ver(y) by one

symbolic execution of branching statements is modified similarly
IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 81/98

Memoryless version of symbolic execution

the assignments can be also stored directly to path condition
to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance
let ver : Vars → N be the function keeping the current instances
initially, ver(x) = 1 for each x ∈ Vars

a

b

y = 2*x+y+5;

path condition pc
function ver

path condition pc ∧ yver(y)+1 = 2 ∗ xver(x) + yver(y) + 5
function ver with incresed value of ver(y) by one

a

b

y = *;

path condition pc
function ver

path condition pc
function ver with incresed value of ver(y) by one

symbolic execution of branching statements is modified similarly
IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 82/98

Memoryless version of symbolic execution

the assignments can be also stored directly to path condition
to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance
let ver : Vars → N be the function keeping the current instances
initially, ver(x) = 1 for each x ∈ Vars

a

b

y = 2*x+y+5;

path condition pc
function ver

path condition pc ∧ yver(y)+1 = 2 ∗ xver(x) + yver(y) + 5
function ver with incresed value of ver(y) by one

a

b

y = *;

path condition pc
function ver

path condition pc
function ver with incresed value of ver(y) by one

symbolic execution of branching statements is modified similarly
IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 83/98

Memoryless version of symbolic execution

the assignments can be also stored directly to path condition
to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance
let ver : Vars → N be the function keeping the current instances
initially, ver(x) = 1 for each x ∈ Vars

a

b

y = 2*x+y+5;

path condition pc
function ver

path condition pc ∧ yver(y)+1 = 2 ∗ xver(x) + yver(y) + 5
function ver with incresed value of ver(y) by one

a

b

y = *;

path condition pc
function ver

path condition pc
function ver with incresed value of ver(y) by one

symbolic execution of branching statements is modified similarly
IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 84/98

Bounded model checking (BMC)

a technique for finding bugs
proves correctness only very rarely
similar to symbolic execution, but creates one SMT query

workflow
1 unwind all loops and recursion to a given bound k
2 compute the error reaching formula in unwound program
3 check satisfiability of the formula
4 if satisfiable
5 then bug found
6 else if the bound is not reachable
7 then the program is correct
8 else unknown (increase bound and goto 1)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 85/98

Bounded model checking (BMC)

a technique for finding bugs
proves correctness only very rarely
similar to symbolic execution, but creates one SMT query

workflow
1 unwind all loops and recursion to a given bound k
2 compute the error reaching formula in unwound program
3 check satisfiability of the formula
4 if satisfiable
5 then bug found
6 else if the bound is not reachable
7 then the program is correct
8 else unknown (increase bound and goto 1)

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 86/98

Example 1

original program
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
while (i < n) {
v = input();
s += v;
++i;

}
assert(s >= v);

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 87/98

Example 1

original program unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
while (i < n) {
v = input();
s += v;
++i;

}
assert(s >= v);

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 88/98

Example 1

unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ ((i1 ≥ n1 ∧ s1 < v1) ∨
∨ (i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ ((i2 ≥ n1 ∧ s2 < v2) ∨
∨ (i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧

∧ ((i3 ≥ n1 ∧ s3 < v3) ∨
∨ (i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 ≥ n1 ∧ s4 < v4))))))

satisfiable
variable types are considered

bitvector arithmetic is used
n1 = 2
v1 = 0 s1 = 0 i1 = 0
v2 = 224 s2 = 224 i2 = 1
v3 = 63 s3 = 31 i3 = 2

bug found!

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 89/98

Example 1

unwound program for k = 3 unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ ((i1 ≥ n1 ∧ s1 < v1) ∨
∨ (i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ ((i2 ≥ n1 ∧ s2 < v2) ∨
∨ (i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧

∧ ((i3 ≥ n1 ∧ s3 < v3) ∨
∨ (i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 ≥ n1 ∧ s4 < v4))))))

satisfiable
variable types are considered

bitvector arithmetic is used
n1 = 2
v1 = 0 s1 = 0 i1 = 0
v2 = 224 s2 = 224 i2 = 1
v3 = 63 s3 = 31 i3 = 2

bug found!

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 90/98

Example 1

unwound program for k = 3 unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ ((i1 ≥ n1 ∧ s1 < v1) ∨
∨ (i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ ((i2 ≥ n1 ∧ s2 < v2) ∨
∨ (i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧

∧ ((i3 ≥ n1 ∧ s3 < v3) ∨
∨ (i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 ≥ n1 ∧ s4 < v4))))))

satisfiable
variable types are considered

bitvector arithmetic is used
n1 = 2
v1 = 0 s1 = 0 i1 = 0
v2 = 224 s2 = 224 i2 = 1
v3 = 63 s3 = 31 i3 = 2

bug found!

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 91/98

Example 2

original program
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
while (i < n) {
v = input();
s += v;
++i;

}
assert(s >= v);

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 92/98

Example 2

original program unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
while (i < n) {
v = input();
s += v;
++i;

}
assert(s >= v);

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 93/98

Example 2

unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ ((i1 ≥ n1 ∧ s1 < v1) ∨
∨ (i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ ((i2 ≥ n1 ∧ s2 < v2) ∨
∨ (i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧

∧ ((i3 ≥ n1 ∧ s3 < v3) ∨
∨ (i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 ≥ n1 ∧ s4 < v4))))))

unsatisfiable
is the bound reachable?

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧
∧ i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 < n1

satisfiable =⇒ bound reachable

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 94/98

Example 2

unwound program for k = 3 unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ ((i1 ≥ n1 ∧ s1 < v1) ∨
∨ (i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ ((i2 ≥ n1 ∧ s2 < v2) ∨
∨ (i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧

∧ ((i3 ≥ n1 ∧ s3 < v3) ∨
∨ (i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 ≥ n1 ∧ s4 < v4))))))

unsatisfiable
is the bound reachable?

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧
∧ i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 < n1

satisfiable =⇒ bound reachable

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 95/98

Example 2

unwound program for k = 3 unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ ((i1 ≥ n1 ∧ s1 < v1) ∨
∨ (i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ ((i2 ≥ n1 ∧ s2 < v2) ∨
∨ (i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧

∧ ((i3 ≥ n1 ∧ s3 < v3) ∨
∨ (i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 ≥ n1 ∧ s4 < v4))))))

unsatisfiable
is the bound reachable?

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧
∧ i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 < n1

satisfiable =⇒ bound reachable

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 96/98

Example 2

unwound program for k = 3 unwound program for k = 3
unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned int s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ ((i1 ≥ n1 ∧ s1 < v1) ∨
∨ (i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ ((i2 ≥ n1 ∧ s2 < v2) ∨
∨ (i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧

∧ ((i3 ≥ n1 ∧ s3 < v3) ∨
∨ (i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 ≥ n1 ∧ s4 < v4))))))

unsatisfiable
is the bound reachable?

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧
∧ i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧
∧ i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 < n1

satisfiable =⇒ bound reachable

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 97/98

Notes on BMC

very efficient in finding bugs
constant propagation can simplify the program and the formula
implemented for example in CBMC

tool for bounded model checking of C and C++ programs
supports C89, C99, most of C11 and most extensions of gcc and Visual Studio
the winner of SV-COMP 2014
https://www.cprover.org/cbmc/
a version for Java programs called JBMC

IA159 Formal Methods for Software Analysis: Symbolic Execution and Applications 98/98

https://www.cprover.org/cbmc/

