

The FM Index Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Reminder about the FM Index: Backward Search with the BWT

Ferragina and Manzini, Opportunistic Data Structures with Applications, 2000

Backward Search with BWT, Occ and C

s =	s = ctatatat and bwt = tttt saac: index							bwt	S[pos[i]]					
								_				0	t	\$
			C [\$]	C [a	a]	C [c]	C [t]					1	t	at\$
			0	1		4	5					2	t	atat\$
												3	t	atatat\$
		•	•	•	•	ć	2	2	2	6		4	\$	ctatatat\$
		0	1	2	2	3	a 5	a	a 7	c o		→5	a	t\$
	Occ [\$]	0	0	2	0	1	1	1	1	1		6	а	tat\$
		0	0	0	0	0	1	2	2	2		7	а	tatat\$
		0	0	0	0	0	0	2	0	2 1		⇒8	С	tatatat\$
	Occ [t]	1	2	3	4	4	4	4	4	4				

Dcc(c, r) returns the number of occurrences of $c \in \Sigma$ in the prefix bwt[0...r]. The k-th c in the BWT is the k-th c in the first characters of the sorted suffixes. LF(r) = C[c] + Dcc(c, r) - 1

Backward Search with BWT, Occ and C

s = ctatatat and bwt = ttttaaac:

C [\$]	C [a]	C [c]	C [t]
0	1	4	5

	t	t	t	t	\$	а	а	а	с
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

bwt	S[pos[i]]
t	\$
t	at\$
t	atat\$
t	atatat\$
\$	ctatatat\$
а	t\$
а	tat\$
а	tatat\$
С	tatatat\$
	bwt t t t s a a c

Let [i,j] be the interval for μ ; let [i',j'] be the interval for $c\mu$. Then

$$i' = C[c] + Occ(c, i - 1)$$

 $j' = C[c] + Occ(c, j) - 1$

ZBI ZENTRUM FÜR

Implementation of Occ

As shown, Occ uses $O(|\Sigma|n)$ words of space – worse than the suffix tree! (A word is a number of size O(poly(n)), i.e., using $O(\log n)$ bits.)

Implementation of Occ

As shown, Occ uses $O(|\Sigma|n)$ words of space – worse than the suffix tree! (A word is a number of size O(poly(n)), i.e., using $O(\log n)$ bits.)

Simple Idea

Store the entries of Occ only for every k-th position (typically $k \in \{32, 64, 128\}$). To obtain Occ(a, r), look up $Occ(a, \lfloor r/k \rfloor)$, and count the *a*s in the remaining $r - \lfloor r/k \rfloor$ characters in bwt.

Implementation of Occ

As shown, Occ uses $O(|\Sigma|n)$ words of space – worse than the suffix tree! (A word is a number of size O(poly(n)), i.e., using $O(\log n)$ bits.)

Simple Idea

Store the entries of Occ only for every k-th position (typically $k \in \{32, 64, 128\}$). To obtain Occ(a, r), look up $Occ(a, \lfloor r/k \rfloor)$, and count the *a*s in the remaining $r - \lfloor r/k \rfloor$ characters in bwt.

	t	t	t	t	\$	а	а	а	с
	0	1	2	3	4	5	6	7	8
Occ [\$]	0				1				1
Occ [a]	0				0				3
Occ [c]	0				0				1
Occ [t]	1				4				4

Occ Queries in Constant Time and in Small Space

Implementation of Occ: Advanced Ideas

Data Structures

- Succinct data structure for rank queries (binary alphabet)
- Wavelet tree (for converting alphabet to sequence of binary alphabets)
- Wavelet matrix (alternative to wavelet tree)

Implementation of Occ: Advanced Ideas

Data Structures

- Succinct data structure for rank queries (binary alphabet)
- Wavelet tree (for converting alphabet to sequence of binary alphabets)
- Wavelet matrix (alternative to wavelet tree)

Rank queries

Let $rank_{s,a}(i)$ be the number of as in s[0...i], i.e., Occ(a, i) for s.

Next goal

Rank queries in O(1) time for s over binary alphabet $\{0,1\}$ with o(n) additional bits, i.e., for binary s, compute $rank_s(i) := rank_{s,1}(i)$ in constant time for all i.

Implementation of Occ: Advanced Ideas

Data Structures

- Succinct data structure for rank queries (binary alphabet)
- Wavelet tree (for converting alphabet to sequence of binary alphabets)
- Wavelet matrix (alternative to wavelet tree)

Rank queries

Let $rank_{s,a}(i)$ be the number of as in s[0...i], i.e., Occ(a, i) for s.

Next goal

Rank queries in O(1) time for s over binary alphabet $\{0, 1\}$ with o(n) additional bits, i.e., for binary s, compute $rank_s(i) := rank_{s,1}(i)$ in constant time for all i. Note: $rank_{s,0}(i) = (i + 1) - rank_{s,1}(i)$.

First Observations

 $rank_s(i)$: number of ones in $s[\ldots i]$ for $i = 0, \ldots, n-1$, where n = |s|

Trivial ideas

- Slow, but lightweight: O(n) time, O(1) additional memory
- Slightly faster: loop with popcount: O(n/W) time, O(1) additional memory (popcount: number of 1-bits in a machine word, elementary instruction)
- Fast but heavy-weight: full Occ table: O(1) time, but $O(n \log n)$ bits (n words)
- Slightly slower, but lighter: sparse table (every k-th entry):
 O(k) time and O(n/k · log n) bits (n/k words)

First Observations

 $rank_s(i)$: number of ones in $s[\ldots i]$ for $i = 0, \ldots, n-1$, where n = |s|

Trivial ideas

- Slow, but lightweight: O(n) time, O(1) additional memory
- Slightly faster: loop with popcount: O(n/W) time, O(1) additional memory (popcount: number of 1-bits in a machine word, elementary instruction)
- Fast but heavy-weight: full Occ table: O(1) time, but $O(n \log n)$ bits (n words)
- Slightly slower, but lighter: sparse table (every k-th entry):
 O(k) time and O(n/k · log n) bits (n/k words)

Desired

Data structure that supports O(1) time, but needs only o(n) bits, i.e., if x(n) is the additional number of bits (plus n for s), we want $x(n)/n \to 0$ for $n \to \infty$.

A small rank data structure for (binary) Occ

Basic Idea

Store every S-th entry, so S bits form a superblock: O(log n · n/S) bits for superblock table

A small rank data structure for (binary) Occ

Basic Idea

- Store every S-th entry, so S bits form a superblock: O(log n · n/S) bits for superblock table
- Choose $S := \Theta((\log n)^2)$; so need $\mathcal{O}(n/\log n) = o(n)$ bits
- Remaining problem: Count ones in superblocks of size S

A small rank data structure for (binary) Occ

Basic Idea

- Store every S-th entry, so S bits form a superblock:
 O(log n · n/S) bits for superblock table
- Choose $S := \Theta((\log n)^2)$; so need $\mathcal{O}(n/\log n) = o(n)$ bits
- Remaining problem: Count ones in superblocks of size S
- So far: time $O(\log^2 n)$; memory o(n) bits

Refinement

- Partition each superblock into $\Theta(\log n)$ blocks of size $B := \Theta(\log n)$
- Each superblock has a table with rank differences for each block start.
- Values up to $\Theta(\log^2 n)$ need $O(\log \log n)$ Bits.
- Number of blocks is $\Theta(\log n \cdot n/S) = \Theta(n/\log n)$.
- Total size: $\mathcal{O}(n \log \log n / \log n) = o(n)$ Bits.

Answering Rank Queries in Constant Time

Query $rank_s(i)$

- Given *i*, compute index *s* of superblock and index *b* of block inside superblock, such that $i = s \cdot S + b \cdot B + j$ with $0 \le j < B$.
- Look up rank R_s for superblock s in first table
- Look up rank difference $r_{s,b}$ for block b in second table
- Compute number of ones r'_{s,b,j} in remaining j bits; constant time with bitmask and popcount, because j < B = Θ(log n)
- Answer is R_s + r_{s,b} + r'_{s,b,j}: sum of three terms, each in constant time.

Practical Implementation

- Theory (RAM model): popcount of $O(\log n)$ bits in constant time
- Practical popcount of up to 64 Bits in constant time
- Choose $B := 64 = \Theta(\log n)$, assume $n \le 2^{64}$
- Choose $S := 16 \cdot (64)^2 = 65536 = 2^{16} = \Theta((\log n)^2)$
- 64-bit ints for superblock ranks, 16-bit ints for block ranks
- Values can be adjusted for different *n*, but these choices are convenient.

Practical Implementation

- Theory (RAM model): popcount of $O(\log n)$ bits in constant time
- Practical popcount of up to 64 Bits in constant time
- Choose $B := 64 = \Theta(\log n)$, assume $n \le 2^{64}$
- Choose $S := 16 \cdot (64)^2 = 65536 = 2^{16} = \Theta((\log n)^2)$
- 64-bit ints for superblock ranks, 16-bit ints for block ranks
- Values can be adjusted for different *n*, but these choices are convenient.
- We have $n/2^{16}$ superblocks with 64-bit rank values
- Each superblock has 1024 blocks (64 bits) with 16-bit rank values
- Total: $n/65536 \cdot (64 + 1024 \cdot 16) \approx 0.25 \cdot n$ bits

From Binary to General Alphabet

Simple but Wasteful Idea

Use one bit vector per letter to represent BWT; compute a separate succinct rank data structure for each letter.

Simple but Wasteful Idea

Use one bit vector per letter to represent BWT;

compute a separate succinct rank data structure for each letter.

Example: T = banana, bwt = annbaa

Bits	0	1	2	3	4	5	6
\$	0	0	0	0	1	0	0
а	1	0	0	0	0	1	1
b	0	0	0	1	0	0	0
n	0	1	1	0	0	0	0

Simple but Wasteful Idea

Use one bit vector per letter to represent BWT;

compute a separate succinct rank data structure for each letter.

Example: T = banana, bwt = annbaa

Bits	0	1	2	3	4	5	6	
\$	0	0	0	0	1	0	0	
а	1	0	0	0	0	1	1	
b	0	0	0	1	0	0	0	
n	0	1	1	0	0	0	0	

Wasteful: Needs $O(n|\Sigma|) + o(n|\Sigma|)$ bits. But BWT itself only needs $O(n \log |\Sigma|)$ bits!

Wavelet Tree

Definition (Wavele tree)

Let T be a text with |T| = n; let $\Sigma = \{0, ..., s - 1\}$ be an alphabet with $|\Sigma| = s$. The wavelet tree for T is a balanced binary tree with s leaves.

Wavelet Tree

Definition (Wavele tree)

Let T be a text with |T| = n; let $\Sigma = \{0, ..., s - 1\}$ be an alphabet with $|\Sigma| = s$. The wavelet tree for T is a balanced binary tree with s leaves. Each node corresponds to a sub-interval of the alphabet. The root corresponds to Σ ; each leaf corresponds to a single character.

Wavelet Tree

Definition (Wavele tree)

Let T be a text with |T| = n; let $\Sigma = \{0, \ldots, s - 1\}$ be an alphabet with $|\Sigma| = s$. The wavelet tree for T is a balanced binary tree with s leaves. Each node corresponds to a sub-interval of the alphabet. The root corresponds to Σ ; each leaf corresponds to a single character.

Each non-leaf node represents the sub-sequence of T whose characters are in a sub-alphabet $\{a, \ldots, b\}$. It partitions the sub-alphabet into two parts of equal size:

- lower alphabet $a, \ldots, \lfloor (a+b)/2 \rfloor$,
- upper alphabet $\lfloor (a+b)/2 \rfloor + 1, \ldots, b$.

A bit vector indicates which letter belongs to which sub-sub-sequence.

Wavelet Tree: Example

Properties of the Wavelet Tree

- There are $\log |\Sigma|$ levels in the wavelet tree.
- In each level, we have *n* bits (summed over all nodes in the level).
- The wavelet tree thus needs $n \cdot \lceil \log |\Sigma| \rceil$ bits, as T does.
- An additional $O(|\Sigma| \log n)$ bits are required for representing the tree structure.

Properties of the Wavelet Tree

- There are $\log |\Sigma|$ levels in the wavelet tree.
- In each level, we have *n* bits (summed over all nodes in the level).
- The wavelet tree thus needs $n \cdot \lceil \log |\Sigma| \rceil$ bits, as T does.
- An additional $O(|\Sigma| \log n)$ bits are required for representing the tree structure.
- With a rank data structure for each node, we need an additional $o(n \log |\Sigma|)$ bits.
- With these, we can answer character and rank queries in $O(\log |\Sigma|)$ time.
- We can replace T by the wavelet tree (and delete T).

Rank Queries on the Wavelet Tree

- Root query: $rank_{\sigma}(i)$
- In the root, is σ in the lower or upper alphabet (0-bit or 1-bit) ?
 - 0-bit: Compute $k := i rank_1(i) + 1$, go to left child.
 - 1-bit: Compute $k := rank_1(i)$, go to right child.

Rank Queries on the Wavelet Tree

- Root query: $rank_{\sigma}(i)$
- In the root, is σ in the lower or upper alphabet (0-bit or 1-bit) ?
 - 0-bit: Compute $k := i rank_1(i) + 1$, go to left child.
 - 1-bit: Compute $k := rank_1(i)$, go to right child.
- With the child as new root, query for $rank_{\sigma}(k)$.
- Result is found when no child exists for σ .

Saving Space for the suffix array pos

Storing the Suffix Array pos

Problem

So far, we can answer the pattern search **decision** problem and the **counting** problem. How do we obtain the positions of the suffixes in the BWT interval?

Storing the Suffix Array pos

Problem

So far, we can answer the pattern search **decision** problem and the **counting** problem. How do we obtain the positions of the suffixes in the BWT interval?

Answer

Easy: Enumerate the interval of the suffix array pos. However...

Storing the Suffix Array pos

Problem

So far, we can answer the pattern search **decision** problem and the **counting** problem. How do we obtain the positions of the suffixes in the BWT interval?

Answer

Easy: Enumerate the interval of the suffix array pos. However... Storing the complete suffix array pos takes space (less than suffix tree, but still...). We are looking for a more space-efficient solution.

Sparse suffix array?

For the Occ table, we store only every k-th entry and recompute the rest on demand. Can we do the same for the suffix array?

Successor Array Ψ and Predecessor Array Ψ^{-1}

Definition: successor array Ψ

 $\Psi[\mathit{r}]$ is the index in the suffix array pos, such that

 $\texttt{pos}[\Psi[r]] = \texttt{pos}[r] + 1$

Successor Array Ψ and Predecessor Array Ψ^{-1}

Definition: successor array Ψ

 $\Psi[r]$ is the index in the suffix array pos, such that

 $\texttt{pos}[\Psi[r]] = \texttt{pos}[r] + 1$

We used this in principle for Kasai's linear-time lcp computation:

 $\Psi[r] = \texttt{rank}[\texttt{pos}[r] + 1]$

Successor Array Ψ and Predecessor Array Ψ^{-1}

Definition: successor array Ψ

 $\Psi[r]$ is the index in the suffix array pos, such that

 $\texttt{pos}[\Psi[r]] = \texttt{pos}[r] + 1$

We used this in principle for Kasai's linear-time lcp computation:

 $\Psi[r] = \texttt{rank}[\texttt{pos}[r] + 1]$

We call Ψ^{-1} , the inverse of Ψ , the predecessor array. This is the *LF* mapping.

```
\operatorname{pos}[\Psi^{-1}[r]] = \operatorname{pos}[r] - 1
```

 $\Psi^{-1}[r] = \texttt{rank}[\texttt{pos}[r] - 1]$

Example: The Predecessor Array Ψ^{-1} or *LF*

	LF		L	F
r	$\Psi^{-1}[r]$	pos[r]	bwt[r]	T[pos[r]:]
0	1	13	i	\$
1	2		i	i\$
2	8		р	ii\$
3	7	1	m	iississippii\$
4	10		s	ippii\$
5	11		s	issippii\$
6	3	2	i	ississippii\$
7	0		\$	miississippii\$
8	9		р	pii\$
9	4	9	i	ppii\$
10	12		s	sippii\$
11	13		s	sissippii\$
12	5	6	i	ssippii\$
13	6		i	ssissippii\$

LF[r] = C[a] + Occ(a, r) - 1, where a = bwt[r]:

Reconstruct T from bwt

Reconstruct pos

Using LF to (Partially) Reconstruct the Suffix Array

Approach

$$pos[\Psi^{-1}[r]] = pos[r] - 1$$

$$\Rightarrow pos[r] = pos[\Psi^{-1}[r]] + 1$$

Applying that relationship recursively yields

$$pos[r] = pos[(\Psi^{-1})^k[r]] + k$$

Data structure

- We compute $\Psi^{-1} = LF$ from Occ and C
- Store every t-th entry of suffix array pos (e.g. t = 32: BWA read mapper)
- Reconstruct the rest of the suffix array (pos) on-the-fly: Apply Ψ⁻¹ and increase k until we hit a stored value

Summary

FM Index

- BWT, C, Occ
- implementation: succinct rank data structure on wavelet tree
- sampled pos, every t-th entry
- original text is not required!

Backward Search

- Compute interval for $c\mu$ from interval for μ
- Constant time per character, O(m) for pattern P with |P| = m
- Enumeration of text positions from sampled pos, expected O(t) time, but worst-case O(n) time per position

Possible Exam Questions

- Why and how is the FM index compressed?
- How can rank (Occ) queries be implemented in constant time with succinct space?
- What is a wavelet tree? How does it support character and rank queries?
- What are the successor / predecessor arrays? Construct an example.
- Explain sparse suffix arrays.
- How long does a query on a sparse suffix array take in the worst case?
- How can one determine the position of pattern matches for a BWT interval?

