IA159 Formal Methods for Software Analysis Configurable Program Analysis

Jan Strejček

Faculty of Informatics Masaryk University

focus

- data-flow analysis (a sort of abstract interpretation, again)
- software model checking (= abstract reachability)
- configurable program analysis

source

 D. Beyer, S. Gulwani, and D. A. Smith: Combining Model Checking and Data-Flow Analysis, Chapter 16 of Handbook of Model Checking, Springer, 2018.

- similarity of data-flow analysis and abstract reachability
- generalized into configurable program analysis (CPA)
- various known algorithms can be seen as CPA instances
- CPAs are easy to compose
- used in CPAchecker

Control-flow automata

- graph representation of functions
- nodes = program locations
- edges = assumptions and assignments

Control-flow automata

- graph representation of functions
- nodes = program locations
- edges = assumptions and assignments

Definition (control-flow automaton)

Control-flow automaton (CFA) is a triple (L, I_0, G) , where

- *L* is a finite set of program locations,
- In $I_0 \in L$ is an initial program location, and
- $G \subseteq L \times Ops \times L$ are control-flow edges labeled with operations *Ops*.

we assume that programs handle only integer variables and contain no function calls

- a concrete state is an assignment c that assigns values to program variables and also to program counter
- C denotes the set of all concrete states
- subsets $r \subseteq C$ are called regions
- each $g = (l, o, l') \in G$ defines the transition relation $\xrightarrow{g} \subseteq C \times \{g\} \times C$ (this is the semantics of CFA)
- we write $c \stackrel{g}{\rightarrow} c'$ instead of $(c, g, c') \in \stackrel{g}{\rightarrow}$
- we write c
 ightarrow c' if $c \stackrel{g}{
 ightarrow} c'$ for some $g \in G$
- *c* is reachable from a region *r* if there is a state $c' \in r$ such that $c' \to^* c$, where \to^* denotes the reflexive and transitive closure of \to

Definition (semi-lattice)

Semi-lattice is a tuple $(E, \sqsubseteq, \sqcup, \top)$, where

- (E, ⊑) is a partially ordered set such that each M ⊆ E has the least upper bound sup(M),
- ⊔ is the join operator satisfying $x \sqcup y = sup(\{x, y\})$,
- \top is the top element $\top = sup(E)$.

Definition (semi-lattice)

Semi-lattice is a tuple $(E, \sqsubseteq, \sqcup, \top)$, where

- (E, ⊑) is a partially ordered set such that each M ⊆ E has the least upper bound sup(M),
- ⊔ is the join operator satisfying $x \sqcup y = sup(\{x, y\})$,
- \top is the top element $\top = sup(E)$.

elements of E represent abstract states

Definition (abstract domain)

Abstract domain is a tuple $(C, \mathcal{E}, \llbracket \cdot \rrbracket)$, where

- C is the set of concrete states,
- $\mathcal{E} = (E, \sqsubseteq, \sqcup, \top)$ is a semi-lattice,
- **•** $\llbracket \cdot \rrbracket : E \to 2^C$ is a concretization function.

Definition (abstract domain)

Abstract domain is a tuple $(C, \mathcal{E}, [\cdot])$, where

- C is the set of concrete states,
- $\mathcal{E} = (E, \sqsubseteq, \sqcup, \top)$ is a semi-lattice,
- **•** $\llbracket \cdot \rrbracket : E \to 2^C$ is a concretization function.

abstract domain determines the aspects of the program that are analyzed

[e] returns the set of concrete states represented by e

Abstract domain $(C, \mathcal{E}, \llbracket \cdot \rrbracket)$ for tracking specific values 0, 1 of a variable x

•
$$[[\top]] = C$$

• $[[0]] = \{c \in C \mid c(x) = 0\}$
• $[[1]] = \{c \in C \mid c(x) = 1\}$
• $[[\bot]] = \emptyset$

Abstract domain $(C, \mathcal{E}', \llbracket \cdot \rrbracket)$ for tracking specific values 0, 1 of variables x, z

•
$$[01]$$
 = { $c \in C | c(x) = 0 \land c(z) = 1$ }
• $[0\top']$ = { $c \in C | c(x) = 0$ }

transfer relation

■ ~→ ⊆ E × G × E represents for each abstract state e its abstract successor e' under edge g

• we write
$$e \stackrel{g}{\leadsto} e'$$
 instead of $(e, g, e') \in \rightsquigarrow$

• we write
$$e \rightsquigarrow e'$$
 if $e \stackrel{g}{\rightsquigarrow} e'$ for some $g \in G$

• for example, for g with assignment x = z + 1 we have

$$T'0 \xrightarrow{g} 10 \\ 01 \xrightarrow{g} T'1$$

Data-flow analysis

Data-flow analysis (DFA)

- may forward abstract interpretation
- program locations are now handled explicitly, i.e., we work with pairs (*I*, *e*) instead of *I* being a part of *e*

Data-flow analysis (DFA)

may forward abstract interpretation

program locations are now handled explicitly, i.e., we work with pairs (*I*, *e*) instead of *I* being a part of *e*

inputs $(L, \mathcal{A}, \rightsquigarrow, I_0, e_0)$

- **program locations** *L*, abstract domain A, transfer relation \rightsquigarrow
- initial abstract state (I_0, e_0)

may forward abstract interpretation

program locations are now handled explicitly, i.e., we work with pairs (*I*, *e*) instead of *I* being a part of *e*

inputs $(L, \mathcal{A}, \rightsquigarrow, I_0, e_0)$

program locations *L*, abstract domain A, transfer relation \rightsquigarrow

■ initial abstract state (I_0, e_0)

output

- **reached** : $L \rightarrow E$ gives a reachable abstract state (*I*, reached(*I*)) for each *I*
- reached overapproximates all concrete reachable states, i.e., each concrete state c reachable from [[(*I*₀, *e*₀)]] is in ⋃_{*I*∈*L*}[[(*I*, reached(*I*))]]

```
algorithm DFA(L, \mathcal{A}, \rightsquigarrow, I_0, e_0)
 1
          waitList \leftarrow \{l_0\}
 2
          reached(I_0) \leftarrow e_0
 3
          while waitList \neq \emptyset do
 4
                choose / from waitList
 5
                waitList \leftarrow waitList \smallsetminus {I}
 6
                foreach (l', e') such that (l, \text{reached}(l)) \rightsquigarrow (l', e') do
 7
                      if e' \not\subseteq \text{reached}(l') then
 8
                            reached(I') \leftarrow reached(I') \sqcup e'
 9
                           waitList \leftarrow waitList \cup {I'}
10
          return reached
11
```

- if reached(l') has not been defined yet, then
 - $e' \not\sqsubseteq \operatorname{reached}(I')$ is true
 - reached(I') ⊔ e' evaluates to e'
- \blacksquare the algorithm finishes if the height of the semi-lattice in ${\cal A}$ is finite

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

waitList = $\{10\}$

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

waitList $= \emptyset$

Software model checking

- computes all reachable abstract states according to the transfer relation
- join operator is never applied

computes all reachable abstract states according to the transfer relationjoin operator is never applied

inputs $(L, \mathcal{A}, \rightsquigarrow, l_0, e_0)$

- **program locations** *L*, abstract domain A, transfer relation \rightsquigarrow
- initial abstract state (I_0, e_0)

computes all reachable abstract states according to the transfer relationjoin operator is never applied

inputs $(L, \mathcal{A}, \rightsquigarrow, l_0, e_0)$

- **program locations** *L*, abstract domain A, transfer relation \rightsquigarrow
- initial abstract state (I_0, e_0)

output

reached $\subseteq L \times E$ of reachable abstract states

■ reached overapproximates all concrete reachable states, i.e., each concrete state c reachable from [[(*I*₀, e₀)]] is in U_{(*I*,e)∈reached}[[(*I*, e)]]

Software model checking

```
algorithm Reach(L, \mathcal{A}, \rightsquigarrow, I_0, e_0)
         waitList \leftarrow \{(l_0, e_0)\}
 2
         reached \leftarrow \{(l_0, e_0)\}
 3
         while waitList \neq \emptyset do
 4
               choose (1, e) from waitList
 5
               waitList \leftarrow waitList \smallsetminus \{(I, e)\}
 6
               foreach (l', e') such that (l, e) \rightsquigarrow (l', e') do
 7
                     if there is no (l', e'') \in reached such that e' \sqsubset e'' then
 8
                          reached \leftarrow reached \cup \{(l', e')\}
 9
                          waitList \leftarrow waitList \cup \{(l', e')\}
10
         return reached
11
```

- finishes if the semi-lattice is finite
- there are infinite semi-lattices of a finite height
- typically slower, but more precise than data-flow analysis

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

waitList = { $(2, \top'\top')$ }

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

waitList = $\{(3, 0\top')\}$

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

waitList = $\{(4, 00)\}$

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

waitList = $\{(5, 00), (7, 00)\}$

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

$reached = \{ (2, \top' \top'), $	2
(3 , 0 ⊤′),	$ \begin{array}{c} $
(4,00),	$\psi_2^2 = 0;$ (v == 1)
(5,00), (7,00),	
(9,10),	x = 1; $y = 1;y = 10 / (x + z);$
}	10^{100}

waitList = $\{(7, 00), (9, 10)\}$

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

$\text{reached} = \{ (2,\top'\top'),$	2
(3 , 0 ⊤′),	$ \begin{array}{c} \downarrow x = 0; \\ 3 \\ \downarrow z = 0; \end{array} $
(4,00),	(y == 1) (y == 1)
(5,00), (7,00),	
(9,10), (9,01),	x = 1; $y = 1;y = 10 / (x + z);$
}	(10) (10)

waitList = $\{(9, 10), (9, 01)\}$

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

$\text{reached} = \{ (2,\top'\top'),$	2
(3 , 0 ⊤′),	$ \begin{array}{c} \downarrow_{\mathrm{X}} = 0; \\ 3 \\ \downarrow_{\mathrm{Z}} = 0; \end{array} $
(4,00),	(y = 1) (y = 1)
(5,00), (7,00),	5 7
(9,10), (9,01),	x = 1; $y = 1;$ $y = 1;$ $y = 1;$ $y = 1;$
(10,10), }	10^{10}

waitList = $\{(9, 01), (10, 10)\}$

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

2
$\begin{array}{c} 4\mathbf{x} = 0;\\ 3\\ $
(v = 1) (v = 1)
x = 1; $y = 1;y = 10 / (x + z);$
(10)

waitList = $\{(10, 10), (10, 01)\}$

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

$\text{reached} = \{ (2, \top'\top'), $	2
(3 , 0 ⊤′),	$\begin{array}{c} 4\mathbf{x} = 0;\\ 3\\ $
(4,00),	(y = 1) (y = 1)
(5,00), (7,00),	5 7
(9,10), (9,01),	$x = 1; \qquad 9 \qquad z = 1;$
(10,10), (10,01)}	$\int ret = 10 / (x + z);$

waitList = $\{(10, 01)\}$

Track the values 0, 1 of variables x, z using software model checking with the abstract domain based on the semi-lattice \mathcal{E}' and the initial abstract state $(2, \top'\top')$.

$reached = \{ (2, \top' \top'), $	2
(3 , 0 ⊤′),	$\begin{array}{c} 1 \mathbf{x} = 0; \\ 3 \\ 3 \\ 3 \end{array}$
(4,00),	$y^{z} = 0;$ (v == 1)
(5,00), (7,00),	
(9,10), (9,01),	x = 1; $y = 1;$ $y = 1;$ $y = 1;$ $y = 1;$
(10, 10), (10, 01)}	10

waitList $= \emptyset$

Configurable program analysis

Similarity of the two algorithms

```
algorithm DFA(L, \mathcal{A}, \rightsquigarrow, I_0, e_0)
 1
          waitList \leftarrow \{l_0\}
 2
          reached(l_0) \leftarrow e_0
 3
          while waitList \neq \emptyset do
 4
                 choose / from waitList
 5
                waitList \leftarrow waitList \smallsetminus {I}
 6
                foreach (I', e') such that (I, reached(I)) \rightsquigarrow (I', e') do
 7
                       if e' \not\subseteq \text{reached}(I') then
 8
                             reached(l') \leftarrow reached(l') \sqcup e'
 9
                             waitList \leftarrow waitList \cup {I'}
10
          return reached
11
```

1 algorithm $Reach(L, A, \rightsquigarrow, I_0, e_0)$

```
waitList \leftarrow \{(l_0, e_0)\}
 2
         reached \leftarrow \{(l_0, e_0)\}
 3
         while waitList \neq \emptyset do
 4
                choose (1, e) from waitList
 5
               waitList \leftarrow waitList \smallsetminus \{(I, e)\}
 6
               foreach (l', e') such that (l, e) \rightsquigarrow (l', e') do
 7
                     if there is no (l', e'') \in reached such that e' \sqsubset e'' then
 8
                            reached \leftarrow reached \cup \{(l', e')\}
 9
                            waitList \leftarrow waitList \cup {(I', e')}
10
         return reached
11
```

IA159 Formal Methods for Software Analysis: Configurable Program Analysis

Definition (configurable program analysis)

Configurable program analysis (CPA) is a tuple (A, \rightsquigarrow , merge, stop), where

- \blacksquare \mathcal{A} is an abstract domain,
- \blacksquare \rightsquigarrow is a transfer relation,
- merge : E × E → E is a merge operator that combines two abstract states such that it can weaken the second abstract state based on the first one (correspond to widening), i.e., e' ⊆ merge(e, e') ⊑ ⊤,
- stop: E × 2^E → B is a termination check such that stop(e, R) checks if e is covered (in some sense) by the set of abstract states R.

- unifies the data-flow analysis and software model checking
- handles program locations implicitly

unifies the data-flow analysis and software model checking

handles program locations implicitly

inputs (A, \rightsquigarrow , merge, stop, e_0)

- **CPA** ($\mathcal{A}, \rightsquigarrow, merge, stop$)
- initial abstract state *e*₀

unifies the data-flow analysis and software model checking

handles program locations implicitly

inputs $(\mathcal{A}, \rightsquigarrow, merge, stop, e_0)$

- **CPA** ($\mathcal{A}, \rightsquigarrow$, merge, stop)
- initial abstract state *e*₀

output

reached \subseteq *E* of reachable abstract states

■ reached overapproximates all concrete reachable states, i.e., each concrete state c reachable from [[e₀]] is in U_{e∈reached} [[e]]

```
algorithm CPA(\mathcal{A}, \rightsquigarrow, \text{merge}, \text{stop}, e_0)
 1
         waitList \leftarrow \{e_0\}
 2
         reached \leftarrow \{e_0\}
 3
         while waitList \neq \emptyset do
 4
               choose e from waitList
 5
               waitList \leftarrow waitList \smallsetminus \{e\}
 6
               foreach e' such that e \rightarrow e' do
 7
                     foreach e'' \in reached do
 8
                          e_{new} = merge(e', e'')
 9
                          if e_{new} \neq e'' then
10
                               waitList \leftarrow (waitList \cup {e_{new}}) \smallsetminus {e''}
11
                                reached \leftarrow (reached \cup {e_{new}}) \smallsetminus {e''}
12
                     if \negstop(e', reached) then
13
                          waitList \leftarrow waitList \cup {e'}
14
                          reached \leftarrow reached \cup \{e'\}
15
         return reached
16
```

typical instances of merge

• merge^{sep}
$$(e, e') = e'$$

• merge^{join}(
$$e, e'$$
) = $e \sqcup e'$

typical instances of merge

- merge^{sep}(e, e') = e'
- $\blacksquare merge^{join}(e,e') = e \sqcup e'$

typical instances of stop

- stop^{sep}(e, R) = ($\exists e' \in R.e \sqsubseteq e'$)
- stop^{join}(e, R) = $e \sqsubseteq \bigsqcup_{e' \in R} e'$
- another parameter of all the algorithms is the order in which elements of waitList are processed
- for example, it can correspond to depth-first search or breadth-first search
- different strategies are used in practice

there are CPA instances for

- reachable-code analysis
- constant propagation
- reaching definitions
- predicate analysis
- observer automata
- value analysis
- symbolic execution

- a CPA can be constructed as a combination of simpler CPAs (easier to implement)
- combinations used in practice
 - constant propagation + predicate analysis + (strengthening)
 - predicate analysis + observer automata
 - **...**
- can be extended with the notion of precision and CEGAR
- can be used for computation of program invariants
- implemented in CPAchecker

- a CPA can be constructed as a combination of simpler CPAs (easier to implement)
- combinations used in practice
 - constant propagation + predicate analysis + (strengthening)
 - predicate analysis + observer automata
 - **...**
- can be extended with the notion of precision and CEGAR
- can be used for computation of program invariants
- implemented in CPAchecker

CPAchecker

- verification tool developed by the group of Dirk Beyer since 2007
- implements various techniques, supports their combinations
- available under the Apache 2.0 License

https://cpachecker.sosy-lab.org/