
Cryptographic Hash Functions

1/36

Hashing

Basic idea: a hash function maps “long” strings from some set M = {0, 1}≤L onto short
strings from some set H = {0, 1}ℓ, where ℓ << L.

Cryptographic hash functions posses some sort of one-way and collision resistance properties:
given just a hash of a message, it is difficult to compute the message itself, or to compute two
messages that hash to the same string.

• Unkeyed hash functions: h : M → H
• message/file integrity
• password storage
• digital signatures
• ...

• Keyed hash functions, aka MACs: h : M × K → H
• message integrity and authenticity

2/36

Hashing

Basic idea: a hash function maps “long” strings from some set M = {0, 1}≤L onto short
strings from some set H = {0, 1}ℓ, where ℓ << L.

Cryptographic hash functions posses some sort of one-way and collision resistance properties:
given just a hash of a message, it is difficult to compute the message itself, or to compute two
messages that hash to the same string.

• Unkeyed hash functions: h : M → H
• message/file integrity
• password storage
• digital signatures
• ...

• Keyed hash functions, aka MACs: h : M × K → H
• message integrity and authenticity

From now on: hash function = unkeyed hash function, MAC = keyed hash function

2/36

Cryptographic hash functions

Desired properties of cryptographic hash functions:

• h is one-way (or 1st preimage resistant) if, given h(m), it is difficult to compute m

• h is 2nd preimage resistant if, given m and h(m), it is difficult to compute m′ ̸= m s.t.
h(m′) = h(m)

• h is collision resistant if it is difficult to compute m,m′ s.t. m′ ̸= m and h(m′) = h(m)

3/36

Cryptographic hash functions

Desired properties of cryptographic hash functions:

• h is one-way (or 1st preimage resistant) if, given h(m), it is difficult to compute m

• h is 2nd preimage resistant if, given m and h(m), it is difficult to compute m′ ̸= m s.t.
h(m′) = h(m)

• h is collision resistant if it is difficult to compute m,m′ s.t. m′ ̸= m and h(m′) = h(m)

(In all cases, we assume the attacker has full access to the details of h.)

Existence of one-way functions would imply P ̸= NP. Nevertheless, none of the practically used
hash functions was so far broken w.r.t. one-wayness.

However, many older hash functions (e.g. MD5, SHA-1) were broken w.r.t. collision resistance,
and hence they are no longer deemed secure.

3/36

Digital signatures and collision resistance

4/36

Additional properties of hash functions

• Non-correlation: small change of m should elicit large and random-looking change of h(m)

• Local preimage resistance: given h(m) it should be difficult to obtain e.g. short sub-strings
of m

5/36

Secure hash functions

Each of the three main security properties of hash functions can be phrased in terms of
guessing a suitable certificate (preimage/2nd preimage/collision). A hash function adversary is
a probabilistic algorithm which tries to guess such a certificate.

Security of hash functions often evaluated w.r.t. performance of certain baseline adversaries:
when guessing, how long do we need to guess (on average) to obtain the certificate?

In the following, ℓ is the hash length:

property baseline
1st preimage resistance 2ℓ

2nd preimage resistance 2ℓ

collision resistance

6/36

Secure hash functions

Each of the three main security properties of hash functions can be phrased in terms of
guessing a suitable certificate (preimage/2nd preimage/collision). A hash function adversary is
a probabilistic algorithm which tries to guess such a certificate.

Security of hash functions often evaluated w.r.t. performance of certain baseline adversaries:
when guessing, how long do we need to guess (on average) to obtain the certificate?

In the following, ℓ is the hash length:

property baseline
1st preimage resistance 2ℓ

2nd preimage resistance 2ℓ

collision resistance
√

2ℓ

6/36

Birthday theorem

Birthday “paradox”
Given a group of 23 people. What is the probability that at least two of them were born on
the same day of the year?

7/36

Birthday theorem

Birthday “paradox”
Given a group of 23 people. What is the probability that at least two of them were born on
the same day of the year?

Answer: 50.7%

(For 60 people, the probability is ≥ 99%.)

7/36

Birthday theorem

Birthday “paradox”
Given a group of 23 people. What is the probability that at least two of them were born on
the same day of the year?

Answer: 50.7%

(For 60 people, the probability is ≥ 99%.)

Theorem 1: Birthday theorem

Consider the experiment of randomly drawing (with replacement) items from a set of size
N. Denote by col(N) the minimum number of draws that need to be performed so that
the probability of drawing some item twice exceeds 1

2 . Then col(N) ∈ O(
√
N).

7/36

Proof of the birthday theorem

Let c(k ,N) be the probability of a drawing something twice in k draws from an N-element set.

8/36

Generic birthday attack

Algorithm 1: Generic birthday attack
Input: M = {0, 1}≤L,H = {0, 1}ℓ, h : M → H.
Output: Pair of messages m,m′ ∈ M s.t. h(m) = h(m′).
M ← ∅;
while true do

m ← sample(M);
if ∃ (m′, h(m′)) ∈ M s.t. h(m′) = h(m) ∧m′ ̸= m then

return (m,m′)

else
M ← M ∪ {(m, h(m))}

According to the birthday theorem, after 2
ℓ
2 iterations we get a constant probability p of

finding a collision. Hence, the expected runtime is ≤ 1
p · 2 ℓ

2 .

The attack speed depends solely on the hash output length!
9/36

Generic birthday attack made practical: Cycle detection

10/36

Generic birthday attack made practical: Cycle detection

Theorem 2

A sequence x1, x2, x3, . . . is lasso-shaped (ultimately periodic) if and only if there ex-
ists n ≥ 1 s.t. xn = x2n.

10/36

Practical birthday attack via "Floyd" cycle detection

Algorithm 2: Birthday attack via cycle detection
Input: M = {0, 1}≤L,H = {0, 1}ℓ, h : M → H.
Output: Pair of messages m,m′ ∈ M s.t. h(m) = h(m′).
repeat

v1 ← v2 ← v ← sample(M)

until h(v1) ̸= v1;
repeat

v1 ← h(v1); v2 ← h(h(v2))

until v1 = v2;
if v1 = v then

return error
repeat

m1 ← v ; m2 ← v1

v ← h(v) v1 ← h(v1);
until v ̸= v1;
return (m1,m2) 11/36

Designing collision resistant hash functions

Two major approaches:

• Merkle-Damgård (MD) construction (e.g. SHA-2)

• sponge construction (e.g. SHA-3)

12/36

Merkle-Damgård construction: basics

Basic idea: extend functions that hash short messages into functions that hash messages of
arbitrary length.

Compression function

A compression function for a hash space H = {0, 1}ℓ is a function
f : {0, 1}ℓ × {0, 1}k → {0, 1}ℓ for k ≈ ℓ.

13/36

Merkle-Damgård construction: basics

Basic idea: extend functions that hash short messages into functions that hash messages of
arbitrary length.

Compression function

A compression function for a hash space H = {0, 1}ℓ is a function
f : {0, 1}ℓ × {0, 1}k → {0, 1}ℓ for k ≈ ℓ.

An MD hash function h : {0, 1}≤L → {0, 1}ℓ is specified by the choice of the following
parameters:

• A compression function f : {0, 1}ℓ × {0, 1}k → {0, 1}ℓ it uses; and

• an MD-compliant padding scheme pad : {0, 1}≤L → {0, 1}×k , where {0, 1}×k is the set of
all bit strings whose length is a multiple of k .

13/36

Merkle-Damgård construction: picture

First, use pad to pad message m so that its length is a multiple of k . Then:

14/36

Merkle-Damgård construction: pseudocode

Algorithm 3: Hashing via an MD hash function h constructed from compression function
f : {0, 1}ℓ × {0, 1}k → {0, 1}ℓ and padding scheme pad .
Input: m ∈ M
Output: h(m) ∈ H = {0, 1}ℓ
m ← pad(m);
s ← a constant specified in the definition of h;
repeat

b ← the first k-bit block of m;
s ← f (s, b);
m ← m with the first k bits removed

until m is an empty string ;
return s

15/36

MD-compliant padding

Definition 1: MD-compliant padding

A padding scheme pad : {0, 1}≤L → {0, 1}×k is MD-compliant if it satisfies the following
three properties for all m,m′ ∈ M:

• m ̸= m′ ⇒ pad(m) ̸= pad(m′)

• len(m) = len(m′) ⇒ len(pad(m)) = len(pad(m′))

• len(m) ̸= len(m′) ⇒ the last k-bit block of pad(m) differs from
the last k-bit block of pad(m′)

16/36

MD construction: security proof

Theorem 3

Let h be a hash function built from a compression function f via the Merkle-Damgård
construction. Then, given a collision m,m′ for h one can efficiently (i.e. in time propor-
tional to a constant number of evaluations of h) compute a collision for f .

17/36

MD construction: security proof

Theorem 3

Let h be a hash function built from a compression function f via the Merkle-Damgård
construction. Then, given a collision m,m′ for h one can efficiently (i.e. in time propor-
tional to a constant number of evaluations of h) compute a collision for f .

Case 1: len(m) ̸= len(m′)

17/36

MD construction: security proof

Theorem 3

Let h be a hash function built from a compression function f via the Merkle-Damgård
construction. Then, given a collision m,m′ for h one can efficiently (i.e. in time propor-
tional to a constant number of evaluations of h) compute a collision for f .

Case 2: len(m) = len(m′)

17/36

MD construction: notable properties

Theorem 4

Let h be a hash function built via the Merkle-Damgård construction, using an MD-
compliant padding scheme pad s.t. m is always a prefix of pad(m) and the suffix added
by pad only depends on len(m). Then, given h(m) and len(m), one can compute, for
any string m′, the hash h(pad(m) ||m′). (Even without the knowledge of m!)

18/36

Construction of compression functions

A compression function combines two short bitvectors (state and message block) into a single
bitvector (next state.)

19/36

Construction of compression functions

A compression function combines two short bitvectors (state and message block) into a single
bitvector (next state.)

A block cipher combines two short bitvectors (input block and key) into a single bitvector
(output block.)

19/36

Construction of compression functions

A compression function combines two short bitvectors (state and message block) into a single
bitvector (next state.)

A block cipher combines two short bitvectors (input block and key) into a single bitvector
(output block.)

However, block ciphers are not designed to be inherently one-way:

19/36

Secure compression functions from block ciphers

Davies-Meyer

f (s, b) = E (b, s)⊕ s

20/36

Secure compression functions from block ciphers

Matyas-Meyer-Oseas

f (s, b) = E (g(s), b)⊕ b

(Where g is a function mapping state bitvectors to keys for E).

20/36

Secure compression functions from block ciphers

Miyaguchi-Preneel

f (s, b) = E (g(s), b)⊕ b ⊕ s

(Where g is a function mapping state bitvectors to keys for E).

20/36

Reasoning about the security of Davies-Meyer et al.

Theorem of the type "If E is the encryption function of a secure block cipher, then
Davies-Meyer compression function constructed from E is collision resistant" are unlikely to
hold, since block cipher security assumes the key is out of adversary’s control: this does not
hold in the hash function scenario.

There are different, stronger and less realistic notions of block cipher security under which
theorems of the above form can be proved. Not all reasonable block ciphers satisfy these
requirements, so such proofs are of limited practical consequence (and hence we omit them).
This is however one of the reasons why custom-made block ciphers are used for hashing
(instead of block ciphers used for encryption, such as AES and friends).

21/36

Block ciphers used for compression in practice

Another reason for custom-made block ciphers for hashing: Block ciphers primarily aimed at
encryption (AES & friends) are optimized for the scenario when the same key is used to encode
many blocks in a row. Hence, they do not perform well when keys change rapidly, as in the MD
construction.

Hence: Practical hash functions use tailor-made “block ciphers” as compression functions.

• major obsolete MD-based hash functions: MD5, SHA-1

• state-of-the-art MD-based hash function: SHA-2

22/36

MD5 block cipher

128-bit state, 512-bit message block Davies-Meyer compression function. Computing E (b, s)

consists of 4 rounds: for each round, we break b into 32-bit blocks b1, . . . , b16 and pass s

through a series of 16 of the following operations (di are nothing-up-my-sleeve constants
differing for each of the 16 rounds, F is a non-linear function differing for each round, the order
in which the blocks bi are fed to the operations varies between the rounds). The initial value of
s is given in the MD5 specification.

23/36

SHA-1

Similar in spirit to MD5, but uses 160-bit hash length. Collisions were found, so not considered
secure (source: Stevens, Karpman, Bursztein, Albertini, Markov: https://shattered.io).

24/36

SHA-2

A family of hash functions with different hash lengths:

• most prominent are SHA-256 and SHA-512

• use modified Davies-Meyer, where the ⊕ of the output and the previous state is replaced
by wordwise addition modulo 232 (see also ChaCha)

• SHA-256: uses 256-bit states and 512-bit message blocks

• the block cipher SHACAL-2 of SHA-2 consists of 64 rounds of the operation specified on
the next slide (80 rounds for SHA-512)

• considered secure as of today

• used in various blockchain protocols (incl. Bitcoin)

25/36

SHA-2 main operation

26/36

Known attacks: MD5 and SHA-2 comparison

Hash function Hash size Property Baseline Best known attack
MD5 128 collision resistance 264 218

MD5 128 1st preimage resistance 2128 2123.4

SHA-2 256 collision resistance 2128 31 out of 64 rounds in 249.8

28 out of 64 rounds in practice
SHA-2 256 1st preimage resistance 2256 43 out of 64 rounds in 2255.5

SHA-2 512 collision resistance 2256 31 out of 80 rounds in 2115.6

27 out of 80 rounds in practice
SHA-2 512 1st preimage resistance 2512 50 out of 80 rounds in 2511.5

27/36

Sponge construction

While SHA-2 is considered secure, there were concerns about all the standardized hashing
functions being based on the Merkle-Damgård paradigm. In late 2000’s, NIST announced a
competition for hash functions based on alternative paradigms.

Sponge construction: A generic construction mapping arbitrary-length input bitstreams to
arbitrary length output bitstreams: variability of use (hash functions, PRGs...)

28/36

Sponge construction II

A sponge construction determined by:

• choice of state bitlength n, capacicty c and rate r ; we have n = c + r

• choice of padding function pad that pads to a length that is multiple of r (any injective
padding suffices)

• choice of round permutation π : {0, 1}n → {0, 1}n (should be indistinguishable from a
random permutation)

29/36

Sponge construction: pseudocode

Algorithm 4: Hashing via sponge based function h with rate r , capacity c , permutation
π : {0, 1}r+c → {0, 1}r+c and padding scheme pad .
Input: m ∈ M, k - number of required output blocks
Output: h(m) ∈ H = {0, 1}r ·k
m ← pad(m); cap ← 0c ; rate ← 0r ;
repeat

rate ← rate ⊕ the first r -bit block of m;
x ← π(rate || cap);
rate ← first r bits of x ; cap ← last c bits of x ;
m ← m with the first r bits removed

until m is an empty string ;
for i ∈ {1, . . . , k} do

print rate;
x ← π(rate || cap);
rate ← first r bits of x ; cap ← last c bits of x ;

30/36

Keccak (aka SHA-3)

• Bertoni, Daemen, Peeters, Van Assche (around 2009)

• based on an earlier RadioGatún hash function

• padding simply appends 1 || 0∗ || 1
• uses rather complex permutation π consisting of variable number of rounds (24 in the

original submission) of simpler operations (including rotations, xor’s, sub-word
permutations, non-linear operation including bitwise ∧, and round constants derived from
a fixed linear feedback shift register sequence): see
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

• uses r + c = 1600 with variable capacities; see next slide (higher capacity = higher
security, lower performance)

31/36

SHA-3 variants

Let kec[c , ℓ] be a sponge-based hash function operating as follows:

• the input message m is padded with 1 || 0∗ || 1 so that its length is a multiple of
r = 1600 − c

• a sponge derived from the Keccak permutation is used to produce an r -bit output block
• the first ℓ bits of the output block are returned as the hash of m

Then the SHA-3 standard defines the following variants:

SHA-3-224(m) = kec[448, 224](m || 01)
SHA-3-256(m) = kec[512, 256](m || 01)
SHA-3-384(m) = kec[768, 384](m || 01)
SHA-3-512(m) = kec[1024, 512](m || 01)

32/36

Merkle trees

Consider the following scenario: We are presented with a list List = (x1, x2, . . . , xk), where k is
a power of 2. We want to come up with a hash-based scheme with these features:

• checking the integrity of List

33/36

Merkle trees

Consider the following scenario: We are presented with a list List = (x1, x2, . . . , xk), where k is
a power of 2. We want to come up with a hash-based scheme with these features:

• checking the integrity of List

• given an index 1 ≤ i ≤ k and an item x , proving that the i-th item of List is x (i.e. that
xi = x) without revealing the contents of the remainder of the list

33/36

Merkle tree: picture

34/36

Notes on Merkle trees (I)

• leaves = items of List (i-th leaf from the left contains xi)

• next-to-last level: hashes of List’s items (i-th node from the left = h(xi))

• all other internal nodes contain h(left_child,right_child)

35/36

Notes on Merkle trees (II)

• For the scheme to work, the Merkle root must be public and integrity preserved (e.g. in
Bitcoin: each block header contains a Merkle root of its list of transactions, as well as a
hash of the previous block’s header).

• To demonstrate that xi = x , the prover presents a proof consisting of hashes stored in
siblings of all internal nodes on the path from the i-th leaf to the root.

• Given such a proof (and x), the verifier can compute all hashes on the path from the i-th
leaf to the root, which he does and checks that the computed Merkle root matches the
publicly known root.

36/36

