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Discrete logarithm
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Let G be a finite group, b € G, and k € {0,...,ord(b) — 1}. For y = b*, the number k is
called the discrete logarithm of y w.r.t. base b. For proper choices of G and b, it is believed to
be difficult to compute the value k given the knowledge of G, b and b.
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Subgroup generated by b.

When focusing on discrete logarithms of base b € G, we will be dealing with the values | (
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The tuple ((b), -) is itself a group: a subgroup of . We call it a subgroup generated by b.
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The difficulty of discrete logarithm of base b in G is determined by the size and the algebraic

structure of ( @ Z\ b
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(where ord(b) is the order of b in G). L™ .



Cyclic groups

Definition 1: Cyclic group

A group (G, -) is cyclic if there exists an element b € G s.t. ,L/ ’_\" | Y
H
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The element b is called a generator of the group (G, ). ¢ b
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Cyclic groups

Definition 1: Cyclic group

A group (G, -) is cyclic if there exists an element b € G s.t.
G ={b"| neN}

The element b is called a generator of the group (G, -).

‘9 Pr"'v-S - 15 < ¢ y ¢ e Drvkp

If the group we want to work with is not cyclic (e.g. Zj for most non-prime choices of N, or
certain elliptic curve groups), we use some cyclic sub-group of it that is given via it's generator.
In the following, we assume that G is directly the cyclic group we work it.
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Computing generators of cyclic groups
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Let G = {1,b,b " 11 befa cyclic group of order m. Then G has ¢(m) generators.
i oup elements that are its generators is 45(9 (ﬁ(h]
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Computing generators of cyclic groups

Let G = {1,b,b? b™ 1} be a cyclic group of order m. Then G has ¢(m) generators.
#(n)

n

Let G be a cyclic group of order m. Given a prime factorization of m, one can efficiently

l.e., the fraction of group elements that are its generators is

compute a generator of G. (See Handbook of Applied Cryptography, algorithm 4.80)
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Discrete logarithm in general cyclic groups

Definition 2: General discrete logarithm

Let (G,-) be a finite cyclic group, b € G some generator of the group, and k €
{0,...,0ord(b) — 1}. For y = b¥ the value k is called the discrete logarithm of y w.r.t.
base b in G, written k = dlog§ (y). For a proper choice of G and_b it is believed to be
difficult to compute, the value dlogf (y) given the knowledge of [G, |G|, b, and y = bk,
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Discrete logarithm in general cyclic groups

Definition 2: General discrete logarithm

Let (G,:) be a finite cyclic group, b € G some generator of the group, and k €
{0,...,0ord(b) — 1}. For y = b¥ the value k is called the discrete logarithm of y w.r.t.
base b in G, written k = dlog§ (y). For a proper choice of G and b it is believed to be
difficult to compute, the value dlogf (y) given the knowledge of G, |G|, b, and y = bk

The “proper choice” criteria include:
e |G| should be sufficiently large, to prevent DL computation by bruteforcing or, e.g., the
baby-step giant-step algorithm —7 O_’(IG ,
e the operation of G should be efficiently computable
e |G| should not be smooth, this is to defend against DL algorithms whose runtime is
dominated by the term exponential in the bitsize of the largest prime factor of |G|
(Pohlig-Hellman algorithm, Pollard’s p algorithm for discrete logarithm)
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Discrete logarithm in general cyclic groups

Definition 2: General discrete logarithm

Let (G,:) be a finite cyclic group, b € G some generator of the group, and k €
{0,...,0ord(b) — 1}. For y = b¥ the value k is called the discrete logarithm of y w.r.t.
base b in G, written k = dlog§ (y). For a proper choice of G and b it is believed to be
difficult to compute, the value dlogf (y) given the knowledge of G, |G|, b, and y = bk

The “proper choice” criteria include:
e |G| should be sufficiently large, to prevent DL computation by bruteforcing or, e.g., the
baby-step giant-step algorithm
e the operation of G should be efficiently computable
e |G| should not be smooth, this is to defend against DL algorithms whose runtime is
dominated by the term exponential in the bitsize of the largest prime factor of |G|
(Pohlig-Hellman algorithm, Pollard’s p algorithm for discrete logarithm)

How to pick the right group?: The typical choices for G are Z for a large prime ps.t. p—1is

o 9
not smooth, or groups generated by elliptic curves (next lecture). ¢/



Diffie-Hellman key exchange

Suppose that Alice and Bob want to securely establish a shared symmetric key. The oldest
public-key method for achieving this is the Diffie-Hellman key exchange scheme.
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Diffie-Hellman key exchange

Suppose that Alice and Bob want to securely establish a shared symmetric key. The oldest
public-key method for achieving this is the Diffie-Hellman key exchange scheme.

Setup: Alice and Bob agree in advance on a cyclic group G of order |G|, and on its generator
b. Also, they fix a method for translating the elements of & into symmetric keys. This can be

tiated i hannel. VAR T (y
negotiated over an insecure channe /‘\,|“L b’t\ )ﬁ, El_ll, Ah Bl( 1
Exchange: \"74[7 AG L, L \ L L4 b01 Bo(»t/S

e Alice randomly samples a number o € {1,...,|G| — 1} and sends majicc = b to Bob

(keeping « secret).

e Bob randomly samples a number 3 € {1,...,|G| — 1} and sends mg,, = b” to Alice

(keeping [ secret).

Key derivation:
v/ ped

0O\
e Alice uses her knowledge of o to compute kajice = Mg, _(L ) 2 b !
e Bob uses his knowledge of 5 to compute kg, = mf\”ce_ S (LJ\ﬁ _ \7&-('7 -
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Diffie-Hellman key exchange

Suppose that Alice and Bob want to securely establish a shared symmetric key. The oldest
public-key method for achieving this is the Diffie-Hellman key exchange scheme.

Setup: Alice and Bob agree in advance on a cyclic group G of order |G|, and on its generator
b. Also, they fix a method for translating the elements of G into symmetric keys. This can be
negotiated over an insecure channel.

Exchange:
e Alice randomly samples a number o € {1,...,|G| — 1} and sends majicc = b to Bob
(keeping « secret).
e Bob randomly samples a number 3 € {1,...,|G| — 1} and sends mg,;, = b” to Alice

(keeping [ secret).

o= (b*)P = (BP)>* = I
Key derivation: [Then kajice = (b%)" = (b7)* = kiob! }

e Alice uses her knowledge of o to compute kajice = Mg,

e Bob uses his knowledge of /3 to compute kgop = mf\,ice. 7/9



Man-in-the-middle attack against Diffie-Hellman

DH key exchange is considered to be secure against passive adversaries. However, since it lacks
any authentication mechanism, it is susceptible to active (“chosen ciphertext") attacks.
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In practice, DH is extended with authentication mechanisms based on digital signatures to

achieve a secure key establishment. (E.g. the STS - station-to-station - protocol). e



Further remarks on discrete logarithm

e DL-based techniques are also heavily used to design digital signature methods (e.g. DSA,
ECDSA — coming in a couple of weeks).
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Further remarks on discrete logarithm

e DL-based techniques are also heavily used to design digital signature methods (e.g. DSA,
ECDSA — coming in a couple of weeks).

e In practice, Diffie-Hellman and other DL techniques are used either with a Z group for a
suitable prime p or with a group generated by an elliptic curve. To achieve roughly the
same level of security, much larger key sizes are required for the Z ;-based methods
compared to the elliptic curve methods. Hence, there is a general trend in public-key

crypto to switch to the elliptic curve techniques.
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Further remarks on discrete logarithm

e DL-based techniques are also heavily used to design digital signature methods (e.g. DSA,
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ECDSA — coming in a couple of weeks).

In practice, Diffie-Hellman and other DL techniques are used either with a Z group for a
suitable prime p or with a group generated by an elliptic curve. To achieve roughly the
same level of security, much larger key sizes are required for the Z ;-based methods
compared to the elliptic curve methods. Hence, there is a general trend in public-key
crypto to switch to the elliptic curve techniques.

A nice theoretical property of the discrete logarithm problem is its random self-reducibility:
Suppose, that for a given group G and its generator b there exists an algorithm which
efficiently computes d/ogg(x) for a non-negligible fraction of possible inputs x. Then there
exists an efficient algorithm for computing d/ogg(x) for all x € G. That is, an average
instance of the DL problem has + the same difficulty as the worst-case instance. J]
)
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Similar properties are unlikely to hold for, e.g. NP-complete problems. @6\
‘f) b
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