
IA159 Formal Methods for Software Analysis
Configurable Program Analysis

Jan Strejček
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Focus and sources

focus
data-flow analysis (a sort of abstract interpretation, again)
software model checking (= abstract reachability)
configurable program analysis

source
D. Beyer, S. Gulwani, and D. A. Smith: Combining Model Checking and
Data-Flow Analysis, Chapter 16 of Handbook of Model Checking, Springer,
2018.
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Motivation

similarity of data-flow analysis and abstract reachability
generalized into configurable program analysis (CPA)
various known algorithms can be seen as CPA instances
CPAs are easy to compose
used in CPAchecker
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Control-flow automata

graph representation of functions
nodes = program locations
edges = assumptions and assignments

1 int foo(int y) {
2 int x = 0;
3 int z = 0;
4 if (y == 1) {
5 x = 1;
6 } else {
7 z = 1;
8 }
9 return 10 / (x + z);

10 }

2
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5 7

9

10

x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);
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nodes = program locations
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9 return 10 / (x + z);
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);
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Control-flow automata

Definition (control-flow automaton)

Control-flow automaton (CFA) is a triple (L, l0,G), where
L is a finite set of program locations,
l0 ∈ L is an initial program location, and
G ⊆ L×Ops × L are control-flow edges labeled with operations Ops.

we assume that programs handle only integer variables and contain no
function calls
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Semantics of control-flow automata

a concrete state is an assignment c that assigns values to program variables
and also to program counter
C denotes the set of all concrete states
subsets r ⊆ C are called regions

each g = (l ,o, l ′) ∈ G defines the transition relation
g→ ⊆ C × {g} × C (this

is the semantics of CFA)

we write c
g→ c′ instead of (c,g, c′) ∈ g→

we write c → c′ if c
g→ c′ for some g ∈ G

c is reachable from a region r if there is a state c′ ∈ r such that c′ →∗ c,
where→∗ denotes the reflexive and transitive closure of→
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Semi-lattice

Definition (semi-lattice)

Semi-lattice is a tuple (E ,⊑,⊔,⊤), where
(E ,⊑) is a partially ordered set such that each M ⊆ E has the least upper
bound sup(M),
⊔ is the join operator satisfying x ⊔ y = sup({x , y}),
⊤ is the top element ⊤ = sup(E).

elements of E represent abstract states
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Abstract domain

Definition (abstract domain)

Abstract domain is a tuple (C, E , J·K), where
C is the set of concrete states,
E = (E ,⊑,⊔,⊤) is a semi-lattice,
J·K : E → 2C is a concretization function.

abstract domain determines the aspects of the program that are analyzed
JeK returns the set of concrete states represented by e
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Example

Abstract domain (C, E , J·K) for tracking specific values 0,1 of a variable x

E : ⊤

0 1

⊥

J⊤K = C
J0K = {c ∈ C | c(x) = 0}
J1K = {c ∈ C | c(x) = 1}
J⊥K = ∅
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Example

Abstract domain (C, E ′, J·K) for tracking specific values 0,1 of variables x,z

E ′:

⊥ = ⊥′⊥′

⊥′0 ⊥′1 0⊥′ 1⊥′

⊥′⊤′ 00 01 10 11 ⊤′⊥′

0⊤′ 1⊤′ ⊤′0 ⊤′1

⊤ = ⊤′⊤′

J01K = {c ∈ C | c(x) = 0 ∧ c(z) = 1}
J0⊤′K = {c ∈ C | c(x) = 0}
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Transfer relation

transfer relation
⇝ ⊆ E ×G × E represents for each abstract state e its abstract successor e′

under edge g

we write e
g
⇝ e′ instead of (e,g,e′) ∈⇝

we write e⇝ e′ if e
g
⇝ e′ for some g ∈ G

for example, for g with assignment x = z + 1 we have
⊤′0

g
⇝ 10

01
g
⇝ ⊤′1
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Data-flow analysis



Data-flow analysis (DFA)

may forward abstract interpretation
program locations are now handled explicitly, i.e., we work with pairs (l ,e)
instead of l being a part of e

inputs (L,A,⇝, l0,e0)

program locations L, abstract domain A, transfer relation⇝
initial abstract state (l0,e0)

output
reached : L→ E gives a reachable abstract state (l , reached(l)) for each l
reached overapproximates all concrete reachable states, i.e., each concrete
state c reachable from J(l0,e0)K is in

⋃
l∈LJ(l , reached(l))K
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Data-flow analysis (DFA)

1 algorithm DFA(L,A,⇝, l0,e0)
2 waitList← {l0}
3 reached(l0)← e0
4 while waitList ̸= ∅ do
5 choose l from waitList
6 waitList← waitList ∖ {l}
7 foreach (l ′,e′) such that (l , reached(l))⇝ (l ′,e′) do
8 if e′ ̸⊑ reached(l ′) then
9 reached(l ′)← reached(l ′) ⊔ e′

10 waitList← waitList ∪ {l ′}
11 return reached

if reached(l ′) has not been defined yet, then
e′ ̸⊑ reached(l ′) is true
reached(l ′) ⊔ e′ evaluates to e′

the algorithm finishes if the height of the semi-lattice in A is finite
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Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).

2

3

4

5 7

9

10

x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList = {2}{3}{4}{5,7}{7,9}{9}{10}∅
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Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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5 7
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10

x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList = {2}

{3}{4}{5,7}{7,9}{9}{10}∅
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Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList =

{2}

{3}

{4}{5,7}{7,9}{9}{10}∅
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Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList =

{2}{3}

{4}

{5,7}{7,9}{9}{10}∅
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Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList =

{2}{3}{4}

{5,7}

{7,9}{9}{10}∅
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Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10

reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList =

{2}{3}{4}{5,7}

{7,9}

{9}{10}∅
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Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10

reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList =

{2}{3}{4}{5,7}{7,9}

{9}

{10}∅
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Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10

reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList =

{2}{3}{4}{5,7}{7,9}{9}

{10}

∅

IA159 Formal Methods for Software Analysis: Configurable Program Analysis 27/56



Example

Track the values 0,1 of variables x,z using the data-flow analysis with the abstract
domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached(2) = ⊤′⊤′

reached(3) = 0⊤′

reached(4) = 00

reached(5) = 00 reached(7) = 00

reached(9) = 10

reached(9) =
10 ⊔ 01 = ⊤′⊤′

reached(10) = ⊤′⊤′

waitList =

{2}{3}{4}{5,7}{7,9}{9}{10}

∅
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Software model checking



Software model checking

computes all reachable abstract states according to the transfer relation
join operator is never applied

inputs (L,A,⇝, l0,e0)

program locations L, abstract domain A, transfer relation⇝
initial abstract state (l0,e0)

output
reached ⊆ L× E of reachable abstract states
reached overapproximates all concrete reachable states, i.e., each concrete
state c reachable from J(l0,e0)K is in

⋃
(l,e)∈reachedJ(l ,e)K
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Software model checking

1 algorithm Reach(L,A,⇝, l0,e0)
2 waitList← {(l0,e0)}
3 reached← {(l0,e0)}
4 while waitList ̸= ∅ do
5 choose (l ,e) from waitList
6 waitList← waitList ∖ {(l ,e)}
7 foreach (l ′,e′) such that (l ,e)⇝ (l ′,e′) do
8 if there is no (l ′,e′′) ∈ reached such that e′ ⊑ e′′ then
9 reached← reached ∪ {(l ′,e′)}

10 waitList← waitList ∪ {(l ′,e′)}
11 return reached

finishes if the semi-lattice is finite
there are infinite semi-lattices of a finite height
typically slower, but more precise than data-flow analysis

IA159 Formal Methods for Software Analysis: Configurable Program Analysis 33/56



Example

Track the values 0,1 of variables x,z using software model checking with the
abstract domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).

2

3

4

5 7

9

10

x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached = { (2,⊤′⊤′),

}

(3,0⊤′),

(4,00),

(5,00),
(7,00),

(9,10),(9,10),
(9,01),

(10,10),(10,10),
(10,01)}

waitList = {(2,⊤′⊤′)}{(3,0⊤′)}{(4,00)}{(5,00), (7,00)}{(7,00), (9,10)}{(9,10), (9,01)}{(9,01), (10,10)}{(10,10), (10,01)}{(10,01)}∅
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Example

Track the values 0,1 of variables x,z using software model checking with the
abstract domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).

2

3

4

5 7

9

10

x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;
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}
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Example

Track the values 0,1 of variables x,z using software model checking with the
abstract domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).

2
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached = { (2,⊤′⊤′),

}

(3,0⊤′),

(4,00),

(5,00),
(7,00),

(9,10),(9,10),
(9,01),

(10,10),(10,10),
(10,01)}

waitList =

{(2,⊤′⊤′)}

{(3,0⊤′)}

{(4,00)}{(5,00), (7,00)}{(7,00), (9,10)}{(9,10), (9,01)}{(9,01), (10,10)}{(10,10), (10,01)}{(10,01)}∅
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Example

Track the values 0,1 of variables x,z using software model checking with the
abstract domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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10

x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached = { (2,⊤′⊤′),

}

(3,0⊤′),

(4,00),

(5,00),
(7,00),

(9,10),(9,10),
(9,01),

(10,10),(10,10),
(10,01)}

waitList =

{(2,⊤′⊤′)}{(3,0⊤′)}

{(4,00)}

{(5,00), (7,00)}{(7,00), (9,10)}{(9,10), (9,01)}{(9,01), (10,10)}{(10,10), (10,01)}{(10,01)}∅
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Example

Track the values 0,1 of variables x,z using software model checking with the
abstract domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached = { (2,⊤′⊤′),

}

(3,0⊤′),

(4,00),

(5,00),
(7,00),

(9,10),(9,10),
(9,01),

(10,10),(10,10),
(10,01)}

waitList =

{(2,⊤′⊤′)}{(3,0⊤′)}{(4,00)}

{(5,00), (7,00)}

{(7,00), (9,10)}{(9,10), (9,01)}{(9,01), (10,10)}{(10,10), (10,01)}{(10,01)}∅
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Example

Track the values 0,1 of variables x,z using software model checking with the
abstract domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).

2

3

4

5 7

9

10

x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached = { (2,⊤′⊤′),

}

(3,0⊤′),

(4,00),

(5,00),
(7,00),

(9,10),

(9,10),
(9,01),

(10,10),(10,10),
(10,01)}

waitList =

{(2,⊤′⊤′)}{(3,0⊤′)}{(4,00)}{(5,00), (7,00)}

{(7,00), (9,10)}

{(9,10), (9,01)}{(9,01), (10,10)}{(10,10), (10,01)}{(10,01)}∅
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Example

Track the values 0,1 of variables x,z using software model checking with the
abstract domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).

2

3

4

5 7

9

10

x = 0;

z = 0;

(y == 1) !(y == 1)

x = 1; z = 1;

ret = 10 / (x + z);

reached = { (2,⊤′⊤′),

}

(3,0⊤′),

(4,00),

(5,00),
(7,00),

(9,10),

(9,10),
(9,01),

(10,10),(10,10),
(10,01)}

waitList =

{(2,⊤′⊤′)}{(3,0⊤′)}{(4,00)}{(5,00), (7,00)}{(7,00), (9,10)}

{(9,10), (9,01)}

{(9,01), (10,10)}{(10,10), (10,01)}{(10,01)}∅
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Example

Track the values 0,1 of variables x,z using software model checking with the
abstract domain based on the semi-lattice E ′ and the initial abstract state (2,⊤′⊤′).
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Configurable program analysis



Similarity of the two algorithms
1 algorithm DFA(L,A,⇝, l0, e0)
2 waitList← {l0}
3 reached(l0)← e0

4 while waitList ̸= ∅ do
5 choose l from waitList
6 waitList← waitList ∖ {l}
7 foreach (l ′, e′) such that (l, reached(l))⇝ (l ′, e′) do
8 if e′ ̸⊑ reached(l ′) then
9 reached(l ′)← reached(l ′) ⊔ e′

10 waitList← waitList ∪ {l ′}
11 return reached

1 algorithm Reach(L,A,⇝, l0, e0)
2 waitList← {(l0, e0)}
3 reached← {(l0, e0)}
4 while waitList ̸= ∅ do
5 choose (l, e) from waitList
6 waitList← waitList ∖ {(l, e)}
7 foreach (l ′, e′) such that (l, e)⇝ (l ′, e′) do
8 if there is no (l ′, e′′) ∈ reached such that e′ ⊑ e′′ then
9 reached← reached ∪ {(l ′, e′)}

10 waitList← waitList ∪ {(l ′, e′)}
11 return reached
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Configurable program analysis

Definition (configurable program analysis)

Configurable program analysis (CPA) is a tuple (A,⇝,merge, stop), where
A is an abstract domain,
⇝ is a transfer relation,
merge : E × E → E is a merge operator that combines two abstract states
such that it can weaken the second abstract state based on the first one
(correspond to widening), i.e., e′ ⊑ merge(e,e′) ⊑ ⊤,
stop : E × 2E → B is a termination check such that stop(e,R) checks if e is
covered (in some sense) by the set of abstract states R.
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Configurable program analysis

unifies the data-flow analysis and software model checking
handles program locations implicitly

inputs (A,⇝,merge, stop,e0)

CPA (A,⇝,merge, stop)
initial abstract state e0

output
reached ⊆ E of reachable abstract states
reached overapproximates all concrete reachable states, i.e., each concrete
state c reachable from Je0K is in

⋃
e∈reachedJeK
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Configurable program analysis

1 algorithm CPA(A,⇝,merge, stop,e0)
2 waitList← {e0}
3 reached← {e0}
4 while waitList ̸= ∅ do
5 choose e from waitList
6 waitList← waitList ∖ {e}
7 foreach e′ such that e⇝ e′ do
8 foreach e′′ ∈ reached do
9 enew = merge(e′,e′′)

10 if enew ̸= e′′ then
11 waitList← (waitList ∪ {enew})∖ {e′′}
12 reached← (reached ∪ {enew})∖ {e′′}
13 if ¬stop(e′, reached) then
14 waitList← waitList ∪ {e′}
15 reached← reached ∪ {e′}
16 return reached
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Notes

typical instances of merge
mergesep(e,e′) = e′

mergejoin(e,e′) = e ⊔ e′

typical instances of stop
stopsep(e,R) = (∃e′ ∈ R.e ⊑ e′)

stopjoin(e,R) = e ⊑
⊔

e′∈R e′

another parameter of all the algorithms is the order in which elements of
waitList are processed
for example, it can correspond to depth-first search or breadth-first search
different strategies are used in practice
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Notes

there are CPA instances for
reachable-code analysis
constant propagation
reaching definitions
predicate analysis
observer automata
value analysis
symbolic execution
. . .
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Notes

a CPA can be constructed as a combination of simpler CPAs (easier to
implement)
combinations used in practice

constant propagation + predicate analysis + (strengthening)
predicate analysis + observer automata
. . .

can be extended with the notion of precision and CEGAR
can be used for computation of program invariants
implemented in CPAchecker

CPAchecker
verification tool developed by the group of Dirk Beyer since 2007
implements various techniques, supports their combinations
available under the Apache 2.0 License
https://cpachecker.sosy-lab.org/
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