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Reminder about the FM Index:
Backward Search with the BWT

Ferragina and Manzini, Opportunistic Data Structures with Applications, 2000
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Backward Search with BWT, Occ and C

s = ctatatat$ and bwt=tttt$aaac:

C	  [$]	   C	  [a]	   C	  [c]	   C	  [t]	  

0	   1	   4	   5	  

t	   t	   t	   t	   $	   a	   a	   a	   c	  

0	   1	   2	   3	   4	   5	   6	   7	   8	  

Occ	  [$]	   0	   0	   0	   0	   1	   1	   1	   1	   1	  

Occ	  [a]	   0	   0	   0	   0	   0	   1	   2	   3	   3	  

Occ	  [c]	   0	   0	   0	   0	   0	   0	   0	   0	   1	  

Occ	  [t]	   1	   2	   3	   4	   4	   4	   4	   4	   4	  
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 Occ(c , r) returns the number of occurrences of c ∈ Σ in the prefix bwt[0 . . . r ].

The k-th c in the BWT is the k-th c in the first characters of the sorted suffixes.
LF (r) = C[c] + Occ(c , r)− 1
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 Let [i , j ] be the interval for µ; let [i ′, j ′] be the interval for cµ. Then

i ′ = C[c] + Occ(c , i − 1)

j ′ = C[c] + Occ(c , j)− 1
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Implementation of Occ

As shown, Occ uses O(|Σ|n) words of space – worse than the suffix tree!
(A word is a number of size O(poly(n)), i.e., using O(log n) bits.)

Simple Idea

Store the entries of Occ only for every k-th position (typically k ∈ {32, 64, 128}).
To obtain Occ(a, r), look up Occ(a, br/kc),
and count the as in the remaining r − br/kc characters in bwt.

t	   t	   t	   t	   $	   a	   a	   a	   c	  

0	   1	   2	   3	   4	   5	   6	   7	   8	  

Occ	  [$]	   0	   1	   1	  

Occ	  [a]	   0	   0	   3	  

Occ	  [c]	   0	   0	   1	  

Occ	  [t]	   1	   4	   4	  
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Occ Queries in Constant Time
and in Small Space
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Implementation of Occ: Advanced Ideas

Data Structures

Succinct data structure for rank queries (binary alphabet)

Wavelet tree (for converting alphabet to sequence of binary alphabets)

Wavelet matrix (alternative to wavelet tree)

Rank queries

Let ranks,a(i) be the number of as in s[0 . . . i ], i.e., Occ(a, i) for s.

Next goal

Rank queries in O(1) time for s over binary alphabet {0, 1} with o(n) additional bits,
i.e., for binary s, compute ranks(i) := ranks,1(i) in constant time for all i .
Note: ranks,0(i) = (i + 1)− ranks,1(i).
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First Observations

ranks(i): number of ones in s[. . . i ] for i = 0, . . . , n − 1, where n = |s|

Trivial ideas

Slow, but lightweight: O(n) time, O(1) additional memory

Slightly faster: loop with popcount: O(n/W ) time, O(1) additional memory
(popcount: number of 1-bits in a machine word, elementary instruction)

Fast but heavy-weight: full Occ table: O(1) time, but O(n log n) bits (n words)

Slightly slower, but lighter: sparse table (every k-th entry):
O(k) time and O(n/k · log n) bits (n/k words)

Desired

Data structure that supports O(1) time, but needs only o(n) bits, i.e.,
if x(n) is the additional number of bits (plus n for s), we want x(n)/n→ 0 for n→∞.

Algorithmic Bioinformatics 7



First Observations

ranks(i): number of ones in s[. . . i ] for i = 0, . . . , n − 1, where n = |s|

Trivial ideas

Slow, but lightweight: O(n) time, O(1) additional memory

Slightly faster: loop with popcount: O(n/W ) time, O(1) additional memory
(popcount: number of 1-bits in a machine word, elementary instruction)

Fast but heavy-weight: full Occ table: O(1) time, but O(n log n) bits (n words)

Slightly slower, but lighter: sparse table (every k-th entry):
O(k) time and O(n/k · log n) bits (n/k words)

Desired

Data structure that supports O(1) time, but needs only o(n) bits, i.e.,
if x(n) is the additional number of bits (plus n for s), we want x(n)/n→ 0 for n→∞.

Algorithmic Bioinformatics 7



A small rank data structure for (binary) Occ

Basic Idea

Store every S-th entry, so S bits form a superblock:
O(log n · n/S) bits for superblock table

Choose S := Θ((log n)2); so need O(n/ log n) = o(n) bits

Remaining problem: Count ones in superblocks of size S

So far: time O(log2 n); memory o(n) bits

Refinement

Partition each superblock into Θ(log n) blocks of size B := Θ(log n)

Each superblock has a table with rank differences for each block start.

Values up to Θ(log2 n) need O(log log n) Bits.

Number of blocks is Θ(log n · n/S) = Θ(n/ log n).

Total size: O(n log log n/ log n) = o(n) Bits.
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Answering Rank Queries in Constant Time

Query ranks(i)

Given i , compute index s of superblock and index b of block inside superblock,
such that i = s · S + b · B + j with 0 ≤ j < B.

Look up rank Rs for superblock s in first table

Look up rank difference rs,b for block b in second table

Compute number of ones r ′s,b,j in remaining j bits;
constant time with bitmask and popcount, because j < B = Θ(log n)

Answer is Rs + rs,b + r ′s,b,j :
sum of three terms, each in constant time.
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Practical Implementation

Theory (RAM model): popcount of O(log n) bits in constant time

Practical popcount of up to 64 Bits in constant time

Choose B := 64 = Θ(log n), assume n ≤ 264

Choose S := 16 · (64)2 = 65536 = 216 = Θ((log n)2)

64-bit ints for superblock ranks, 16-bit ints for block ranks

Values can be adjusted for different n, but these choices are convenient.

We have n/216 superblocks with 64-bit rank values

Each superblock has 1024 blocks (64 bits) with 16-bit rank values

Total: n/65536 · (64 + 1024 · 16) ≈ 0.25 · n bits
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From Binary to General Alphabet
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Simple but Wasteful Idea

Use one bit vector per letter to represent BWT;
compute a separate succinct rank data structure for each letter.

Example: T = banana$, bwt = annb$aa

Bits 0 1 2 3 4 5 6

$ 0 0 0 0 1 0 0
a 1 0 0 0 0 1 1
b 0 0 0 1 0 0 0
n 0 1 1 0 0 0 0

Wasteful: Needs O(n|Σ|) + o(n|Σ|) bits.
But BWT itself only needs O(n log |Σ|) bits!
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Wavelet Tree

Definition (Wavele tree)

Let T be a text with |T | = n; let Σ = {0, . . . , s − 1} be an alphabet with |Σ| = s.
The wavelet tree for T is a balanced binary tree with s leaves.

Each node corresponds to a sub-interval of the alphabet.
The root corresponds to Σ; each leaf corresponds to a single character.

Each non-leaf node represents the sub-sequence of T whose characters are in a
sub-alphabet {a, . . . , b}. It partitions the sub-alphabet into two parts of equal size:

lower alphabet a, . . . , b(a + b)/2c,
upper alphabet b(a + b)/2c+ 1, . . . , b.

A bit vector indicates which letter belongs to which sub-sub-sequence.
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Wavelet Tree: Example
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Properties of the Wavelet Tree

There are log |Σ| levels in the wavelet tree.

In each level, we have n bits (summed over all nodes in the level).

The wavelet tree thus needs n · dlog |Σ|e bits, as T does.

An additional O(|Σ| log n) bits are required for representing the tree structure.

With a rank data structure for each node, we need an additional o(n log |Σ|) bits.

With these, we can answer character and rank queries in O(log |Σ|) time.

We can replace T by the wavelet tree (and delete T ).
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Rank Queries on the Wavelet Tree

Root query: rankσ(i)

In the root, is σ in the lower or upper alphabet (0-bit or 1-bit) ?

0-bit: Compute k := i − rank1(i) + 1, go to left child.
1-bit: Compute k := rank1(i), go to right child.

With the child as new root, query for rankσ(k).

Result is found when no child exists for σ.
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Wavelet Tree: Example Query rankn(15)
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Saving Space for the suffix array pos
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Storing the Suffix Array pos

Problem

So far, we can answer the pattern search decision problem and the counting problem.
How do we obtain the positions of the suffixes in the BWT interval?

Answer

Easy: Enumerate the interval of the suffix array pos. However. . .
Storing the complete suffix array pos takes space (less than suffix tree, but still. . . ).
We are looking for a more space-efficient solution.

Sparse suffix array?

For the Occ table, we store only every k-th entry and recompute the rest on demand.
Can we do the same for the suffix array?
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Successor Array Ψ and Predecessor Array Ψ−1

Definition: successor array Ψ

Ψ[r ] is the index in the suffix array pos, such that

pos[Ψ[r ]] = pos[r ] + 1

We used this in principle for Kasai’s linear-time lcp computation:

Ψ[r ] = rank[pos[r ] + 1]

We call Ψ−1, the inverse of Ψ, the predecessor array. This is the LF mapping.

pos[Ψ−1[r ]] = pos[r ]− 1

Ψ−1[r ] = rank[pos[r ]− 1]
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Example: The Predecessor Array Ψ−1 or LF

LF L F
r Ψ−1[r ] pos[r ] bwt[r ] T [pos[r ] :]
0 1 13 i $

1 2 i i$

2 8 p ii$

3 7 1 m iississippii$

4 10 s ippii$

5 11 s issippii$

6 3 2 i ississippii$

7 0 $ miississippii$

8 9 p pii$

9 4 9 i ppii$

10 12 s sippii$

11 13 s sissippii$

12 5 6 i ssippii$

13 6 i ssissippii$

LF [r ] = C[a] + Occ(a, r)− 1,
where a = bwt[r ]:

Reconstruct T from bwt

Reconstruct pos
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Using LF to (Partially) Reconstruct the Suffix Array

Approach

pos[Ψ−1[r ]] = pos[r ]− 1

⇔ pos[r ] = pos[Ψ−1[r ]] + 1

Applying that relationship recursively yields

pos[r ] = pos[(Ψ−1)k [r ]] + k

Data structure

We compute Ψ−1 = LF from Occ and C

Store every t-th entry of suffix array pos (e.g. t = 32: BWA read mapper)

Reconstruct the rest of the suffix array (pos) on-the-fly:
Apply Ψ−1 and increase k until we hit a stored value
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Summary

FM Index

BWT, C, Occ

implementation: succinct rank data structure on wavelet tree

sampled pos, every t-th entry

original text is not required!

Backward Search

Compute interval for cµ from interval for µ

Constant time per character, O(m) for pattern P with |P| = m

Enumeration of text positions from sampled pos,
expected O(t) time, but worst-case O(n) time per position
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Possible Exam Questions

Why and how is the FM index compressed?

How can rank (Occ) queries be implemented in constant time with succinct space?

What is a wavelet tree? How does it support character and rank queries?

What are the successor / predecessor arrays? Construct an example.

Explain sparse suffix arrays.

How long does a query on a sparse suffix array take in the worst case?

How can one determine the position of pattern matches for a BWT interval?
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