
Public-Key Encryption I

Basics, RSA

1/33

Problem setup

Alice Bob

2/33

History I

“There are many cases where we can easily and infallibly do a certain thing but may have much
trouble in undoing it. . .

...Can the reader say what two numbers multiplied together will produce the number
8616460799? I think it unlikely that anyone but myself will ever know.”

–William Stanley Jeavons

The Principles of Science (1874)

3/33

History II

• Ellis

• Cocks

• Williamson

• Rivest

• Shamir

• Adleman

• Diffie

• Hellman

4/33

History II (cont’d)

• James H. Ellis

• Clifford Cocks

• Malcolm J. Williamson

• Ron Rivest

• Adi Shamir

• Leonard Adleman

• Whitfield Diffie

• Martin Hellman

5/33

History II (cont’d)

• James H. Ellis

• Clifford Cocks

• Malcolm J. Williamson

• Ron Rivest

• Adi Shamir

• Leonard Adleman

• Whitfield Diffie

• Martin Hellman

5/33

History III

“An ingenious scheme intended for the encipherment of speech over short metallic connections
was proposed by Bell Telephone Laboratories (Ref. 1) in which the recipient adds noise to the
line over which he receives the signal. If this noise is sufficiently large compared with the
message it can effectively disguise it. The recipient however can subtract the noise from the
signal he receives and so obtain the original message.”

–James H. Ellis

The Possibility of Secure Non-Secret Digital Encryption (1970, classified GCHQ report)

6/33

History III

“An ingenious scheme intended for the encipherment of speech over short metallic connections
was proposed by Bell Telephone Laboratories (Ref. 1) in which the recipient adds noise to the
line over which he receives the signal. If this noise is sufficiently large compared with the
message it can effectively disguise it. The recipient however can subtract the noise from the
signal he receives and so obtain the original message.”

–James H. Ellis

The Possibility of Secure Non-Secret Digital Encryption (1970, classified GCHQ report)

“Prototype RSA” first implemented at GCHQ by Clifford Cocks in 1973. (Public discovery:
Rivest, Shamir, Adleman in 1978)

“Prototype Diffie-Hellman key exchange” implemented by Malcolm J. Williamson at GCHQ im
1974. (Public discovery: Diffie, Hellman in 1976).

6/33

History does not follow a straight line. . .

“In the Fall of 1974, as an undergraduate, I enrolled in CS244, the Computer Security course
offered at UC Berkeley and taught by Lance Hoffman. We were required to submit two project
proposals, one of which we would complete for the course. I submitted a proposal for what
would eventually become known as Public Key Cryptography – which Hoffman rejected. I
dropped the course, but kept working on the idea.” –Ralph Merkle

Personal recollections

7/33

History does not follow a straight line. . .

“In the Fall of 1974, as an undergraduate, I enrolled in CS244, the Computer Security course
offered at UC Berkeley and taught by Lance Hoffman. We were required to submit two project
proposals, one of which we would complete for the course. I submitted a proposal for what
would eventually become known as Public Key Cryptography – which Hoffman rejected. I
dropped the course, but kept working on the idea.”

–Ralph Merkle

Personal recollections
7/33

History does not follow a straight line. . .

“In the Fall of 1974, as an undergraduate, I enrolled in CS244, the Computer Security course
offered at UC Berkeley and taught by Lance Hoffman. We were required to submit two project
proposals, one of which we would complete for the course. I submitted a proposal for what
would eventually become known as Public Key Cryptography – which Hoffman rejected. I
dropped the course, but kept working on the idea.”

“I showed an early draft to Bob Fabry, then on the faculty at Berkeley, who. . . said "Publish it,
win fame and fortune!". . . As I was to learn, Fabry’s response was rare. . . . sent my submitted
paper out for review and received the following response from an "experienced cryptography
expert" whose identity is unknown to this day:”
"I am sorry to have to inform you that the paper is not in the main stream of
present cryptography thinking and I would not recommend that it be published
in the Communications of the ACM. Experience shows that it is extremely
dangerous to transmit key information in the clear."

–Ralph Merkle

Personal recollections
7/33

Public-key encryption

Definition 1: PK encryption system

A public-key encryption system (or simply an asymmetric cipher) over (Kp,Ks ,M, C) is
a tuple E = (Gen,E ,D), where:

• Gen is an input-less randomized algorithm which produces a pair of keys
(kp, ks) ∈ Kp × Ks . Possible outputs of Gen are called valid keys for E , and we
denote by V(E) ⊆ Kp × Ks the set of all E ’s valid keys;

• E : Kp × M → C is an encryption algorithm, and

• D : Ks × C → M is a decryption algorithm s.t.

∀m ∈ M ∀(kp, ks) ∈ V(E) : D(ks ,E (kp,m)) = m.

8/33

Trapdoor functions

It is evident that at the heart of an asymmetric cipher E there must be a trapdoor function: a
function f : Kp × M → C such that:

1. There exist two efficient (polynomial) algorithms Fwd and Inv satisfying:
• given m ∈ M and kp ∈ Kp, the algorithm Fwd computes f (kp,m), and
• given c ∈ C and ks ∈ Ks , the algorithm Inv computes an element of M s.t. for all

m ∈ M, (kp, ks) ∈ V(E) it holds

Inv(ks , f (kp,m)) = m

2. For any (kp, ks) ∈ V(E), if we do not know ks , it is intractable to compute, for any c ∈ C,
an element m ∈ M s.t. f (kp,m) = c .

9/33

Trapdoor functions in modular arithmetic

Let’s consider M = C = Kp = Ks = Z×
N . The earliest (and today still utilized) asymmetric

ciphers used one of the following FWD functions:

• f (kp,m) = mkp (mod N)

• f (kp,m) = kp
m (mod N) – turning this into true trapdoor more intricate

10/33

Towards RSA

Idea: for a good choice of N one can devise encryption and decryption exponents 1 ≤ e, d ≤ N

s.t.

• for all m ∈ Z×
N (me)d ≡ m (mod N), and

• given just N and e, it is computationally hard to recover d (and thus, as we shall see, also
m)

In the following couple of slides:

• We will infer the construction of e, d for N prime (the simplest case).

• We will show that choosing N prime is not secure.

• We will show how to choose N securely.

• All of this we will do using three simple insights from group theory.

11/33

Roots of integers modulo prime

Let us consider the group Z×
p for p prime. Note that |Z×

p | = φ(p) =

12/33

Roots of integers modulo prime

Let us consider the group Z×
p for p prime. Note that |Z×

p | = φ(p) = p − 1.

We want to design e, d such that for all m it holds (me)d ≡ m (mod p).

12/33

Composite moduli

For composite moduli, we can use the same construction as in the previous slide, with p − 1
replaced by φ(N). We need to be able to compute φ(N) so as to set up e, d (more on that
later).

I.e., we want φ(N) | e · d − 1, i.e. e · d ≡ 1 (mod φ(N)). Hence, we need to choose e coprime
to φ(N) and let d be its multiplicative inversion modulo φ(N).

Note: knowledge of N, e is required for encryption (computing me (mod N)), but to recover d ,
the adversary seems to require the knowledge of φ(N). How to choose N so that it is difficult
to compute φ(N)?

13/33

φ(N) of composite N

Theorem 1: Prime factorization theorem

Each integer N ≥ 2 can be written as

N = pn1
1 · pn2

2 · · · · · pnkk ,

where p1, . . . , pk are pairwise distinct primes and all the ni are positive. Moreover, N
can be written in only one such way, up to re-ordering of the terms.

Theorem 2: Product formula

Let N have a prime factorization pn1
1 · pn2

2 · · · · · pnkk . Then

φ(N) = pn1−1
1 (p1 − 1)pn2−1

2 (p2 − 1) · · · pnk−1
k (pk − 1)

The most straightforward way of computing φ(N) is to factor N. (Later we will prove that
there cannot exist a more efficient way.) But integer factoring is widely regarded as a
computationally hard problem ⇒ trapdoor! 14/33

(Vanilla) RSA

In RSA, the key generation proceeds as follows:

• Two prime numbers p, q of roughly the same bitlength and satisfying some additional
conditions are generated randomly. Then, we compute N = p · q.

• We compute a number e co-prime to φ(N) = (p − 1) · (q − 1) and its multiplicative
inversion d in Z×

φ(N) (i.e., e · d ≡ 1 (mod (p − 1) · (q − 1))).

• We output kp = (N, e) and ks = (N, d) (by convention we write just ks = d).

The RSA trapdoor function works as follows:

• Fwd((N, e),m) = me (mod N) (“encryption”)

• Inv(d , c) = cd (mod N) (“decryption”).

15/33

(Vanilla) RSA

In RSA, the key generation proceeds as follows:

• Two prime numbers p, q of roughly the same bitlength and satisfying some additional
conditions are generated randomly. Then, we compute N = p · q.

• We compute a number e co-prime to φ(N) = (p − 1) · (q − 1) and its multiplicative
inversion d in Z×

φ(N) (i.e., e · d ≡ 1 (mod (p − 1) · (q − 1))).

• We output kp = (N, e) and ks = (N, d) (by convention we write just ks = d).

The RSA trapdoor function works as follows:

• Fwd((N, e),m) = me (mod N) (“encryption”)

• Inv(d , c) = cd (mod N) (“decryption”).

However, this “vanilla” (or “textbook”) RSA should never be used directly for encryption ⇒
insecure!

15/33

Is RSA indeed a trapdoor function?

16/33

Is RSA indeed a trapdoor function?

We don’t know. The integer factoring problem is widely believed to be intractable on classical
computers, though it is not known to be NP-hard.

16/33

Is RSA indeed a trapdoor function?

We don’t know. The integer factoring problem is widely believed to be intractable on classical
computers, though it is not known to be NP-hard.

Also note that breaking RSA = given N, e and me (mod N), compute m (mod N), i.e. extract
the e-th root modulo N. This can be in principle done without factoring N, its just that
factoring is the most efficient known method for it. However:

If we can compute φ(N) fast, we can factor N fast. (I.e., there is no more efficient way
of computing φ(N) than by factoring N and applying the product formula.)

16/33

Is RSA indeed a trapdoor function?

We don’t know. The integer factoring problem is widely believed to be intractable on classical
computers, though it is not known to be NP-hard.

Also note that breaking RSA = given N, e and me (mod N), compute m (mod N), i.e. extract
the e-th root modulo N. This can be in principle done without factoring N, its just that
factoring is the most efficient known method for it. However:

If we can compute the decryption exponent d fast, we can factor N fast. (I.e., there is
no more efficient way of computing d than by factoring N.)

16/33

Is RSA indeed a trapdoor function?

We don’t know. The integer factoring problem is widely believed to be intractable on classical
computers, though it is not known to be NP-hard.

Also note that breaking RSA = given N, e and me (mod N), compute m (mod N), i.e. extract
the e-th root modulo N. This can be in principle done without factoring N, its just that
factoring is the most efficient known method for it. However:

What is not known is whether the following holds:

Open question: If one can recover m from me (mod N) fast, can one factor N fast?

Some partial results indicate that this might not be true.

RSA is only a trapdoor function given our current state of knowledge.

16/33

Choose N that is hard to factor!

• To prevent factoring, N has to be sufficiently large (typical bitsizes 2048, 3072, 4096).

17/33

Choose N that is hard to factor!

• To prevent factoring, N has to be sufficiently large (typical bitsizes 2048, 3072, 4096).
• There are factoring algorithms whose runtime is dominated by a term exponential in the

bitsize of the smallest prime factor of N. (Pollard’s ρ algorithm, Lenstra’s elliptic curve
algorithm. . .).

• In particular, factoring smooth numbers (those with only small prime factors) is easy.
Hence, p, q should be roughly of similar bitsize.

17/33

Choose N that is hard to factor!

• To prevent factoring, N has to be sufficiently large (typical bitsizes 2048, 3072, 4096).
• There are factoring algorithms whose runtime is dominated by a term exponential in the

bitsize of the smallest prime factor of N. (Pollard’s ρ algorithm, Lenstra’s elliptic curve
algorithm. . .).

• In particular, factoring smooth numbers (those with only small prime factors) is easy.
Hence, p, q should be roughly of similar bitsize.

• However, p − q should not be too small. Otherwise, p, q ≈
√
N and N could be factored

by exhaustive search for p, q in the vicinity of the (likely irrational) number
√
N.

17/33

Choose N that is hard to factor!

• To prevent factoring, N has to be sufficiently large (typical bitsizes 2048, 3072, 4096).
• There are factoring algorithms whose runtime is dominated by a term exponential in the

bitsize of the smallest prime factor of N. (Pollard’s ρ algorithm, Lenstra’s elliptic curve
algorithm. . .).

• In particular, factoring smooth numbers (those with only small prime factors) is easy.
Hence, p, q should be roughly of similar bitsize.

• However, p − q should not be too small. Otherwise, p, q ≈
√
N and N could be factored

by exhaustive search for p, q in the vicinity of the (likely irrational) number
√
N.

• There are factoring algorithms that work well if N has a factor p s.t. p − 1 or p + 1 is
smooth (Pollard’s p − 1 algorithm, Williams’s p + 1 algorithm). Choice of such p and q

should be avoided.

17/33

Choose N that is hard to factor!

• To prevent factoring, N has to be sufficiently large (typical bitsizes 2048, 3072, 4096).
• There are factoring algorithms whose runtime is dominated by a term exponential in the

bitsize of the smallest prime factor of N. (Pollard’s ρ algorithm, Lenstra’s elliptic curve
algorithm. . .).

• In particular, factoring smooth numbers (those with only small prime factors) is easy.
Hence, p, q should be roughly of similar bitsize.

• However, p − q should not be too small. Otherwise, p, q ≈
√
N and N could be factored

by exhaustive search for p, q in the vicinity of the (likely irrational) number
√
N.

• There are factoring algorithms that work well if N has a factor p s.t. p − 1 or p + 1 is
smooth (Pollard’s p − 1 algorithm, Williams’s p + 1 algorithm). Choice of such p and q

should be avoided.
• All of the aforementioned properties hold with high probability if p, q are randomly

sampled from the set of all primes whose bitsize is roughly a half of the intended bitsize of
N. How to sample: sample any number of the required bitsize and use an efficient
primality test (e.g. Rabin’s test) to check whether the generated number is a prime.
Repeat until a prime is indeed found.

17/33

On the importance of truly random prime generator

If an RSA key generator is flawed, it might be susceptible to generating, among multiple calls,
two publick moduli N1 = p · q1 and N2 = p · q2 s.t. q1 ̸= q2 :

But then one can factor both N1 and N2

18/33

On the importance of truly random prime generator

If an RSA key generator is flawed, it might be susceptible to generating, among multiple calls,
two publick moduli N1 = p · q1 and N2 = p · q2 s.t. q1 ̸= q2 :

But then one can factor both N1 and N2 by computing gcd(N1,N2) = p.

An attack published in 2012 was able to factor about 0.3% public keys obtained from the
Internet in this way.

18/33

Notes on encryption and decryption exponent

• Computing m from me (mod N) is already difficult for e = 3, assuming that m3 < N .

• In practice, to make encryption fast, small encryption exponents are used (3, 216 + 1).
Care must be taken during encryption that me > N.

• On the other hand, d should not be small: there is an efficient algorithm to compute d

from N, e in situations where d < 4
√
N (Wiener’s attack).

• Exponentiation by repeated squaring is performed to compute the exponentiation in
polynomial time.

19/33

Why not use RSA directly for encryption?

Not randomized ⇒ not CPA (and CCA) secure! E.g.: small message&exponent attack: if
me < N, then m can be recovered by standard (non-modular) root computation.

20/33

Why not use RSA directly for encryption?

Not randomized ⇒ not CPA (and CCA) secure! E.g.: small message&exponent attack: if
me < N, then m can be recovered by standard (non-modular) root computation.

Another simple attack via Chinese remainder theorem:

Theorem 3: Chinese remainder theorem

Let n1, . . . , nk be pairwise co-prime and N =
Qk

i=1 ni be their product. Then for every
collection of integers a1, . . . , ak s.t. ai ∈ {0, 1, . . . , ni − 1} for all i , there exists a unique
x ∈ {0, 1, . . . ,N − 1} s.t. x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

Moreover, x can be computed as follows: x ≡ Pk
i=1 ai · bi · (b−1

i (mod ni)) (mod N),

where bi =
N
ni
.

20/33

CRT attack against RSA with small exponent

Let e = 3. Now assume that Alice sends the same message m to e = 3 recipients, each using a
different modulus Ni . With high probability, the tree moduli N1,N2,N3 are pairwise co-prime.
Let ci = m3 (mod Ni) be the ciphertext sent to recipient i .

• Necessarily m < N1,N2,N3 (this holds in general for RSA messages).

21/33

CRT attack against RSA with small exponent

Let e = 3. Now assume that Alice sends the same message m to e = 3 recipients, each using a
different modulus Ni . With high probability, the tree moduli N1,N2,N3 are pairwise co-prime.
Let ci = m3 (mod Ni) be the ciphertext sent to recipient i .

• Necessarily m < N1,N2,N3 (this holds in general for RSA messages).
• But then m3 < N = N1 · N2 · N3.

21/33

CRT attack against RSA with small exponent

Let e = 3. Now assume that Alice sends the same message m to e = 3 recipients, each using a
different modulus Ni . With high probability, the tree moduli N1,N2,N3 are pairwise co-prime.
Let ci = m3 (mod Ni) be the ciphertext sent to recipient i .

• Necessarily m < N1,N2,N3 (this holds in general for RSA messages).
• But then m3 < N = N1 · N2 · N3.
• Now let the adversary intercept c1, c2, c3 and solve the following system using the Chinese

remainder theorem:
x ≡ c1 (mod N1)

x ≡ c2 (mod N2)

x ≡ c3 (mod N3)

Then x ≡ ci (mod Ni) for i ∈ {1, 2, 3} and x < N. But also m3 ≡ ci (mod Ni) and
m3 < N. By uniqueness of the solution, x = m3 and m can be recover by computing
(non-modular) 3

√
x .

• Can be generalized to Håstad and Coppersmith attacks. 21/33

Typical use of RSA: salt, then encrypt

Typical defense against the aforementioned drawbacks is the use of randomized padding
schemes that pad the plaintext with a randomly chosen cryptographic salt.

22/33

Typical use of RSA: salt, then encrypt

Typical defense against the aforementioned drawbacks is the use of randomized padding
schemes that pad the plaintext with a randomly chosen cryptographic salt.

A practical, widely used instance of such a scheme is the one defined in PKCS#1 v1.5:

22/33

RSA with PKCS#1 v1.5 padding (pseudocode)

In the following: len(x)8 = bitsize of x in bytes, len(x) = bitsize of x in bits

Algorithm 1: RSA with PKCS#1 v1.5 padding encryption

Input: public key kp = (N, e), message m ∈ Z×
N

Output: E (kp,m)

t ← len(N)8;
if len(m)8 ≥ t − 11 then return error: Message too long ;
r ← sample randomly from {0, 1}t−8·len(m)8−24 \ {x | x contains a zero byte};
m̄ ← 08 || 00000010 || r || 08 ||m;
return m̄e (mod N)

Algorithm 2: RSA with PKCS#1 v1.5 padding decryption

Input: secret key (N, d), ciphertext c ∈ Z×
N

Output: D(ks ,m)

m ← cd (mod N);
if the second byte of m ̸= 02 then return parse error ;
else return m; 23/33

Semantic security of public key cryptosystems: attack game

Given a cryptosystem E = (Gen,E ,D), the semantic security attack game against E proceeds
as follows:

Stage 1:

• The challenger samples i ← {0, 1} uniformly ar random (and keeps it secret).

• The challenger computes (kp, ks) ← Gen() and sends kp to the adversary.

• The adversary computes (possibly in a randomized way) two messages, m0 and m1 of the
same length and sends them to the challenger.

24/33

Semantic security of public key cryptosystems: attack game

Given a cryptosystem E = (Gen,E ,D), the semantic security attack game against E proceeds
as follows:

Stage 2:

• The challenger computes c = E (kp,mi) and send it to the adversary.

Stage 3:

• The adversary performs its analysis of c .

• Finally, adversary outputs a guess g ∈ {0, 1}.

The adversary wins the game if g = i , otherwise it loses.

24/33

Attack game against PK cryptosystems: picture

25/33

Semantic security of public key cryptosystems

Definition 2: Semantic advantage

The semantic advantage of adversary A against cryptosystem E is the quantity

ADVSem(E ,A) = P(A wins the semantic attack game against E)− 1
2
.

Definition 3: Semantically secure cryptosystem

We say that E is an ε-semantically secure PK cryptosystem (where ε > 0) if for every
efficient adversary it holds ADVSem(E ,A) ≤ ε.

We say that E is semantically secure if it is ε-semantically secure for a negligible value
of ε.

26/33

Semantic security of public key cryptosystems II

The notions of CPA and CCA security for a public-key cryptosystem E = (Gen,E ,D) are
defined via modifications of the symmetric-key versions analogously to the previous slide:

• The CPA attack game is multi-round.

• For CCA security, the challenger initially computes (kp, ks) ← Gen() and sends kp to the
adversary. In each plaintext query, the adversary’s message mi,b is encrypted by the
challenger using E (kp, ·). In each ciphertext query, the adversary’s ciphertext c ′i is
decrypted by the challenger using D(ks , ·).

27/33

Semantic security of public key cryptosystems III

Interesting security properties of PK cryptosystems that do not hold for symmetric ciphers:

Theorem 4: PK: Sem security ⇒ CPA security

Let E be a public-key cryptosystem that is ε-semantically secure. Then E is (ε ·N)-CPA
secure against any efficient adversary that makes at most N queries.

Theorem 5

Let E be a public-key cryptosystem that is ε-CCA secure against all adversaries that make
at most one plaintext query. Then E is ε · Np-CCA secure againts all adversaries that
make at most Np plaintext queries.

28/33

Practical security of RSA with PKCS#1 v1.5 padding

RSA with PKCS#1 v1.5 padding is widely deployed in the Internet. However, if implemented
incorrectly, it can be completely insecure.

If the decryption mechanism on a server reports parse errors to ciphertext senders, a malicious
sender can test whether the second-to-last byte of a message encrypted in his ciphertext is 02.

29/33

Practical security of RSA with PKCS#1 v1.5 padding

RSA with PKCS#1 v1.5 padding is widely deployed in the Internet. However, if implemented
incorrectly, it can be completely insecure.

If the decryption mechanism on a server reports parse errors to ciphertext senders, a malicious
sender can test whether the second-to-last byte of a message encrypted in his ciphertext is 02.

This is exploited in practical chosen-ciphertext Bleichenbacher’s attack: let (N, e) be the public
key and suppose that the adversary intercepts a ciphertext c ; for any x ∈ Z×

N , the adversary
can compute xe · c (mod N) and send this to the server. If the server reports a parse error, the
adversary knows that the second-to-last byte of x · PKCS(m) is different from 02. By trying
various values of x , the adversary can simulate an analogue of right-shifts on bits, and
eventually uncover the whole message.

Can break the SSL implementation of RSA-based key exchange via ≈ millions of queries.
29/33

How TLS defends against Bleichenbacher

From TLS 1.2 standard:

“In any case, a TLS server MUST NOT generate an alert if processing an RSA-encrypted
pre-master secret message fails [...] Instead, it MUST continue the handshake with a
randomly generated pre-master secret. It may be useful to log the real cause of failure for
troubleshooting purposes; however, care must be taken to avoid leaking the information
to an attacker (through, e.g., timing, log files, or other channels.)”
(source: Boneh&Shoup)

Note: TLS 1.3 moved away from RSA altogether, in favour of discrete-logarithm encryption (in
particular, elliptic-curve schemes).

30/33

Principled defense against Bleichenbacher: OAEP

Optimal Asymmetric Encryption Padding (1994): uses two hash functions h1, h2 (in practice,
SHA-256 is used for both).

RSA-OAEP comes with a CCA-security theorem, which however makes stronger assumptions
than RSA being trapdoor.

31/33

ISO standard RSA: CCA security by hybrid encryption with AE cipher

Uses an AE-enabled symmetric cipher ES = (ES ,DS) over (K,M, C) and a hash function h

whose hash space H equals K. Also comes with a security theorem.

Algorithm 3: Encryption function of ISO-RSA.
Input: public key (N, e), message m ∈ M
Output: EISO-RSA((N, e),m)

x ← sample randomly from Z×
N ;

y ← xe (mod N);
k ← h(x);
return (y ,ES(k ,m))

Algorithm 4: Decryption function of ISO-RSA.

Input: secret key (N, d), ciphertext (y , c) ∈ Z×
N × C

Output: DISO-RSA((N, d), c)

x ← yd (mod N); k ← h(x);
m ← DS(k , c);
if m = ⊥ then return reject;
else return m; 32/33

ISO standard RSA: CCA security by hybrid encryption with AE cipher

Uses an AE-enabled symmetric cipher ES = (ES ,DS) over (K,M, C) and a hash function h

whose hash space H equals K. Also comes with a security theorem.

Algorithm 3: Encryption function of ISO-RSA.
Input: public key (N, e), message m ∈ M
Output: EISO-RSA((N, e),m)

x ← sample randomly from Z×
N ;

y ← xe (mod N);
k ← h(x);
return (y ,ES(k ,m))

Algorithm 4: Decryption function of ISO-RSA.

Input: secret key (N, d), ciphertext (y , c) ∈ Z×
N × C

Output: DISO-RSA((N, d), c)

x ← yd (mod N); k ← h(x);
m ← DS(k , c);
if m = ⊥ then return reject;
else return m;

Works for any trapdoor function!

32/33

Hybrid encryption

• The hybrid encryption scheme exemplified in ISO-RSA(encrypt the message with a
symmetric cipher and send the symmetric key via public-key encryption system) can be
straightforwardly adapted to work with any trapdoor function.

• Also, hybrid encryption is the method of choice for sending long messages without key
pre-negotiation.

33/33

