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Focus and sources

focus
memoryless version of symbolic execution
bounded model checking (BMC)
k -induction

source
A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer: Software Verification
Using k -Induction, SAS 2011.
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Memoryless version of symbolic execution

does not use symbolic memory, the assignments are stored to path condition
to do that, we need to consider another instance of each variable after each
assignment to it and remeber its current instance
let ver : Vars → N be the function keeping the current instances
initially, ver(x) = 1 for each x ∈ Vars

a

b

y = 2*x+y+5;

path condition pc
function ver

path condition pc ∧ yver(y)+1 = 2 ∗ xver(x) + yver(y) + 5
function ver with incresed value of ver(y) by one

a

b

y = *;

path condition pc
function ver

path condition pc
function ver with incresed value of ver(y) by one

symbolic execution of branching statements is modified similarly
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Bounded model checking (BMC)



Bounded model checking (BMC)

a technique for finding bugs
proves correctness only very rarely
similar to memoryless symbolic execution, but creates one SMT query

workflow

1 unwind all loops and recursion k -times for a given bound k
2 compute the error reaching formula φ from the unwound program
3 if φ is satisfiable then
4 return bug found
5 else
6 compute the bound reaching formula ψ from the unwound program
7 if the ψ is unsatisfiable then
8 return the program is correct
9 else

10 return unknown (increase bound and start again)
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Example
original program

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
while (i < n) {
v = input();
s += v;
++i;

}
assert(s >= v);

unsigned char n = input();
if (n == 0) {return 0};
unsigned char v = 0;
unsigned char s = 0;
unsigned int i = 0;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);
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Example
original program unwound program for k = 3
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Example
unwound program for k = 3

unsigned char n = input();
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v = input();
s += v;
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v = input();
s += v;
++i;
if (i < n) {
bound_reached();}}}}

assert(s >= v);

n1 > 0 ∧ v1 = 0 ∧ s1 = 0 ∧ i1 = 0 ∧
∧ ((i1 ≥ n1 ∧ s1 < v1) ∨
∨ (i1 < n1 ∧ s2 = s1 + v2 ∧ i2 = i1 + 1 ∧

∧ ((i2 ≥ n1 ∧ s2 < v2) ∨
∨ (i2 < n1 ∧ s3 = s2 + v3 ∧ i3 = i2 + 1 ∧
∧ ((i3 ≥ n1 ∧ s3 < v3) ∨
∨ (i3 < n1 ∧ s4 = s3 + v4 ∧ i4 = i3 + 1 ∧
∧ i4 ≥ n1 ∧ s4 < v4))))))

satisfiable
variable types are considered

bitvector arithmetic is used
n1 = 2
v1 = 0 s1 = 0 i1 = 0
v2 = 224 s2 = 224 i2 = 1
v3 = 63 s3 = 31 i3 = 2

bug found!
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Notes on BMC

very efficient in finding bugs
uses a sort of SSA when constructing the formula
constant propagation can simplify the program and the formula and it can
reveal that the bound is unreachable
implemented for example in CBMC

tool for bounded model checking of C and C++ programs
supports C89, C99, most of C11 and most extensions of gcc and Visual Studio
the winner of SV-COMP 2014
https://www.cprover.org/cbmc/
a version for Java programs called JBMC
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k -induction

extension of BMC that can prove correctness more often
very successful on symbolic transition systems
to prove program correctness, we show

1 base case:
all feasible paths starting in an initial state of length at most k are correct

2 induction step:
each feasible path of length k + 1 that has a correct prefix of length k is also
correct

if the base case fails, we found a bug
if the induction step fails, we can increase k and try again

the idea can be applied to programs in different ways
k -induction on single-loop programs

k -induction does semantically the same as backward symbolic execution
M. Chalupa and J. Strejček: Backward Symbolic Execution with Loop Folding,
SAS 2021.
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k -induction on single-loop programs

n,x,i = *,0,0;
a,b,c = 1,2,3;
while (i < n) {
assert(a != b);
a,b,c = b,c,a;
i++;

}
assert(x = 0);

n,x,i = *,0,0;
a,b,c = 1,2,3;

assume i < n;
assert a ̸= b;
a,b,c = b,c,a;
i = i+1;

assume i ≥ n;
assert x = 0;

n,x,i = *,0,0;
a,b,c = 1,2,3;

assume i < n;
assert a ̸= b;
a,b,c = b,c,a;
i = i+1;

B:

B

B

assume i ≥ n;
assert x = 0;

base case (= BMC)
for k = 3

n,x,i = *,*,*;
a,b,c = *,*,*;

assume i < n;
assume a ̸= b;
a,b,c = b,c,a;
i = i+1;

B′:

B′

B′

B

assume i ≥ n;
assert x = 0;

induction step for k = 3
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The End


