
Message Authentication Codes

1/23

Problem setup

Alice Bob

2/23

Message Authentication Codes (MACs)

Definition 1

Let M be a message space, H a hash (or tag) space; and K a key space. A MAC over
(K,M,H) is a pair MAC = (S ,V), where:

• S : K × M → D(H) is a (possibly randomized) signing algorithm; and

• V : K × M × H → {true, false} is a deterministic verification algorithm.

We require that for all k ∈ K, m ∈ M the equality

V (k ,m, S(k ,m)) = true

holds with probability one.

3/23

Secure MACs

An existential forgery attack game between the challenger and the adversary A proceeds as
follows:

• The challenger samples a key k from K uniformly at random.
• The adversary selects a number of rounds N for which the game will be played.
• In each round i :

• The adversary computes a message mi ∈ M and sends it to the challenger.
• The challenger computes ti = S(k,mi) and send ti to the adversary.

After the final round, the adversary computes a tuple (mN+1, tN+1) ∈ M × H s.t.
(mN+1, tN+1) ̸∈ {(m1, t1), . . . , (mN , tN)}. The adversary wins the game if
V (k ,mN+1, tN+1) = true.

The advantage of A against MAC MAC = (S ,V) is the quantity

ADVEF (MAC,A) = P(A wins the e.f. game).

A MAC is ε-secure if ADVEF (MAC,A) ≤ ε for every efficient adversary A. 4/23

HMAC: MAC from (Unkeyed) Hash Function h

Idea: tag = hash of a string constructed from the k and m in some deterministic way.

.

5/23

HMAC: MAC from (Unkeyed) Hash Function h

Idea: tag = hash of a string constructed from the k and m in some deterministic way.

• S(k ,m) = h(k ||m): not generally secure, in particular if h is constructed via
Merkle-Damgård paradigm, where it is vulnerable to a length-extension attack (LEA):

.

5/23

HMAC: MAC from (Unkeyed) Hash Function h

Idea: tag = hash of a string constructed from the k and m in some deterministic way.

• S(k ,m) = h(k ||m): not generally secure, in particular if h is constructed via
Merkle-Damgård paradigm, where it is vulnerable to a length-extension attack (LEA):

• secure under sponge paradigm – KMAC (Keccak-based MAC)

.

5/23

HMAC: MAC from (Unkeyed) Hash Function h

Idea: tag = hash of a string constructed from the k and m in some deterministic way.

• S(k ,m) = h(k ||m): not generally secure, in particular if h is constructed via
Merkle-Damgård paradigm, where it is vulnerable to a length-extension attack (LEA):

• secure under sponge paradigm – KMAC (Keccak-based MAC)

• S(k ,m) = h(m || k): also has issues; in particular vulnerable if h has known collisions.

5/23

HMAC: MAC from (Unkeyed) Hash Function h

Idea: tag = hash of a string constructed from the k and m in some deterministic way.

• S(k ,m) = h(k ||m): not generally secure, in particular if h is constructed via
Merkle-Damgård paradigm, where it is vulnerable to a length-extension attack (LEA):

• secure under sponge paradigm – KMAC (Keccak-based MAC)

• S(k ,m) = h(m || k): also has issues; in particular vulnerable if h has known collisions.

Instead, the HMAC standard uses a two-key nested construction. (See next slide.)

5/23

HMAC standard

HMAC uses a hash function h based on Merkle-Damgård (typically some version of SHA-256).
Let j be the block length of the underlying compression function f . It is assumed that h’s
output size is ≤ j .

Algorithm 1: HMAC based on h.
Input: k ∈ K,m ∈ M
Output: SHMAC (k ,m)

j ← message block length of h’s compression function f ;
if len(k) > j then k ← h(k);
if len(k) < j then pad k with zero bytes to length j ;
ipad ← 0x5c byte repeated to match the key length;
opad ← 0x36 byte repeated to match the key length;
ki = k ⊕ ipad ; ko = k ⊕ opad ;
return h(ko || h(ki ||m))

6/23

Notes on HMAC

• Frequently used in the internet environment (SSH, TLS, IPSec,...)

• There is a security proof for HMAC w.r.t. the existential forgery property:
• The proof rests on the assumption that the underlying compression function is

computationally indistinguishible from a pseudorandom function even under related key
attacks.

• The proof does not need to assume that the compression function is collision resistant!
Hence, even e.g. HMAC based on MD5 is considered to be secure w.r.t. existential forgery,
though not recommended for use in newly designed protocols.

• Deterministic - verifier just runs the signing algorithm with his key k and message m and
compares the two tags.

7/23

MACs from Block Ciphers: Vanilla CBC

8/23

Partial security of Vanilla CBC-MAC

An adversary A in the existential forgery attack game is prefix-free if no A’s query mi is a
proper prefix of any other query mj , j ∈ {1, . . . ,N + 1} \ {i} (i.e., including the final guess) in
the same attack game.

Theorem 1

If the underlying block cipher is ε-secure for negligible ε, then the Vanilla CBC-MAC is δ-
secure for negligible δ provided that we restrict the attack game to prefix-free adversaries.

9/23

Secure MAC from CBC: (E)CBC-MAC

10/23

ECBC-MAC: pseudocode

Algorithm 2: ECBC-MAC based on a block cipher with encryption function E and with
block length ℓ.
Input: (k1, k2) ∈ K2,m ∈ M.
Output: SECBC-MAC(k ,m)

if len(m) is not a multiple of ℓ then
m ← pad(m)

let m = x1 || · · · || xj with each xi ∈ {0, 1}ℓ;
y1 ← E (k1, x1);
for i ∈ {2, . . . , j} do

yi ← E (k1, yi−1 ⊕ xi)

return E (k2, yj)

Deterministic: the same procedure can be used for verification.

The padding function must be injective!

11/23

Security of ECBC-MAC

Theorem 2

Let E be an encryption function of an ε-secure block cipher with block space X . Assume
that each message consists of at most n blocks. Then, when restricting adversaries that
play the attack game for at most N rounds, the ECBC-MAC based on E (with an injective
padding function) is δ-secure for

δ = 2ε+
(N(n + 1))2 + 2N2

2|X | .

12/23

Security proof outline for ECBC-MAC

The proof consists of three conceptual steps:

• First, prove that the vanilla CBC-MAC is a secure universal hash function (UHF). A MAC
is an UHF if any efficient adversary wins the following one-round game with negligible
probability:

• The challenger randomly samples k from K.
• The adversary computes two messages, m,m′. He wins the game if S(k,m) = S(k,m′).

13/23

Security proof outline for ECBC-MAC

The proof consists of three conceptual steps:

• First, prove that the vanilla CBC-MAC is a secure universal hash function (UHF). A MAC
is an UHF if any efficient adversary wins the following one-round game with negligible
probability:

• The challenger randomly samples k from K.
• The adversary computes two messages, m,m′. He wins the game if S(k,m) = S(k,m′).

• Then, prove that a composition of a secure pseudo-random permutation with a secure
UHF (such as the ECBC-MAC) is computationally indistinguishible from a random
function K × M → H.

• A random function = MAC secure against all adversaries. Prove that something
indistinguishable from a random function is a secure MAC against efficient adversaries.

13/23

Optimality of security bounds

ECBC-MAC has the property that if SECBC-MAC(k ,m) = SECBC-MAC(k ,m
′), and both m,m′

have lengths equal to multiples of block length, then for any x it holds
SECBC-MAC(k ,m || x) = SECBC-MAC(k ,m

′ || x).
Hence, a forgery can be trivially constructed once such a collision in the ECBC-MAC is found.
This can be done by the birthday attack in time O(

p
|X |).

14/23

Notes on CBC-MAC

• standardized by ANSI, used frequently in banking and retail

• padding: typically append 10∗, creating a new block if the original message has length =
multiple of block size

• there is a NIST-standardized variant CMAC (see next slide), with the following features:
• uses a single key
• no need to add new padding block when processing block-aligned messages

15/23

CMAC: Idea

Vanilla CBC-MAC was secure against all prefix-free adversaries.

Idea behind CMAC: before signing each message, modify it so as to make the probability of one
message being a prefix of another negligible.

16/23

Prefix-free encoding: preliminary idea through randomization

Let E be the encryption function used in the CBC chain, ℓ its block size. For a message m we
compute its modification p-free-r(m) as follows:

• if len(m) is not a multiple ℓ, pad the last block with 10∗, otherwise keep it as is;

• sample a block r ∈ {0, 1}ℓ uniformly at random and modify m by xor’ing its last block
with r ; output the modified message as p-free-r(m)

Then the probability that for two given messages m,m′ the string p-free-r(m) is a prefix of
p-free-r(m′) or vice versa is ≊ 1

2ℓ .

17/23

CMAC: pseudocode

Algorithm 3: CMAC built over a block-cipher encryption algorithm E with block length ℓ

Input: k ∈ K,m ∈ M
Output: SCMAC(k ,m)

(k0, k1, k2) ← CMAC-Keygen(k);
if len(m) is a multiple of ℓ then

m ← m with last block xor’ed with k1

else
m ← m || 10∗ ; // Pad to nearest multiple of ℓ.
m ← m with last block xor’ed with k2

return Svanilla-CBC-MAC(k0,m)

Comes also with a security theorem!

18/23

CMAC: picture

19/23

Prefix-free encoding in standardized CMAC

Let E be the encryption function used by the CBC chain and ℓ its block size. We use the
signing key k to derive three sub-keys k0, k1, k2 where k0 = k and k1, k2 are computed as
follows:
Algorithm 4: Sub-key generation algorithm for CMAC with block lenth ℓ = 128.
Input: key k

Output: sub-keys k0, k1, k2

function CMAC-Keygen(k)
M ← E (k , 0ℓ);
if most sign. bit of M is 0 then k1 ← SHIFTL(M, 1) ;
else k1 ← SHIFTL(M, 1)⊕ 0ℓ−810000111 ;
if most sign. bit of k1 is 0 then k2 ← SHIFTL(k1, 1) ;
else k2 ← SHIFTL(k1, 1)⊕ 0ℓ−810000111 ;

20/23

Towards alternative constructions: One-Time Mac

Let (S ,V) be a MAC over (K,M,H). A one-time existential forgery attack game between the
challenger and the adversary A proceeds as follows:

• the challenger samples k ∈ K uniformly at random;

• A computes a message m and sends it to the challenger;

• the challenger computes S(k ,m) and sends it to the adversary

Then, the adversary computes a message m′ ̸= m and tag t ∈ H. He wins the game if
V (k ,m′, t) = true.

The one-time advantage of A against MAC MAC = (S ,V) is the quantity

ADVotEF (MAC,A) = P(A wins the one-time e.f. game).

A MAC is ε-one-time secure if ADVotEF (MAC,A) ≤ ε for every efficient adversary A.

21/23

Secure one-time MAC: Example

Let ℓ be a block size and p a prime number larger than 2ℓ. Consider the following MAC:

• H = {0, 1, . . . , p − 1} = Zp,K = Z2
p;

• for
m = m1 ||m2 || · · · ||mj

we construct a polynomial

Pm(y) = y j+1 +mj · y j +mj−1 · y j−1 + · · ·+m1 · y

and put
S((a, b),m) = Pm(a) + b (mod p).

22/23

Carter-Wegman (CW) MACs: From one-time to many-time MACs

Let:

• E = (E ,D) be a secure block cipher over (K1,H)

• MACot = (Sot,Vot) be a secure one-time MAC over (K2,M,H); and

A CW-style MAC built from MACot and E is a MAC MAC = (S ,V) over (K1 × K2,M,H2)

defined as follows:

• S((k1, k2),m) is produced randomly by:
• first, sampling a block r ∈ H uniformly at random
• then, computing S((k1, k2),m) = (r ,E (k1, r)⊕ Sot(k2,m))

• V ((k1, k2),m, (r , t)) returns true if and only if

23/23

Carter-Wegman (CW) MACs: From one-time to many-time MACs

Let:

• E = (E ,D) be a secure block cipher over (K1,H)

• MACot = (Sot,Vot) be a secure one-time MAC over (K2,M,H); and

A CW-style MAC built from MACot and E is a MAC MAC = (S ,V) over (K1 × K2,M,H2)

defined as follows:

• S((k1, k2),m) is produced randomly by:
• first, sampling a block r ∈ H uniformly at random
• then, computing S((k1, k2),m) = (r ,E (k1, r)⊕ Sot(k2,m))

• V ((k1, k2),m, (r , t)) returns true if and only if Vot(k2,m, (E (k1, r)⊕ t)) = true

23/23

