IA159 Formal Methods for Software Analysis

Configurable Program Analysis

Jan Strejcek

Faculty of Informatics
Masaryk University

Focus and sources

focus
m data-flow analysis (a sort of abstract interpretation, again)
m software model checking (= abstract reachability)
m configurable program analysis

source

m D. Beyer, S. Gulwani, and D. A. Smith: Combining Model Checking and
Data-Flow Analysis, Chapter 16 of Handbook of Model Checking, Springer,
2018.

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 2/56

m similarity of data-flow analysis and abstract reachability
m generalized into configurable program analysis (CPA)

m various known algorithms can be seen as CPA instances
m CPAs are easy to compose

m used in CPAchecker

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 3/56

Control-flow automata

m graph representation of functions
m nodes = program locations
m edges = assumptions and assignments

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 4/56

Control-flow automata

m graph representation of functions
m nodes = program locations
m edges = assumptions and assignments

int foo(int y) {
int x = 0;
int z = 0;
if (y == 1) {
x = 1;
} else {
z = 1;
}
return 10 / (x + z);
}

QOWONOOOTAWN =

—

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 5/56

Control-flow automata

Definition (control-flow automaton)

Control-flow automaton (CFA) is a triple (L, k, G), where
m L is a finite set of program locations,
m |y € Lis an initial program location, and
m G C L x Ops x L are control-flow edges labeled with operations Ops.

m we assume that programs handle only integer variables and contain no
function calls

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 6/56

Semantics of control-flow automata

a concrete state is an assignment c¢ that assigns values to program variables
and also to program counter

C denotes the set of all concrete states
subsets r C C are called regions
each g = (/,0,/") € G defines the transition relation % ccex {g} x C (this

is the semantics of CFA)

we write ¢ % ¢’ instead of (c,g,0) € 5

we write ¢ — ¢ if ¢ 3 ¢ for some ge G

c is reachable from a region r if there is a state ¢’ € r such that ¢’ —* ¢,
where —* denotes the reflexive and transitive closure of —

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 7/56

Semi-lattice

Definition (semi-lattice)

Semi-lattice is a tuple (E,C, U, T), where

m (E, Q) is a partially ordered set such that each M C E has the least upper
bound sup(M),

m Ll is the join operator satisfying x Ll y = sup({x, y}),
m T is the top element T = sup(E).

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 8/56

Semi-lattice

Definition (semi-lattice)

Semi-lattice is a tuple (E,C, U, T), where

m (E, Q) is a partially ordered set such that each M C E has the least upper
bound sup(M),

m Ll is the join operator satisfying x Ll y = sup({x, y}),
m T is the top element T = sup(E).

m elements of E represent abstract states

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 9/56

Abstract domain

Definition (abstract domain)

Abstract domain is a tuple (C, &, [-]), where
m C is the set of concrete states,
m &= (E,C,U,T)is asemi-lattice,
m []: E — 2C is a concretization function.

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 10/56

Abstract domain

Definition (abstract domain)

Abstract domain is a tuple (C, &, [-]), where
m C is the set of concrete states,
m &= (E,C,U,T)is asemi-lattice,
m []: E — 2C is a concretization function.

m abstract domain determines the aspects of the program that are analyzed
m [e] returns the set of concrete states represented by e

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 11/56

Abstract domain (C, &, []) for tracking specific values 0, 1 of a variable x
E: T
0 \ / 1
il
m[T]=C
m [0] ={ce C|c(x)=0}

m[1]={ceC|c(x)=1}
m[L]=0

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 12/56

Abstract domain (C, &’ [-]) for tracking specific values 0, 1 of variables x, z

=TT

/ /N~
PSS N

01 10 11 T

L=1"1

m[01]={ceClc(x)=0 A c(z)=1}
m[0T']={ceC]|c(x)=0}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 13/56

Transfer relation

transfer relation

m ~ C E x G x E represents for each abstract state e its abstract successor €
under edge g

m we write e < ¢ instead of (e,g,€) €~

m we write e ~ € if e 2 € forsomege G
m for example, for g with assignment x = z + 1 we have

m 70410
m 014 T/

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 14/56

Data-flow analysis

Data-flow analysis (DFA)

m may forward abstract interpretation

m program locations are now handled explicitly, i.e., we work with pairs (/, e)
instead of / being a part of e

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 16/56

Data-flow analysis (DFA)

m may forward abstract interpretation

m program locations are now handled explicitly, i.e., we work with pairs (/, e)
instead of / being a part of e

inputs (L, A, ~, o, eo)
m program locations L, abstract domain A, transfer relation ~
m initial abstract state (I, ey)

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 17/56

Data-flow analysis (DFA)

m may forward abstract interpretation

m program locations are now handled explicitly, i.e., we work with pairs (/, e)
instead of / being a part of e

inputs (L, A, ~, o, eo)
m program locations L, abstract domain A, transfer relation ~
m initial abstract state (I, ey)

output
m reached : L — E gives a reachable abstract state (/,reached(/)) for each /

m reached overapproximates all concrete reachable states, i.e., each concrete
state ¢ reachable from [(l, €o)] is in U, [(/, reached(/))]

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 18/56

Data-flow analysis (DFA)

algorithm pra(L, A~ Iy, ey)

waitList <— {h}

reached(l) + ey

while waitList # () do

choose [from waitList

waitList < waitList . {/}

foreach (/. €’') such that (/,reached(/)) ~ (/',€') do
if ' [reached(/") then
reached(/') < reached(/) U €
waitList < waitList U {/'}

1 return reached

© 0O N O oA W N =

m if reached(/') has not been defined yet, then
m ¢ [Z reached(/) is true
m reached(/') U € evaluates to €’

m the algorithm finishes if the height of the semi-lattice in A is finite

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 19/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

(x + z);

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 20/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

| reached(2) = T'T’

(x + z);

waitList = {2}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 21/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

| reached(2) = T'T’

| reached(3) =0T’ |

(x + z);

waitList = {3}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 22/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

| reached(2) = T'T’

| reached(3) =0T’ |

| reached(4) = 00 |

(x + z);

waitList = {4}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 23/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

| reached(2) = T'T’

| reached(3) =0T’

| reached(4) = 00 |

1)

| reached(5) = 00 | | reached(7) = 00 |

/ (x + z);

waitList = {5,7}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 24/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

| reached(2) = T'T’

| reached(3) =0T’

| reached(4) = 00 |

1)

| reached(5) = 00 | | reached(7) = 00 |

| reached(9) = 10 |

/ (x + z);

waitList = {7,9}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 25/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

| reached(2) = T'T’

| reached(3) =0T’ |

| reached(4) = 00 |

1)

| reached(5) = 00 | | reached(7) = 00 |

reached(9) =
10U01 =T'T'

/ (x + z);

waitList = {9}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 26/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

| reached(2) = T'T’

| reached(3) =0T’ |

| reached(4) = 00 |

1)

| reached(5) = 00 | | reached(7) = 00 |

reached(9) =
10U01 =T'T'

/ (x + z);

| reached(10) = T'T’

waitList = {10}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 27/56

Track the values 0, 1 of variables x, z using the data-flow analysis with the abstract
domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

| reached(2) = T'T’

| reached(3) =0T’ |

| reached(4) = 00 |

1)

| reached(5) = 00 | | reached(7) = 00 |

reached(9) =
10U01 =T'T'

/ (x + z);

| reached(10) = T'T’

waitList =0

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 28/56

Software model checking

Software model checking

m computes all reachable abstract states according to the transfer relation
m join operator is never applied

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 30/56

Software model checking

m computes all reachable abstract states according to the transfer relation
m join operator is never applied

inputs (L, A, ~, I,)
m program locations L, abstract domain A, transfer relation ~~
m initial abstract state (l, eg)

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 31/56

Software model checking

m computes all reachable abstract states according to the transfer relation
m join operator is never applied

inputs (L, A, ~, I,)
m program locations L, abstract domain A, transfer relation ~~
m initial abstract state (l, eg)

output
m reached C L x E of reachable abstract states

m reached overapproximates all concrete reachable states, i.e., each concrete
state c reachable from [(l, €o)] is in U ¢)creached[(> €)]

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 32/56

Software model checking

1 algorithm reach(L, A, ~, |y, e)
2 waitList < {(k, €0)}

3 reached < {(h,)}

4 while waitList # () do

5 choose (/,) from waitList
6 waitList < waitList \. {(/, e)}

7 foreach (/. €') such that (/,e) ~ (/',€') do

8 if there is no (/', €’) € reached such that ¢’ C ¢” then
9 reached < reached U {(/', €)}

10 waitList < waitList U {(/', &)}

11 return reached

m finishes if the semi-lattice is finite
m there are infinite semi-lattices of a finite height
m typically slower, but more precise than data-flow analysis

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 33/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 34/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),

waitList = {(2, T'T")}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 35/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),

(3,0T"),

waitList = {(3,0T')}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 36/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),
(3,0T"),

(4,00),

waitList = {(4,00)}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 37/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),
(3,0T"),

(4,00),

(x + z);

waitList = {(5,00), (7,00)}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 38/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),
(3,0T"),

(4,00),
(5,00),

(x + z);

waitList = {(7,00), (9,10)}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 39/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),

(3,0T"),

(x + z);

waitList = {(9,10), (9,01)}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 40/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),

(3,0T"),

(x + z);

waitList = {(9,01),(10,10)}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 41/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),

(3,0T"),

(x + z);

waitList = {(10,10),(10,01)}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 42/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),

(3,0T"),

(x + z);

waitList = {(10,01)}

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 43/56

Track the values 0, 1 of variables x, z using software model checking with the
abstract domain based on the semi-lattice £’ and the initial abstract state (2, T'T’).

reached = { (2, T'T’),

(3,0T"),

(x + z);

waitList =0

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 44/56

Configurable program analysis

Similarity of the two algorithms

1 algorithm Dra(L, A, ~~. o, €)
2 waitList < {h}

3 reached(h) < e

4 while waitlList + () do

5 choose / from waitList

6 waitList < waitList \ {/}

7 foreach (/', ¢') such that (/, reached(/)) ~ (I',€’') do
8 if ¢ [Z reached(/’) then

9 reached(/') < reached(/')u €

10 waitList « waitList U {/'}

return reached

-
pry

[

Igorithm reach(L, A, ~, b, &)
waitList < {(/0, eo)}
reached + {(hb, e0)}
while waitlList 4 () do
choose (/,) from waitList
waitList < waitList \ {(/, e)}
foreach (/',e’) such that (/,e) ~ (I, €') do
if there is no (/', ") € reached such that ¢’ C €” then
reached «+ reached U {(/', €')}
waitList « waitList U {(/', &)}

11 return reached
|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 46/56

© © N o a b N =

-
o

Configurable program analysis

Definition (configurable program analysis)

Configurable program analysis (CPA) is a tuple (A, ~», merge, stop), where

m A is an abstract domain,

m -~ is a transfer relation,

m merge : E x E — E is a merge operator that combines two abstract states
such that it can weaken the second abstract state based on the first one
(correspond to widening), i.e., € C merge(e, &) C T,

m siop : E x 2F — B is a termination check such that stop(e, R) checks if e is
covered (in some sense) by the set of abstract states R.

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 47/56

Configurable program analysis

m unifies the data-flow analysis and software model checking
m handles program locations implicitly

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 48/56

Configurable program analysis

m unifies the data-flow analysis and software model checking
m handles program locations implicitly

inputs (A, ~», merge, stop, &)
m CPA (A, ~, merge, stop)
m initial abstract state ¢

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 49/56

Configurable program analysis

m unifies the data-flow analysis and software model checking
m handles program locations implicitly

inputs (A, ~», merge, stop, &)
m CPA (A, ~, merge, stop)
m initial abstract state ¢

output
m reached C E of reachable abstract states

m reached overapproximates all concrete reachable states, i.e., each concrete
state ¢ reachable from [eo] is in (Ugcreacheq €]

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 50/56

Configurable program analysis

1 algorithm cpr(A, ~ merge, stop, ey)
2 waitList <— {ep}
3 reached «+ {ep}
4 while waitList # () do
5 choose e from waitList
6 waitList < waitList \ {e}
7 foreach ¢’ such that e ~ ¢’ do
8 foreach ¢’ < reached do
9 €new = Merge(e’, e”)
10 if e,0, # €” then
11 waitList < (waitList U {epew}) ~ {€"}
12 reached < (reached U {€nen }) ~ {€"}
13 if —stop(e’, reached) then
14 waitList «+ waitList U {&'}
15 reached + reached U {¢'}
16 return reached

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 51/56

typical instances of merge
m merge®P (e, ¢) =¢
m merge®(e, &) =el €

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 52/56

typical instances of merge
m merge®P (e, ¢) =¢
m merge®(e, &) =el €

typical instances of stop
m stop®**P(e,R) = (3¢’ € R.eC ¢)
m stop®"(e,R)=eLC | |y.p€

m another parameter of all the algorithms is the order in which elements of
waitList are processed

m for example, it can correspond to depth-first search or breadth-first search
m different strategies are used in practice

1A159 Formal Methods for Software Analysis: Configurable Program Analysis 53/56

there are CPA instances for
m reachable-code analysis
constant propagation
reaching definitions
predicate analysis
observer automata
value analysis
symbolic execution

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 54/56

m a CPA can be constructed as a combination of simpler CPAs (easier to
implement)
m combinations used in practice

m constant propagation + predicate analysis + (strengthening)
m predicate analysis + observer automata
[

m can be extended with the notion of precision and CEGAR
m can be used for computation of program invariants
m implemented in CPAchecker

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 55/56

https://cpachecker.sosy-lab.org/

m a CPA can be constructed as a combination of simpler CPAs (easier to
implement)
m combinations used in practice

m constant propagation + predicate analysis + (strengthening)
m predicate analysis + observer automata
[

m can be extended with the notion of precision and CEGAR
m can be used for computation of program invariants
m implemented in CPAchecker

CPAchecker
m verification tool developed by the group of Dirk Beyer since 2007
m implements various techniques, supports their combinations
m available under the Apache 2.0 License
B https://cpachecker.sosy-lab.org/

|1A159 Formal Methods for Software Analysis: Configurable Program Analysis 56/56

https://cpachecker.sosy-lab.org/

