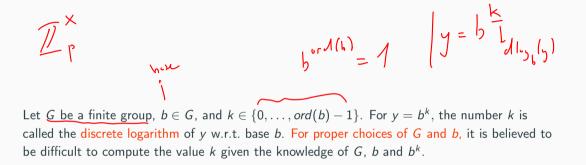
Cryptography

Encryption Based on Discrete Logarithm



Subgroup generated by *b*.

When focusing on discrete logarithms of base $b \in G$, we will be dealing with the values $\langle b \rangle = \{1, b, b^2, \dots, b^{ord(b)-1}\}, \qquad b = b = b = b = b$ $b^{(1)}, b^{(-1)}, b^{(-1)} = b^{(-1)}, b^{(-1)} = 1$ (where ord(b) is the order of b in G). The tuple $(\langle b \rangle, \cdot)$ is itself a group: a subgroup of \mathbf{k} . We call it a subgroup generated by b. $\mathbb{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\} \quad (27 = \{2, 4, 1\}, (37 = \{3, 2, 6, 4, 5, 1\})$ 4/11=51,53 The difficulty of discrete logarithm of base b in G is determined by the size and the algebraic structure of $(\langle b \rangle, \cdot)$. $k = 1 \quad b_{1} \\ b_{1} \\ b_{2} \\ \dots \\ b_{m} \\$

Cyclic groups

Definition 1: Cyclic group

A group (G, \cdot) is cyclic if there exists an element $b \in G$ s.t.

$$G = \{ b^n \mid n \in \mathbb{N} \}.$$

The element b is called a generator of the group (G, \cdot) .

Cyclic groups

Definition 1: Cyclic group

A group (G, \cdot) is cyclic if there exists an element $b \in G$ s.t.

 $G = \{ b^n \mid n \in \mathbb{N} \}.$

The element b is called a generator of the group (G, \cdot) .

Fact 1

$$\forall p \text{ primes } \mathbb{Z}_p$$
 is a cyclic group

If the group we want to work with is not cyclic (e.g. \mathbb{Z}_N^{\times} for most non-prime choices of N, or certain elliptic curve groups), we use some cyclic sub-group of it that is given via it's generator. In the following, we assume that G is directly the cyclic group we work it.

Computing generators of cyclic groups

Fact 2
Fact 2
Let
$$G = \{1, b, b_{lm}^2 | b^{m-1}\}$$
 be a cyclic group of order m . Then G has $\phi(m)$ generators.
I.e., the fraction of group elements that are its generators is $\frac{4(p)}{m}$. $\frac{(p)}{m}$.
 b (b) g $(f(m, k) = 1)$
 $\chi = \chi^2 (\chi^2)^{---}$

Computing generators of cyclic groups

Fact 2

Let $G = \{1, b, b^2, b^{m-1}\}$ be a cyclic group of order m. Then G has $\phi(m)$ generators. I.e., the fraction of group elements that are its generators is $\frac{\phi(n)}{n}$.

Fact 3

Let G be a cyclic group of order m. Given a prime factorization of m, one can efficiently compute a generator of G. (See Handbook of Applied Cryptography, algorithm 4.80)

Definition 2: General discrete logarithm

Let (G, \cdot) be a finite cyclic group, $\underline{b} \in G$ some generator of the group, and $k \in \{0, \ldots, ord(b) - 1\}$. For $y = b^k$ the value k is called the discrete logarithm of y w.r.t. base b in G, written $k = dlog_b^G(y)$. For a proper choice of G and b it is believed to be difficult to compute, the value $dlog_b^G(y)$ given the knowledge of $[G, |G|, b, and y = b^k]$.

Definition 2: General discrete logarithm

Let (G, \cdot) be a finite cyclic group, $b \in G$ some generator of the group, and $k \in \{0, \ldots, ord(b) - 1\}$. For $y = b^k$ the value k is called the discrete logarithm of y w.r.t. base b in G, written $k = dlog_b^G(y)$. For a proper choice of G and b it is believed to be difficult to compute, the value $dlog_b^G(y)$ given the knowledge of G, |G|, b, and $y = b^k$.

The "proper choice" criteria include:

- |G| should be sufficiently large, to prevent DL computation by bruteforcing or, e.g., the baby-step giant-step algorithm $-? \left(\int (\int G \right) \right)$
- the operation of G should be efficiently computable
- |G| should not be smooth, this is to defend against DL algorithms whose runtime is dominated by the term exponential in the bitsize of the largest prime factor of |G| (Pohlig-Hellman algorithm, Pollard's ρ algorithm for discrete logarithm)

Definition 2: General discrete logarithm

Let (G, \cdot) be a finite cyclic group, $b \in G$ some generator of the group, and $k \in \{0, \ldots, ord(b) - 1\}$. For $y = b^k$ the value k is called the discrete logarithm of y w.r.t. base b in G, written $k = dlog_b^G(y)$. For a proper choice of G and b it is believed to be difficult to compute, the value $dlog_b^G(y)$ given the knowledge of G, |G|, b, and $y = b^k$.

The "proper choice" criteria include:

- |G| should be sufficiently large, to prevent DL computation by bruteforcing or, e.g., the baby-step giant-step algorithm
- the operation of G should be efficiently computable
- |G| should not be smooth, this is to defend against DL algorithms whose runtime is dominated by the term exponential in the bitsize of the largest prime factor of |G| (Pohlig-Hellman algorithm, Pollard's ρ algorithm for discrete logarithm)

How to pick the right group?: The typical choices for G are \mathbb{Z}_p^{\times} for a large prime p s.t. p-1 is not smooth, or groups generated by elliptic curves (next lecture).

Suppose that Alice and Bob want to securely establish a shared symmetric key. The oldest public-key method for achieving this is the Diffie-Hellman key exchange scheme.

Suppose that Alice and Bob want to securely establish a shared symmetric key. The oldest public-key method for achieving this is the Diffie-Hellman key exchange scheme.

Setup: Alice and Bob agree in advance on a cyclic group G of order |G|, and on its generator b. Also, they fix a method for translating the elements of 6 into symmetric keys. This can be Alice (d, bd, br, b B.b (B,b), b, b AA: b, b Libo Libo Libo negotiated over an insecure channel.

Exchange:

- Alice randomly samples a number $\alpha \in \{1, \dots, |G| 1\}$ and sends $m_{Alice} = b^{\alpha}$ to Bob (keeping α secret).
- Bob randomly samples a number $\beta \in \{1, \ldots, |G| 1\}$ and sends $m_{Bob} = b^{\beta}$ to Alice (keeping β secret).

Key derivation:

- Alice uses her knowledge of α to compute $k_{Alice} = m_{Bob}^{\alpha}$. $= \begin{pmatrix} b^{(n)} \\ b^{(n)} \end{pmatrix}^{\frac{1}{2}} = \begin{pmatrix} b^{(n)} \\ b^{(n)} \\ b^{(n)} \end{pmatrix}^{\frac{1}{2}}$ Bob uses his knowledge of β to compute $k_{Bob} = m_{Alice}^{\beta}$. $= \begin{pmatrix} b^{(n)} \\ b^{(n)} \\ b^{(n)} \end{pmatrix}^{\frac{1}{2}} = \begin{pmatrix} b^{(n)} \\ b^{(n)} \\ b^{(n)} \\ b^{(n)} \end{pmatrix}^{\frac{1}{2}}$

Suppose that Alice and Bob want to securely establish a shared symmetric key. The oldest public-key method for achieving this is the Diffie-Hellman key exchange scheme.

Setup: Alice and Bob agree in advance on a cyclic group G of order |G|, and on its generator b. Also, they fix a method for translating the elements of G into symmetric keys. This can be negotiated over an insecure channel.

Exchange:

- Alice randomly samples a number $\alpha \in \{1, ..., |G| 1\}$ and sends $m_{Alice} = b^{\alpha}$ to Bob (keeping α secret).
- Bob randomly samples a number β ∈ {1,..., |G| 1} and sends m_{Bob} = b^β to Alice (keeping β secret).

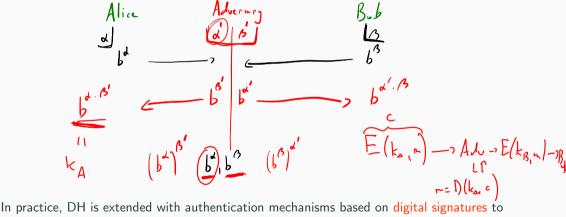
Key derivation:

Then
$$k_{Alice} = (b^lpha)^eta = (b^eta)^lpha = k_{Bob}!$$

- Alice uses her knowledge of α to compute $k_{Alice} = m_{Bob}^{\alpha}$.
- Bob uses his knowledge of β to compute $k_{Bob} = m_{Alice}^{\beta}$.

Man-in-the-middle attack against Diffie-Hellman

DH key exchange is considered to be secure against passive adversaries. However, since it lacks any authentication mechanism, it is susceptible to active ("chosen ciphertext") attacks.



achieve a secure key establishment. (E.g. the STS - station-to-station - protocol).

Further remarks on discrete logarithm

• DL-based techniques are also heavily used to design digital signature methods (e.g. DSA, ECDSA – coming in a couple of weeks).

Further remarks on discrete logarithm

- DL-based techniques are also heavily used to design digital signature methods (e.g. DSA, ECDSA coming in a couple of weeks).
- In practice, Diffie-Hellman and other DL techniques are used either with a Z[×]_p group for a suitable prime p or with a group generated by an elliptic curve. To achieve roughly the same level of security, much larger key sizes are required for the Z[×]_p-based methods compared to the elliptic curve methods. Hence, there is a general trend in public-key crypto to switch to the elliptic curve techniques.

Further remarks on discrete logarithm

- DL-based techniques are also heavily used to design digital signature methods (e.g. DSA, ECDSA coming in a couple of weeks).
- In practice, Diffie-Hellman and other DL techniques are used either with a Z[×]_p group for a suitable prime p or with a group generated by an elliptic curve. To achieve roughly the same level of security, much larger key sizes are required for the Z[×]_p-based methods compared to the elliptic curve methods. Hence, there is a general trend in public-key crypto to switch to the elliptic curve techniques.
 - A nice theoretical property of the discrete logarithm problem is its random self-reducibility: Suppose, that for a given group G and its generator b there exists an algorithm which efficiently computes $dlog_b^G(x)$ for a non-negligible fraction of possible inputs x. Then there exists an efficient algorithm for computing $dlog_b^G(x)$ for all $x \in G$. That is, an average instance of the DL problem has \pm the same difficulty as the worst-case instance. Similar properties are unlikely to hold for, e.g. NP-complete problems.