

The FM Index Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Reminder about the FM Index: Backward Search with the BWT

Ferragina and Manzini, Opportunistic Data Structures with Applications, 2000

Backward Search with BWT, Occ and C

 $\text{Occ}(c, r)$ returns the number of occurrences of $c \in \Sigma$ in the prefix bwt $[0 \dots r]$. The k-th c in the BWT is the k-th c in the first characters of the sorted suffixes. $LF(r) = C[c] + Occ(c, r) - 1$

Backward Search with BWT, Occ and C

 $s =$ ctatatat\$ and bwt=tttt\$aaac:

Let $[i, j]$ be the interval for μ ; let $[i', j']$ be the interval for $c\mu$. Then

 $i' = C[c] + Occ(c, i - 1)$ j' = C[c] + Occ(c,j) - 1 Algorithmic Bioinformatics 3

Implementation of Occ

As shown, Occ uses $O(|\Sigma|n)$ words of space – worse than the suffix tree! (A word is a number of size $O(poly(n))$, i.e., using $O(log n)$ bits.)

Implementation of Occ

As shown, Occ uses $O(|\Sigma|n)$ words of space – worse than the suffix tree! (A word is a number of size $O(poly(n))$, i.e., using $O(log n)$ bits.)

Simple Idea

Store the entries of Occ only for every k-th position (typically $k \in \{32, 64, 128\}$). To obtain $Occ(a, r)$, look up $Occ(a, |r/k|)$, and count the as in the remaining $r - |r/k|$ characters in bwt.

Implementation of Occ

As shown, Occ uses $O(|\Sigma|n)$ words of space – worse than the suffix tree! (A word is a number of size $O(poly(n))$, i.e., using $O(log n)$ bits.)

Simple Idea

Store the entries of Occ only for every k-th position (typically $k \in \{32, 64, 128\}$). To obtain $Occ(a, r)$, look up $Occ(a, |r/k|)$, and count the as in the remaining $r - |r/k|$ characters in bwt.

Occ Queries in Constant Time and in Small Space

Implementation of Occ: Advanced Ideas

Data Structures

- **Succinct data structure for rank queries (binary alphabet)**
- Wavelet tree (for converting alphabet to sequence of binary alphabets)
- **Navelet matrix (alternative to wavelet tree)**

Implementation of Occ: Advanced Ideas

Data Structures

- Succinct data structure for rank queries (binary alphabet)
- Wavelet tree (for converting alphabet to sequence of binary alphabets)
- Wavelet matrix (alternative to wavelet tree)

Rank queries

Let rank_{s,a}(i) be the number of as in $s[0...i]$, i.e., $0cc(a, i)$ for s.

Next goal

Rank queries in $O(1)$ time for s over binary alphabet $\{0, 1\}$ with $o(n)$ additional bits, i.e., for binary s, compute rank_s $(i) := rank_{s,1}(i)$ in constant time for all *i*.

Implementation of Occ: Advanced Ideas

Data Structures

- Succinct data structure for rank queries (binary alphabet)
- Wavelet tree (for converting alphabet to sequence of binary alphabets)
- Wavelet matrix (alternative to wavelet tree)

Rank queries

Let ranks, $a(i)$ be the number of as in $s[0...i]$, i.e., $0cc(a, i)$ for s.

Next goal

Rank queries in $O(1)$ time for s over binary alphabet $\{0, 1\}$ with $o(n)$ additional bits, i.e., for binary s, compute rank_s $(i) := rank_{s,1}(i)$ in constant time for all *i*. Note: $rank_{s,0}(i) = (i + 1) - rank_{s,1}(i)$.

First Observations

rank_s (i) : number of ones in s[...*i*] for $i = 0, \ldots, n-1$, where $n = |s|$

Trivial ideas

- Slow, but lightweight: $O(n)$ time, $O(1)$ additional memory
- Slightly faster: loop with popcount: $O(n/W)$ time, $O(1)$ additional memory (popcount: number of 1-bits in a machine word, elementary instruction)
- Fast but heavy-weight: full Occ table: $O(1)$ time, but $O(n \log n)$ bits (*n* words)
- Slightly slower, but lighter: sparse table (every k -th entry): $O(k)$ time and $O(n/k \cdot \log n)$ bits $(n/k \text{ words})$

First Observations

rank_s (i) : number of ones in s[...*i*] for $i = 0, \ldots, n-1$, where $n = |s|$

Trivial ideas

- Slow, but lightweight: $O(n)$ time, $O(1)$ additional memory
- Slightly faster: loop with popcount: $O(n/W)$ time, $O(1)$ additional memory (popcount: number of 1-bits in a machine word, elementary instruction)
- Fast but heavy-weight: full Occ table: $O(1)$ time, but $O(n \log n)$ bits (*n* words)
- Slightly slower, but lighter: sparse table (every k -th entry): $O(k)$ time and $O(n/k \cdot \log n)$ bits $(n/k \text{ words})$

Desired

Data structure that supports $O(1)$ time, but needs only $O(n)$ bits, i.e., if $x(n)$ is the additional number of bits (plus *n* for *s*), we want $x(n)/n \to 0$ for $n \to \infty$.

A small rank data structure for (binary) Occ

Basic Idea

Store every S-th entry, so S bits form a superblock: $O(\log n \cdot n / S)$ bits for superblock table

A small rank data structure for (binary) Occ

Basic Idea

- Store every S-th entry, so S bits form a superblock: $O(\log n \cdot n / S)$ bits for superblock table
- Choose $S := \Theta((\log n)^2)$; so need $\mathcal{O}(n / \log n) = o(n)$ bits
- Remaining problem: Count ones in superblocks of size S

A small rank data structure for (binary) Occ

Basic Idea

- Store every S-th entry, so S bits form a superblock: $O(\log n \cdot n / S)$ bits for superblock table
- Choose $S := \Theta((\log n)^2)$; so need $\mathcal{O}(n / \log n) = o(n)$ bits
- Remaining problem: Count ones in superblocks of size S
- So far: time $O(\log^2 n)$; memory $o(n)$ bits

Refinement

- **Partition each superblock into** $\Theta(\log n)$ **blocks of size** $B := \Theta(\log n)$
- Each superblock has a table with rank differences for each block start.
- Values up to $\Theta(\log^2 n)$ need $O(\log \log n)$ Bits.
- Number of blocks is $\Theta(\log n \cdot n/S) = \Theta(n/\log n)$.
- Total size: $\mathcal{O}(n \log \log n / \log n) = o(n)$ Bits.

Algorithmic Bioinformatics 88 and 2008 and

Answering Rank Queries in Constant Time

Query rank_s (i)

- Given i, compute index s of superblock and index b of block inside superblock, such that $i = s \cdot S + b \cdot B + j$ with $0 \le j < B$.
- **Look up rank** R_s **for superblock s in first table**
- **Look up rank difference** $r_{s,b}$ for block b in second table
- Compute number of ones $r'_{s,b,j}$ in remaining j bits; constant time with bitmask and popcount, because $j < B = \Theta(\log n)$
- Answer is $R_s + r_{s,b} + r'_{s,b,j}$: sum of three terms, each in constant time.

Practical Implementation

- **Theory (RAM model):** popcount of $O(\log n)$ bits in constant time
- **Practical popcount of up to 64 Bits in constant time**
- Choose $B := 64 = \Theta(\log n)$, assume $n \leq 2^{64}$
- Choose $S := 16 \cdot (64)^2 = 65536 = 2^{16} = \Theta((\log n)^2)$
- 64-bit ints for superblock ranks, 16-bit ints for block ranks
- \blacksquare Values can be adjusted for different n, but these choices are convenient.

Practical Implementation

- **Theory (RAM model): popcount of** $O(\log n)$ **bits in constant time**
- **Practical popcount of up to 64 Bits in constant time**
- Choose $B := 64 = \Theta(\log n)$, assume $n \leq 2^{64}$
- Choose $S := 16 \cdot (64)^2 = 65536 = 2^{16} = \Theta((\log n)^2)$
- 64-bit ints for superblock ranks, 16-bit ints for block ranks
- \blacksquare Values can be adjusted for different n, but these choices are convenient.
- We have $\it n/2^{16}$ superblocks with 64-bit rank values
- Each superblock has 1024 blocks (64 bits) with 16-bit rank values
- Total: $n/65536 \cdot (64 + 1024 \cdot 16) \approx 0.25 \cdot n$ bits

From Binary to General Alphabet

Simple but Wasteful Idea

Use one bit vector per letter to represent BWT; compute a separate succinct rank data structure for each letter.

Simple but Wasteful Idea

Use one bit vector per letter to represent BWT;

compute a separate succinct rank data structure for each letter.

Example: $T = \text{banana}\$ \$, $bwt = \text{annb}\$ \$aa

Simple but Wasteful Idea

Use one bit vector per letter to represent BWT;

compute a separate succinct rank data structure for each letter.

Example: $T =$ banana\$, bwt = annb\$aa

Wasteful: Needs $O(n|\Sigma|) + o(n|\Sigma|)$ bits. But BWT itself only needs $O(n \log |\Sigma|)$ bits!

Wavelet Tree

Definition (Wavele tree)

Let T be a text with $|T| = n$; let $\Sigma = \{0, \ldots, s-1\}$ be an alphabet with $|\Sigma| = s$. The wavelet tree for T is a balanced binary tree with s leaves.

Wavelet Tree

Definition (Wavele tree)

Let T be a text with $|T| = n$; let $\Sigma = \{0, \ldots, s-1\}$ be an alphabet with $|\Sigma| = s$. The wavelet tree for T is a balanced binary tree with s leaves. Each node corresponds to a sub-interval of the alphabet. The root corresponds to Σ ; each leaf corresponds to a single character.

Wavelet Tree

Definition (Wavele tree)

Let T be a text with $|T| = n$; let $\Sigma = \{0, \ldots, s-1\}$ be an alphabet with $|\Sigma| = s$. The wavelet tree for T is a balanced binary tree with s leaves. Each node corresponds to a sub-interval of the alphabet. The root corresponds to Σ ; each leaf corresponds to a single character.

Each non-leaf node represents the sub-sequence of T whose characters are in a sub-alphabet $\{a, \ldots, b\}$. It partitions the sub-alphabet into two parts of equal size:

- **lower alphabet a,...,** $|(a + b)/2|$,
- upper alphabet $|(a + b)/2| + 1, \ldots, b$.

A bit vector indicates which letter belongs to which sub-sub-sequence.

Wavelet Tree: Example

Properties of the Wavelet Tree

- There are $log |\Sigma|$ levels in the wavelet tree.
- In each level, we have *n* bits (summed over all nodes in the level).
- **The wavelet tree thus needs n** · $\lceil \log |\Sigma| \rceil$ bits, as T does.
- An additional $O(|\Sigma| \log n)$ bits are required for representing the tree structure.

Properties of the Wavelet Tree

- **■** There are $log |\Sigma|$ levels in the wavelet tree.
- In each level, we have *n* bits (summed over all nodes in the level).
- **The wavelet tree thus needs n** · $\lceil \log |\Sigma| \rceil$ bits, as T does.
- An additional $O(|\Sigma| \log n)$ bits are required for representing the tree structure.
- With a rank data structure for each node, we need an additional $o(n \log |\Sigma|)$ bits.
- With these, we can answer character and rank queries in $O(\log |\Sigma|)$ time.
- We can replace T by the wavelet tree (and delete T).

Rank Queries on the Wavelet Tree

- Root query: rank_σ (i)
- In the root, is σ in the lower or upper alphabet (0-bit or 1-bit)?
	- 0-bit: Compute $k := i rank_1(i) + 1$, go to left child.
	- 1-bit: Compute $k := rank_1(i)$, go to right child.

Rank Queries on the Wavelet Tree

- Root query: rank_σ (i)
- In the root, is σ in the lower or upper alphabet (0-bit or 1-bit)?
	- 0-bit: Compute $k := i rank_1(i) + 1$, go to left child.
	- 1-bit: Compute $k := rank_1(i)$, go to right child.
- With the child as new root, query for rank_σ (k) .
- Result is found when no child exists for σ .

Saving Space for the suffix array pos

Storing the Suffix Array pos

Problem

So far, we can answer the pattern search decision problem and the counting problem. How do we obtain the positions of the suffixes in the BWT interval?

Storing the Suffix Array pos

Problem

So far, we can answer the pattern search decision problem and the counting problem. How do we obtain the positions of the suffixes in the BWT interval?

Answer

Easy: Enumerate the interval of the suffix array pos. However. . .

Storing the Suffix Array pos

Problem

So far, we can answer the pattern search **decision problem** and the counting problem. How do we obtain the positions of the suffixes in the BWT interval?

Answer

Easy: Enumerate the interval of the suffix array pos. However. . . Storing the complete suffix array pos takes space (less than suffix tree, but still. . .). We are looking for a more space-efficient solution.

Sparse suffix array?

For the Occ table, we store only every k-th entry and recompute the rest on demand. Can we do the same for the suffix array?

Successor Array Ψ and Predecessor Array Ψ[−]¹

Definition: successor array Ψ

 $\Psi[r]$ is the index in the suffix array pos, such that

 $pos[\Psi[r]] = pos[r] + 1$

Successor Array Ψ and Predecessor Array Ψ^{-1}

Definition: successor array Ψ

 $\Psi[r]$ is the index in the suffix array pos, such that

 $pos[\Psi[r]] = pos[r] + 1$

We used this in principle for Kasai's linear-time lcp computation:

 $\Psi[r] = \text{rank}[\text{pos}[r] + 1]$

Successor Array Ψ and Predecessor Array Ψ^{-1}

Definition: successor array Ψ

 $\Psi[r]$ is the index in the suffix array pos, such that

 $pos[\Psi[r]] = pos[r] + 1$

We used this in principle for Kasai's linear-time lcp computation:

 $\Psi[r] = \text{rank}[\text{pos}[r] + 1]$

We call Ψ^{-1} , the inverse of Ψ , the predecessor array. This is the LF mapping.

 $\text{pos}[\Psi^{-1}[r]] = \text{pos}[r] - 1$

 $\Psi^{-1}[r] = \texttt{rank}[\texttt{pos}[r]-1]$

Example: The Predecessor Array Ψ^{-1} or LF

 $LF[r] = C[a] + Occ(a, r) - 1,$ where $a = \text{bwt}[r]$:

Reconstruct T from bwt.

Reconstruct pos

Using LF to (Partially) Reconstruct the Suffix Array

Approach

$$
\begin{aligned} \text{pos}[\Psi^{-1}[r]]&=\text{pos}[r]-1 \\ \Leftrightarrow \hspace{0.3cm} \text{pos}[r]&=\text{pos}[\Psi^{-1}[r]]+1 \end{aligned}
$$

Applying that relationship recursively yields

$$
pos[r] = pos[(\Psi^{-1})^k[r]] + k
$$

Data structure

- We compute $\Psi^{-1} = LF$ from Occ and C
- Store every *t*-th entry of suffix array pos (e.g. $t = 32$: BWA read mapper)
- Reconstruct the rest of the suffix array (pos) on-the-fly: Apply Ψ^{-1} and increase k until we hit a stored value

Summary

FM Index

- BWT, C, Occ
- **n** implementation: succinct rank data structure on wavelet tree
- sampled pos, every t -th entry
- original text is not required!

Backward Search

- Gompute interval for $c\mu$ from interval for μ
- Gonstant time per character, $O(m)$ for pattern P with $|P| = m$
- **Enumeration of text positions from sampled pos.** expected $O(t)$ time, but worst-case $O(n)$ time per position

Possible Exam Questions

- Why and how is the FM index compressed?
- How can rank (Occ) queries be implemented in constant time with succinct space?
- What is a wavelet tree? How does it support character and rank queries?
- What are the successor / predecessor arrays? Construct an example.
- **Explain sparse suffix arrays.**
- \blacksquare How long does a query on a sparse suffix array take in the worst case?
- How can one determine the position of pattern matches for a BWT interval?

