Published online 13 May 2012

SURVEY AND SUMMARY

Nucleic Acids Research, 2012, Vol. 40, No. 15 6993-7015

doi:10.1093/nar/gks408

Prospects and limitations of full-text index
structures in genome analysis

Michaél Vyverman'*, Bernard De Baets?, Veerle Fack' and Peter Dawyndt'

"Department of Applied Mathematics and Computer Science, Ghent University, Building S9, 281 Krijgslaan
and ?Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, 653 Coupure links,

Ghent, B-9000, Belgium

Received January 30, 2012; Revised April 16, 2012; Accepted April 19, 2012

ABSTRACT

The combination of incessant advances in sequenc-
ing technology producing large amounts of data and
innovative bioinformatics approaches, designed to
cope with this data flood, has led to new interesting
results in the life sciences. Given the magnitude of
sequence data to be processed, many bioinfor-
matics tools rely on efficient solutions to a variety
of complex string problems. These solutions include
fast heuristic algorithms and advanced data struc-
tures, generally referred to as index structures.
Although the importance of index structures is gen-
erally known to the bioinformatics community, the
design and potency of these data structures, as well
as their properties and limitations, are less under-
stood. Moreover, the last decade has seen a boom
in the number of variant index structures featuring
complex and diverse memory-time trade-offs. This
article brings a comprehensive state-of-the-art
overview of the most popular index structures and
their recently developed variants. Their features,
interrelationships, the trade-offs they impose, but
also their practical limitations, are explained and
compared.

INTRODUCTION

Developments in sequencing technology continue to
produce data at higher speed and lower cost. The resulting
sequence data form a large fraction of the data processed
in life sciences research. For example, de novo genome
assembly joins relatively short DNA fragments together
into longer contigs based on overlapping regions,
whereas in RNA-seq experiments, cDNA is mapped to a
reference genome or transcriptome. Further down the
analysis pipeline, DNA and protein sequences are

aligned to one another and similarity between aligned se-
quences is estimated to infer phylogenies (1). Although the
type of sequences and applications varies widely, they all
require basic string operations, most notably search oper-
ations. Given the sheer number and size of the sequences
under consideration and the number of search operations
required, efficient search algorithms are important com-
ponents of genome analysis pipelines. For this reason,
specialized data structures, generally bundled under the
term ‘index structures’, are required to speed up string
searching.

The use of specialized algorithms and data structures is
motivated by the fact that the data flow has already sur-
passed the flow of advances in computer hardware and
storage capabilities. However, although index structures
are already widely used to speed up bioinformatics appli-
cations, they too are challenged by the recent data flood.
Index structures require an initial construction phase and
impose extra storage requirements. In return, they provide
a wide variety of efficient string searching algorithms.
Traditionally, this has led to a dichotomy between
search efficiency and reduced memory consumption.
However, recent advances in index structures have
shown that compression and fast string searching can be
achieved simultaneously using a combination of compres-
sion and indexing, thus solving this dichotomy (2).

There are many types of index structures. The most
commonly known index structures are inverted indexes
and lookup tables. These work in a similar way to the
indexes found at the back of books. However, biological
sequences generally lack a clear division in words or
phrases, a prerequisite for inverted indexes to function
properly. Two alternative index structures are used in bio-
informatics applications. k-mer indexes divide sequences
into substrings of fixed length k and are used, among
others, in the BLAST (3) alignment tool. ‘Full-text
indexes’, on the other hand, allow fast access to substrings
of any length. Full-text indexes come at a greater memory
and construction cost compared with k-mer indexes and
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are also far more complex. However, they contain much
more information and allow for faster and more flexible
string searching algorithms (4).

Full-text index structures are widely used crucial black
box components of many bioinformatics applications.
Their success is illustrated by the number of bioinfor-
matics tools that currently use them. Examples are tools
for short read mapping (5-9), alignment (10,11), repeat
detection (12), error correction (13,14) and genome
assembly (15-17). The memory and time performance of
many of these tools are directly affected by the type and
implementation of the index structure used. The choice for
a tool impacts the choice of index structures and vice
versa. However, the description of these tools in scientific
literature often bypasses a detailed description about the
specifications of the index structures used. Concepts such
as suffix trees, suffix arrays or FM-indexes are introduced
in general terms in bioinformatics courses, but most of the
time, these index structures are applied as black boxes
having certain properties and allowing certain operations
on strings at a given time. This does injustice to the vast
and rich literature available on index structures and does
not present their complex design, possibilities and limita-
tions. Moreover, most tools are designed using basic im-
plementations of these index structures, without taking
full advantage of the Ilatest advances in indexing
technology.

The goal of this article is 2-fold. On the one hand, we
offer a comprehensive review of the basic ideas behind
classical index structures, such as suffix trees, suffix
arrays and Burrows—Wheeler-based index structures,
such as the FM-indexes. No prior knowledge about
index structures is required. On the other hand, we give
an overview of the limitations of these structures as well as
the research done in the last decade to overcome these
limitations. Furthermore, in light of recent advances
made in both sequencing technology as well as computing
technology, we give prospects on future developments in
index structure research.

Overview

This article is structured according to the following
outline. The first main section introduces basic concepts
and notations which are used throughout the article. This
section also clarifies the relationship between computer
science string algorithms and sequence analysis applica-
tions. Furthermore, it explains some algorithmic perform-
ance measures which have to be taken into account when
dealing with advanced data structures. Readers well ac-
quainted with data structures and algorithms may easily
skip this section.

The second section reviews some of the most popular
index structures currently in use. These include suffix
trees, enhanced and compressed suffix arrays and
FM-indexes, which are based on the Burrows—Wheeler
transform. Both representational and algorithmic aspects
of basic search operations of these index structures are
discussed using a running example. Furthermore, the
features of these different index structures are compared
on an abstract level and their interrelation is made clear.

The next section gives an overview of current state-of-
the-art main (RAM) memory index structures, with a
focus on memory-time trade-offs. Several memory
saving techniques are discussed, including compression
techniques utilized in ‘compressed index structures’. The
aim of this section is to provide insight into the complexity
of the design of these compressed index structures, rather
than to give their full details. It is shown how their design
is composed of auxiliary data structures that govern the
performance of the main index structure. On a larger
scale, practical results from the bioinformatics literature
illustrate the performance gain and limitations of search
algorithms. Furthermore, a comparison between index
structures, together with an extensive literature list, acts
as a taxonomy for the currently known main memory
full-text index structures.

While main memory index structures are the main focus
of the second section, the design, limitations and
improvements of external memory index structures are
also discussed. The difference between index structures
for internal and external memory is most prominent in
their use of compression techniques, which are (still) less
important in external memory. However, because
harddisk access is much slower than main memory
access, data structure layout and access patterns are
much more important.

The second biggest bottleneck of index structure usage
is the initial construction phase, which is covered in the
final section. Both main memory as well as secondary
memory construction algorithms are reviewed. The main
conceptual ideas used for construction of the index struc-
tures discussed in previous sections are provided together
with examples of the best results of construction algo-
rithms found in the literature.

Finally, a summary of the findings presented in this
article and some prospects on future directions of the
research on index structures and its impact on bioinfor-
matics applications is given. These prospects include
variants and extensions of classical index structures,
designed to answer specific biological queries, such as
the search for structural RNA patterns, but also the use
of new computing paradigms, such as the Google
MapReduce framework (18).

IMPORTANT CONCEPTS

Index structures originate from the field of theoretical
computer science. This section introduces some important
concepts for readers not familiar with the field. Readers
with a background in data structures and algorithms may
skip this section, except for the notations introduced at the
end of this section.

Strings versus sequences

The term ‘sequence’ is used for different concepts in the
field of computer science and biology. What is called a
sequence in biology is usually a ‘string’ in standard
computer science parlance. The distinction between
strings and sequences becomes especially prominent in
computer science when introducing the concepts of



substrings and subsequences. The former refer to contigu-
ous intervals from larger strings, whereas the latter do
not necessarily need to be contiguous intervals from
the original string. As index structures work with
substrings and to avoid ambiguity, we will stick to the
standard computer science term string throughout this
article, unless we explicitly want to stress the biological
origin of the sequence.

String matching

Key components of genome analysis include statistical
methods for scoring and comparing string hypotheses
and string matching algorithms for efficient string com-
parisons. However, the former component falls beyond
the scope of this review as our main focus lies on string
matching algorithms studied in the field of computer
science. This again gives rise to a terminology barrier
between the two research fields. For nearly all index struc-
tures discussed in this review, efficient algorithms for exact
and inexact string matching exist. These algorithms allow
fast queries into sequence databases, similarity searches
between sequences and DNA/RNA mapping. Inexact
string matching is usually implemented using a backtrack-
ing algorithm on the suffix tree or a seed-and-extend
approach. The latter approach may use maximal exact
matches or other types of shared substrings. Maximal
exact matches are examples of identical substrings
shared between multiple strings and are frequently used
as seeds in sequence alignment or in tools that determine
sequence similarity (10). Searching for all maximal exact
matches in an efficient way requires strong index struc-
tures that are fully expressive, i.e. allow for all suffix tree
operations in constant time (19).

Index structures reaching full expressiveness are able to
handle a multitude of string searching problems such as
locating several types of repeats, finding overlapping
strings and finding the longest common substring. These
string matching algorithms are, among others, used in
genome assembly (finding repeats and overlaps), error cor-
rection of sequencing reads (repeats), fast identification
of DNA contaminants (longest common substring) and
genealogical DNA testing (short tandem repeats).

In addition, some index structures are geared to-
ward specific applications. ‘Affix index structures’, for
example, allow bidirectional string searching. As a
result, they can be used for searching RNA structure
patterns (20) and for short read mapping (6). “Weighted
suffix trees’ (21) can be used to find patterns in biological
sequences that contain weights such as base probabilities,
but are also applied in error correction (13). ‘Geometric
suffix trees’ (22) have been used to index 3D protein struc-
tures. ‘Property suffix trees’ have additional data struc-
tures to efficiently answer property matching queries.
This can be useful, for example, in retrieving all occur-
rences of patterns that appear in a repetitive genomic
structure (23).

Theoretical complexity

As is the case for other data structures, the performance
of algorithms working on index structures is usually
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expressed in terms of their theoretical complexity,
indicated by the ‘big-O notation’. Although a theoretical
measure of the worst-case scenario, it contains valuable
practical information about the qualitative and quantita-
tive performance of algorithms and data structures. For
example, some index structures contain an alphabet-
dependency, whereas others do not. Thus, alphabet-
independent index structures theoretically perform string
searches equally well on DNA sequences (4 different char-
acters) as on protein sequences (20 different characters).
The qualitative information of the theoretical complexity
usually categorizes the dependency of input parameters in
terms of logarithmic, linear, quasilinear, quadratic or ex-
ponential dependency. Intuitively, this means that even if
several algorithms nearly have the same execution time or
memory requirements for a given input sequence, the exe-
cution time and memory requirements of some algorithms
will grow much faster than those of others when the input
size increases. In practice, quasilinear algorithms [com-
plexity O(nlog n)] are sometimes much faster than linear
algorithms [complexity O(n)], because of the lower order
terms and constants involved. These are usually omitted
in the big-O notation. In general, however, the big-O
notation is a good guideline for algorithm and data
structure performance. Furthermore, this measure of
algorithm and data structure efficiency is timeless and
is not dependent on hardware, implementation and data
specifications, as opposed to benchmark test results which
can be misleading and may quickly become obsolete
over time.

Computer memory

Practical performance of index structures is not only
governed by their algorithmic design, but also by the
hardware that holds the data structure. Computer
memory in essence is a hierarchical structure of layers,
ordered from small, expensive, but fast memory to large,
cheap and slow memory types. The hierarchy can roughly
be divided into ‘main memory’, most notably RAM
memory and caches, and secondary or ‘external
memory’, which usually consists of hard disks or in the
near future solid-state disks. Most index structures and
applications are designed to run in main memory,
because this allows for fast ‘random access’ to the data,
whereas hard disks are usually 10°-10° times slower for
random access (24). As the price of biological data cur-
rently decreases much faster than the price of RAM
memory and bioinformatics projects are becoming much
larger, comparing more data than ever before, algorithms
and data structures designed for cheaper external memory
become more important (25). These external memory al-
gorithms usually read data from external memory, process
the information in main memory and output the result
again to disk. As mentioned above, these ‘input/output’
(I/O) operations are very expensive. As a result, the algo-
rithmic design needs to minimize these operations as much
as possible, for example by keeping key information that is
needed frequently into main memory. This technique,
known as ‘caching’, is also used by file systems. File
systems usually load more data into main memory than
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requested because it is physically located close to the re-
quested data and may be predicted to become needed in
the near future. The physical ‘locality’ of data organized
by index structures is thus of great importance. Moreover,
data that is often logically requested in sequential order,
should also be physically ordered sequentially, because
sequential disk access is almost as fast as random access
in main memory. More information about index structure
design for the different memory settings is found in
‘Popular index structures’, ‘“Time-memory trade-offs’ and
‘Index structures in external memory’ sections.

Notations

The following notations are used throughout the rest of
the text. Let the finite, totally ordered alphabet ¥ be an
array of size |X| (|-| will be used to denote the size of a
string, set or array). The DNA-alphabet, for example, has
size four and is given by X = {A,C, G, T}. Furthermore,
let =% and =*, respectively, be the set of all strings
composed of k characters from X and the set of all
strings composed of zero or more characters from X.
The empty string will be denoted as . Let Se X". All
indexes in this article are zero-based. For every
0<i<j<n, S[i] denotes the character at position i in S,
S[i ..j] denotes a substring that starts at position i and ends
at position j and S[i..j] = & for i> . S[i..] is the i-th suffix
of S and S[..]] is the i-th prefix of S and S[—1.]
= S[..n] = . Likewise, A[i..j] denotes an interval in an
array A and the comma separator is used in 2D arrays,
e.g. M[i, j] denotes the matrix element of M at the i-th row
and j-th column.

S represents the indexed string which is usually very
large, i.e. a chromosome or complete genome. Another
string P denotes a pattern, which is searched in S. The
length of P is m and usually m <« n holds, unless stated
otherwise. For example, P can be a certain pattern, a
sequencing read or a gene. The lexicographical order
relation between two elements of T* is represented as <.
The ‘longest common prefix” LCP(S, P) of two strings S
and P is the prefix S[..k], such that S[..k] = P[..k] and
S[k+1]# Plk+1].

As a final remark, note that all logarithms in this article
have base two, unless stated otherwise.

POPULAR INDEX STRUCTURES

Index structures are data structures used to preprocess
one or more strings to speed up string searches. As the
examples in this section will illustrate, the types of
searches can be quite diverse, yet some index structures
manage to achieve an optimal performance for a broad
class of search problems. The ultimate goal of index struc-
tures is to quickly capture maximal information about the
string to be queried and to represent this information in
a compact form. It turns out that both requirements
often conflict in practice, with different types of index
structures providing alternative trade-offs between speed
and memory consumption. However, the speedup
achieved over classical string searching algorithms often
makes up for the extra construction and memory costs.

The type of index structures discussed here are ‘full-text
index structures’. Unlike natural language, biological se-
quences do not show a clear structure of words and
phrases, making popular ‘word-based’ index structures
such as inverted files (26) and B-trees (27) less suited for
indexing genomic sequences. Instead, full-text indexes that
store information about all variable length substrings are
better suited to analyze the complex nature of genome
sequences.

The three most commonly used full-text index struc-
tures in bioinformatics today are suffix trees, suffix
arrays and FM-indexes. The raison d’étre of the latter
two is the high-memory requirements of suffix trees.
In this section, it is shown how those smaller indexes
actually are reduced suffix trees and can be enhanced
with auxiliary information to achieve complete suffix
tree functionality.

Suffix trees

Suffix trees have become the archetypical index structure
used in bioinformatics. Introduced by Weiner (28), who
also gave a linear time construction algorithm, they are
said to efficiently solve a myriad of string processing
problems (29). Complex string problems such as finding
the longest common substring can be solved in linear time
using suffix trees. The suffix tree of a string S contains
information about all suffixes of that string and gives
access to all prefixes of those suffixes, thus effectively
allows fast access to all substrings of the string S.

The suffix tree ST(S) is formally defined as the radix tree
(30), i.e. a compact string search tree data structure, built
from all suffixes of S. The edges of ST(S) are labeled with
substrings of S and the leaves are numbered 0 to n— 1.
The one-to-one correspondence between leaf i of ST(S)
and suffix i of S is found by concatenating all edge
labels on the path from the root to the leaf: the
concatenated string ending in leaf i equals suffix S[i..].
Moreover, internal nodes correspond to the LCP of
suffixes of S, such that labels of all outgoing edges from
an internal node start with a different character and every
internal node has at least two children. This last property
allows to distinguish suffix trees and non-compact suffix
‘tries” whose nodes can have single children because edge
label lengths are all equal to one. In order for the above
properties to hold for a string S, the last character of S has
to uniquely appear in S. In practice, this problem is solved
by appending a special end-character $ to the end of string
S, with $¢% and § < ¢, Yc € 2. This special end-character
plays the same role as the virtual end-of-string symbol
used in regular expressions (also represented as $ in that
context). Hereafter, for every indexed string S it is
assumed S[n— 1] = $ or, equivalently, S e X*$ holds. As
a running example, the suffix tree ST(S) for the string
S = ACATACAGATGS is given in Figure 1.

The ‘label’ £(v) of a node v of ST(S) is defined as the
concatenation of edge labels on the path from the root to
the node. From this definition it follows that £(root) = e.
The ‘string depth’ of v is defined as |¢(v)|. The ‘suffix link’
sl(v) of an internal node v with label cw (¢ € X and w € X*)
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Figure 1. Suffix tree for string S = ACATACAGATG, where § is the special end-character. Each number i inside a leaf represents suffix S[i..] of the
string S. Dashed arrows correspond to suffix links. Edges are arranged in lexicographical order. For the sake of brevity, only the first characters
followed by two dots and the special end-character $ are shown for edge labels that spell out the rest of the suffix corresponding to the leaf the edge

is connected with.

is the unique internal node with label w. Suffix links are
represented as dashed lines in Figure 1.

Most suffix tree algorithms boil down to (partial or full)
top-down or bottom-up traversals of the tree, or the fol-
lowing of suffix links (19). These different types of traver-
sals are further illustrated using some classical string
algorithms.

In the exact string matching problem, all positions of a
substring P have to be found in string S. Exact string
matching is an important problem on its own and is also
used as a basis for more complex string matching
problems. Since P is a substring of S if and only if P is
a prefix of some suffix of S, it follows that matching every
character of P along a path in ST(S) (starting at the root)
gives the answer to the existential question. This algorithm
thus requires a partial top-down traversal of ST(S) and
has a time complexity of O(m). Since suffixes of S are
grouped by common prefixes in ST(S), the set of leaves
in the subtree below the path that spells out P represents
all locations where P occurs in S. This set is denoted as
occ(P, S) and can be obtained in O(Jocc(P, S)|) time. As
an example, consider matching pattern P = AC to the
running example in Figure 1. The algorithm first finds
the edge with label A going down from the root and
then continues down the tree along the edge labeled CA.
After matching the character C, the algorithm decides that
P is a substring of S. Furthermore, occ(P, S) = {0, 4} and
thus P = S[0..1] = S[4..5]. This classical example already
demonstrates the true power of suffix trees: the time com-
plexity for matching k patterns of length m to a string of
length n is O(n+km). String matching algorithms that
preprocess pattern P instead of string S [Boyer—Moore
(31) and Knuth-Morris—Pratt (32), among others]
require O(k(n+m)) time to solve the same problem.
Since k and n are usually very large in most bioinformatics
applications, for example in mapping millions (=k) short

(=m) reads to the human genome (=n), this speedup is
significant.

Bottom-up traversals through suffix trees are mainly
required for the detection of highly similar patterns,
such as common substrings or (approximate) repeats.
This follows from the fact that internal nodes of ST(S)
represent the LCP of suffixes in their subtree. Internal
nodes with maximal string depth correspond to suffixes
with the largest LCP, which makes it easy to find
maximal repeats and LCPs using a full bottom-up
search of ST(S). In detail, the longest common substring
of two strings S; and S, of lengths n; and n, is found by
first building a suffix tree for the concatenated string S;.S5,
called a ‘generalized suffix tree’ (GST), and then traversing
the GST twice. During an initial top-down traversal,
string depths are stored at the internal nodes [if this infor-
mation is gathered during construction of ST(S,S>), the
top-down traversal can be skipped]. A consecutive
bottom-up traversal determines whether leaves in the
subtree of an internal node all originate from S;, S, or
both. This information can percolate up to parent nodes.
In case leaves from both S; and S, have the current node
as their ancestor, the corresponding suffixes have a
common prefix. Since every internal node is visited at
most once during each traversal, and calculations at
every internal node can be done in constant time, this al-
gorithm requires O(n; +ny) time. The details of the algo-
rithm can be found in (29). Maximal repeats, such as
calculated in Vmatch (http://www.vmatch.de/), are
found in a similar fashion. A maximal repeat is a substring
of length /> 0 that occurs at least at two positions i; < i, in
S and that is both left-maximal (S[i; — 1] S[i» — 1]) and
right-maximal (S[i; + /] # S[i» +[]). Labels of the internal
nodes of ST(S) represent all repeated substrings that are
right-maximal. There are, however, node labels that cor-
respond to repeats that are not left-maximal. Similar to
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Table 1. Arrays used by enhanced suffix arrays (columns 2-5), compressed suffix arrays (columns 2, 6 and 7) and FM-indexes (columns 8 — 14)

for string S = ACATACAGATGS
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From left to right: index position, suffix array, LCP array, child array, suffix link array, inverse suffix array, W-array, BWT text, ‘rank’ array,
LF-mapping array and suffixes of string S. FM-indexes also require an array C(S).

finding the longest common substring, a bottom-up tra-
versal of ST(S) uses information in the leaves to check
left-maximality and forwards this information to parent
nodes. As an example, the maximal repeats in the running
example (Figure 1) are ACA, AT, A and T. The first internal
node v visited by a bottom-up traversal has ¢(v) = ACA
and v has two leaves: 0 and 4. Since leaf 0 is a child of
v, left-maximality is guaranteed for v and every parent of
v. The internal node w with label ¢(w) = CA has leaves 5
and 1 as children, but because S[5—1] = S[1 —1]= A,
£(w) = CA is not a maximal repeat.

A final way of traversing suffix trees is by following
suffix links. Suffix links can both be used in suffix tree
construction and algorithms for searching maximal exact
matches or matching statistics. Intuitively, suffix links
maintain a sliding window when matching a pattern to
the suffix tree. Furthermore, suffix links act as a
memory-efficient alternative to GSTs. As constructing,
storing and updating suffix trees is a costly operation,
the utilization of suffix links offers an important
trade-off. The following algorithm demonstrates how
suffix links enable a quick comparison between all
suffixes of string S; and the suffix tree ST(S,) of another
string S,. Suppose the first suffix S;[0..] has been
compared up to a node v with £(v) = S,[0..i]. After follow-
ing sl(v) = w, the second suffix Sy[1..] is already matched
to ST(S,) up to w, with €(w) = S[l1..7]. In this way,
i = |€(w)| characters do not have to be matched again
for this suffix. This process can be repeated until all
suffixes of S; are matched to ST(S,). Hence, the
maximal exact matches between S; and S, can be found
again in O (n; +n,) time, but using less memory to store
only the suffix tree of S, plus its suffix links.

Given enough fast memory, suffix trees are probably the
best data structure ever invented to support string algo-
rithms. For large-scale bioinformatics applications,
however, memory consumption really becomes a bottle-
neck. Although the memory requirements of suffix trees
are asymptotically linear, the constant factor involved is
quite high, i.e. up to 10 (33) to 20 times (34) higher than

the amount of memory required to store the input string.
However, state-of-the-art suffix tree implementations are
able to handle sequences of human chromosome size (10).
During the last decade, a lot of research focused on
tackling this memory bottleneck, resulting in many suffix
tree variants that show interesting memory versus time
trade-offs.

Suffix arrays

The most successful and well-known variants of suffix
trees are the so-called suffix arrays (35). They are made
up of a single array containing a permutation of the
indexes of string S, making them extremely simple and ele-
gant. In terms of performance, expressiveness is traded for
lower memory footprint and improved locality. Suffix
arrays in general only require four times the amount of
storage needed for the input string, can be constructed in
linear time and can exactly match all occurrences of
pattern P in string S in O(mlogn+|occ(P, S)|) time using
a binary search.

Suffix array SA(S) stores the lexicographical ordering of
all suffixes of string S as a permutation of its index pos-
itions: S[SA[i — 1]..] < S[SA[{]..], 0 < i <n. The last column
of Table 1 shows the lexicographical ordering for the
running example. SA(S) itself can be found in the
second column. The uniqueness of the lexicographical
order is determined by the fact that all suffixes have dif-
ferent lengths, and the use of the special end-character
$<c¢, ceX. By definition, S[SA[0]] always equals the
string $. The relationship between suffix trees and suffix
arrays becomes clear when traversing suffix trees depth-
first and giving priority to edges with lexicographically
smaller labels. Leaf numbers encountered in this order
spell out the suffix array. All edges were lexicographically
ordered on purpose in Figure 1, so that leaf numbers, read
from left to right, form SA(S) as found in Table 1. Exact
matching of substring P is done using two binary
searches on SA(S). These binary searches locate P; =
min{k|P < S[SA[k]]} and Pr = max{k|P > S[SA[K]]},



which form the boundaries of the interval in SA(S) where
occ(P, S) is found. Note that counting the occurrences
requires O(mlogn) time, but finding occ(P, S) only
requires an additional O(Jocc(P, S)|) time.

Although conceptually simple, suffix arrays are not just
reduced versions of suffix trees (36,37). Optimal solutions
for complex string processing problems can be achieved
by algorithms on suffix arrays without simulating suffix
tree traversals. An example is the all pairs suffix—prefix
problem in which the maximal suffix—prefix overlap
between all ordered pairs of k strings of total length n
can be determined b;/ both suffix trees (29) and suffix
arrays (37) in O(n+k~) time.

Enhanced suffix arrays

Suffix arrays are not that information-rich compared
with suffix trees, but require far less memory. They lack
LCP information, constant time access to children and
suffix links, which makes them less fit to tackle more
complex string matching problems. Abouelhoda et al.
(19) demonstrated how suffix arrays can be embellished
with additional arrays to recover the full expressivity of
suffix trees. These so-called ‘enhanced suffix arrays’
consist of three extra arrays that, together with a suffix
array, form a more compact representation of suffix trees
that can also be constructed in O(n) time. Furthermore,
the next paragraphs demonstrate how the extra arrays of
enhanced suffix arrays enable efficient simulation of all
traversal types of suffix trees (19).

A first array LCP(S) supports bottom-up traversals
on suffix array SA(S). It stores LCP lengths of consecu-
tive suffixes from the suffix array, i.e. LCP[i] = |
LCP(S[SA[i — 1]..],S[SA[i]..])], O0<i<n. By definition,
LCP[0] = —1. An example LCP array for the running
example is shown in the third column of Table 1.
Originally, Manber and Myers (35) utilized LCP arrays
to speed up exact substring matching on suffix arrays to
achieve an O(m+logn+|occ(P, S)|) time bound. Recently,
Grossi (36) proved that the O(m+logn+ |occ(P, S)|) time
bound for exact substring matching can be reached by
using only S, SA(S) and O(n/log” n) sampled LCP array
entries. Furthermore, it is possible to encode those
sampled LCP array entries inside a modified version of
SA(S) itself. However, the details of this technique are
rather technical and fall beyond the scope of this review.
Later, Kasai et al. (38) showed how all bottom-up traver-
sals of suffix trees can be mimicked on suffix arrays in
linear time by traversing LCP arrays. In fact, LCP(S) rep-
resents the tree topology of ST(S). Recall that internal
nodes of suffix trees group suffixes by their LCPs. In
enhanced suffix arrays, internal nodes are represented by
‘LCP intervals’ ¢-[i..j]. Formally, an interval £-[i..J],
0<i<j<nis an LCP interval with ‘LCP value’ ¢ if for
every i<k<j. LCP[k]>¢ and there exists i<k<j
LCP[k] = ¢ and LCP[i]<¢ and LCP[j+ 1] <¢. The LCP
interval 0-[0..n — 1] is defined to correspond to the root of
ST(S). Intuitively, an LCP interval is a maximal interval
of minimal LCP length that corresponds to an internal
node of ST(S). As an illustration, LCP interval 1-[1..5]
with LCP value 1 of the example string S in Table 1
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corresponds to internal node v with label ¢(v) =2 in
Figure 1. Similarly, subinterval relations among LCP
intervals relate to parent—child relationships in suffix
trees. Abouelhoda er al. (19) have shown that the
boundaries between LCP subintervals of LCP interval
£-[i..j] are given by the ‘¢-indexes’ for which it holds
that LCP[k] = ¢, i <k <j. Singleton intervals correspond
to leaves in the suffix tree and non-singleton intervals cor-
respond to internal nodes. Consider, for example, the LCP
interval 1-[1..5] in the running example. Its £-indexes are
3 and 4. The resulting subintervals are LCP intervals
3-[1..2] and 2-[4..5] and singleton interval [3..3]. The
above definitions thus generate a virtual suffix tree called
the ‘LCP interval tree’. Note that the topology of this tree
is not stored in memory, but is traversed using the arrays
SA(S) and LCP(S).

Fast top-down searches of suffix trees not only require
their tree topology, but also constant time access to child
nodes. For an LCP interval ¢-[i..j], this means constant
time access to its ¢-indexes. This information can be
precomputed in linear time for the entire LCP interval
tree and stored in another array of enhanced suffix
arrays, the ‘child array’. The first £-index is either stored
in 7 or j [the exact location can be determined in constant
time (19)] and the next £-index is stored at the location of
the previous ¢-index. The child array for the running
example is given in the fourth column of Table 1. As an
example, again consider LCP interval 1-[1..5]. The first
¢-index (3) is stored at position 5 and the second £-index
(4) is stored at position 3. Since child[4] = 5 is equal to the
right boundary of the interval (which cannot equal ¢ by
definition), 4 is the last ¢-index. The child array allows
enhanced suffix arrays to simulate top-down suffix tree
traversals.

As a final step towards complete suffix tree expressive-
ness, suffix arrays can be enhanced with ‘suffix link arrays’
that store suffix links as pointers to other LCP intervals.
These pointers are stored at the position of the first
¢-index of an LCP interval because no two LCP intervals
share the same position as their first ¢-index (19). This
property and the suffix link array for the running
example can be checked in Table 1.

With three extra arrays added, enhanced suffix arrays
support all operations and traversals on suffix trees using
the same time complexity. However, the simple modular
structure allows memory savings if not all traversals are
required for an application. Furthermore, array represen-
tations generally show better locality than most standard
suffix tree representations, which is important when con-
verting the index to disk, but also improves cache usage in
memory (39). Practical implementation improvements
have further reduced memory consumption (40) of
enhanced suffix arrays and have speeded up substring
matching for larger alphabets (41). In practice, several
state-of-the-art  bioinformatics tools make use of
enhanced suffix arrays for finding repeated structures in
genomes (Vmatch), short read mapping (5) and genome
assembly (16). If memory is a concern, enhanced suffix
arrays occupy about the same amount of memory as
regular suffix trees and are thus equally inapplicable for
large strings. Suffix arrays (without enhancement) are
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preferred for exact substring matching in very large
strings.

Compressed suffix arrays

Although suffix arrays are much more compact than suffix
trees, their memory footprint is still too high for extremely
large strings. The main reason stems from the fact that
suffix arrays (and suffix trees) store pointers to string pos-
itions. The largest pointer takes O(log n) bits, which
means that suffix arrays require O(nlog n) bits of
storage. This is large compared with O(nlog|X|) bits
needed for storing uncompressed strings. A demand for
smaller indexes that remain efficient gave rise to the de-
velopment of ‘succinct indexes’ and ‘compressed indexes’.
Succinct indexes require O(n) bits of space, whereas the
memory requirements of compressed indexes is in the
order of magnitude of the compressed string (42).

Many types of compressed suffix arrays (43) have
already been proposed [see Navarro and Mékinen for a
recent review (42)]. They are usually centered around the
idea of storing ‘suffix array samples’, complemented with
a good compressible ‘neighbor array’ W(S). To understand
the role of the array W(S), the concept of ‘inverse suffix
arrays’ SAT'(S) is introduced for which holds that
SA'[SA[i]]=SA[SA™'[{]] = i. W(S) can then be defined
as W[i]=SA'[SA[i]+ | mod(n — 1)] for 0 <i < n. This def-
inition closely resembles that of suffix links and it will thus
come as no surprise that in practice W can be used to
recover suffix links (44). Consequently, the array W can
be used to recover suffix array samples from a sparse rep-
resentation of SA(S). This is illustrated using the running
example string from Table 1. Assume that only SA[0],
SA[6] and SA[11] are stored and that the value of SA[10]
is unknown. Note that W[10] = 1 and SA[1] =4 =3+1,
i.e. the requested value plus one. A sampled value of
SA(S? is reached by repeatedly calculating W[W[..\¥[10]]]
= W10]. In the example k = 2, because W[Y[10]] = 6.
Consequently, SA[10] = SA[6]—k=5—-2=3. A more
detailed discussion about compressed suffix arrays is
given in the next section.

The Burrows—Wheeler transform

Several compressed index structures, most notably the
FM-index (45), are based on the Burrows—Wheeler trans-
form (46) BWT(S). This reversible permutation of the
string S is also known to lie at the core of compression
tools such as the fast ‘bzip2’ compression tool.

The Burrows—Wheeler transform does not compress a
string itself, rather it enables an easier and stronger com-
pression of the original string by exploiting regularities
found in the string. Unlike SA(S) that is a permutation
of the index positions of S, BWT(S) is a permutation of
the characters of S. As a result, BWT(S) only occupies
O(nlog|%|) bits of memory in contrast to O(nlog n) bits
needed for storing SA(S). As it contains the original string
itself, the Burrows—Wheeler transform does not require an
additional copy of S for string searching algorithms. Index
structures having this property are called ‘self-indexes’.

Intuitively, the Burrows—Wheeler transformation orders
the characters of S by the context following the characters.

Table 2. Conceptual matrix M containing the lexicographically
ordered n cyclic shifts of S = ACATACAGATGS

i SISA[] BWTI[] offset]i] LF[1]

ACATACAGAT
CAGATGS$ACA
CATACAGATG
GATGS$SACATA
TACAGATGSA
ATGS$ACATAC
AGATGSACAT
ATACAGATGS
SACATACAGA
ATGSACATAC
ACAGATGSAC
GSACATACAG

—
NPHER WL~ OINO O

— OO0 BN W —= O
HHEQQ QP » P »n
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M][0..11,0] contains the lexicographically ordered characters of S and
M][0..11,11] equals BWT(S). The last two columns are required for the
inverse transformation. offset[/] stores the number of times BWT[i] has
appeared earlier in BWT(S). The last column LF[i] contains pointers
used during the inverse transformation algorithm: if S[i] = BWTJj], then
BWTI[LF[]] = S[i —1].

Thus, characters followed by similar substrings will be
close together. A simple way to formally define BWT(S)
uses a conceptual n x n matrix M whose rows are formed
by the characters of the lexicographically sorted n cyclic
shifts of S. BWT(S) is the string represented by the last
column of M, or BWT[i]= M[i, n— 1], 0 <i<n. Note that
the rows of M up to the character § also represent the
suffixes in lexicographical order, or, equivalently, in
suffix array order. Thus, the first column of M equals
the first characters of the suffixes in suffix array order,
from which follows that BWT(S) can also be defined as
BWT[i]= S[SA[i] — 1 modn], 0 <i<n, where the modulo
operator is used for the case SA[i{] = 0. From this defin-
ition it immediately follows that BWT(S) can be con-
structed in linear time using SA(S). BWT(S) for the
running example can be found in Table 1, column 8§,
whereas the complete matrix M is given in Table 2.

The inverse transformation that reconstructs S from
BWT(S) is key to uncompression algorithms and the
string matching algorithm utilized in compressed index
structures. It recovers S back-to-front and is based on a
few simple observations. First, although BWT(S) only
stores the last column of M, the first column of M is
easily retrieved from BWT(S) because it is the lexico-
graphical ordering of the characters of S [and thus also
BWT(S)]. Moreover, the first column of M can be repre-
sented in compact form as an array C(S) that stores
the number of characters in S that are lexicographic-
ally smaller than character ce€X. More precisely:
Cle] =3, .. loce(e;, S)I, ¢;€ . For the running example,
C(S) =10,1,6,8,10] can be retrieved from Table 2. A
second observation is that BWT(S) stores the order of
characters preceding the suffixes in suffix array order. As
a result, if the character at position i (S[i]]) has been
decoded and the lexicographical order of suffix S[i..] is
known to be j, character S[i—1] is found in BWTJj].
Finally, the most important observation that allows for
the retrieval of S from BWT(S) is that identical characters



preserve their relative order in the first and last columns
of M. To see the correctness of this observation, let
BWT[i] = BWT[j] = ¢ for i<j. The lexicographical
ordering of the cyclic permutations means that the suffix
in row i of M corresponding to SA[:] is lexicographically
smaller than the suffix in row j corresponding to SA[/].
From ¢S[SAJi]..] < ¢S[SA[j]..] it then follows that the
location of character ¢ corresponding to BWTI]
precedes the location of character ¢ corresponding to
BWT]j] in the first column of M. The relative order of
identical characters in BWT(S) is captured in the array
offset(S): offset[;] stores the number of times that
character BWTJ[i] occurs in BWT(S) before position
i, ie. offset[i]=|occ(BWT[{,BWT[..i—1])], O0<i<n.
Given a position i in BWT(S), the corresponding character
in the first column of M can then be found at position
LF[i] = C[BWT[{]] + offset[i]. The array LF(S) is called the
‘last-to-first column mapping’.

The above observations allow the back-to-front
recovery of S from BWT(S) utilizing a zig-zag algorithm.
Starting in row i, of BWT(S) containing character §, the
position of the previous character of S is found in row
LF[iy] = i;. The next preceding character is found on
row i = LF[i;] in BWT(S), and so on. Thus, to find the
row of the next preceding character, the algorithm looks
horizontally in Table 2 and the actual character is
retrieved from the BWT column on that row in Table 2.
Note that neither M nor its first column are ever used
explicitly during the algorithm. They only serve to
understand the procedure for the inverse transformation.
In practice, C(S) and offset(S) are first constructed from
BWT(S). During each step, LF[i;] is calculated using C(S)
and offset(S) and BWT[LF[i]] is returned as the preceding
character. As an example, M, offset(S) and LF(S) for the
running example can be found in Table 2 and C(S) is given
above. S[SA[0]]=9$ is preceded by the character
BWTTJip] = G in the running example. Consequently, G$
is the lexicographical first suffix that starts with G, which
translates into offset[i)] = 0. The first row of M whose
corresponding suffix starts with G has row number
C[G] = 8. Adding the number of suffixes that also start
with G, but are lexicographically smaller than G$ (=0),
returns the position in BWT(S) of the next character that
will be decoded. BWT[8+0] = BWT[LF[0]] = T = S[9].
In the next step, S[8] is retrieved by computing
LF[8] = 11 and BWT[11] = A. Eventually, S is retrieved
in O(n) time using the LF-mapping.

The Burrows—Wheeler transform by itself only
permutes strings without compressing them. It is,
however, easier to compress BWT(S) than the original
string S, as the order of the characters in BWT(S) is
determined by similar contexts following the characters,
analogous to the way suffixes are grouped by LCPs in
suffix trees. An immediate consequence is that run-
length encoding, which encodes runs of identical
characters by their length, shows good compression
results for BWT(S). Apart from run-length encoding
(45,47), move-to-front lists (45), wavelet trees (42,47,48)
and several entropy encoders, such as Huffman codes
(49,50), have also been used successfully to compress
BWT(S). For a complete overview on compression
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techniques based on the Burrows—Wheeler transform, we
refer to the book of Adjeroh et al. (51).

Analogous to suffix arrays, BWT(S) can be used to find
exact matches of substrings by applying binary search.
Similar to compressed suffix arrays, binary searching
BWT(S) requires auxiliary data structures, including
Y(S) and (sampled) SA(S) (51), resulting in compressed
suffix arrays. Given the relation between BWT(S) and
SA(S), BWT(S) can also be utilized for constructing
other compressed suffix arrays (52). Moreover, suffix
trees, suffix arrays and other non-self-indexes require a
copy of the indexed string S, which can be replaced by a
compressed form of BWT(S) to reduce space.

FM-indexes

Another search method for exact string matching can be
applied to Burrows—Wheeler transformed strings, using
ideas from the inverse transformation algorithm. This
method is referred to as ‘backward searching’ and forms
the basic search mechanism of ‘FM-indexes’ (45). FM-
index is the short name given by Ferragina and Manzini
to their full-text self-indexes that require ‘minute amount
of space’. The space requirement is proportional to and
sometimes even smaller than that of the indexed string.
FM-indexes can be constructed in O(n) time and all
occurrences of pattern P can be located in O(m+ |occ(P,
S)|log n) time. Note that finding |occ(P, S)| only requires
O(m) time, which makes that FM-indexes have theoretical
optimal time and space requirements for counting the
number of occurrences of a pattern in a string.

The backward search algorithm employed by FM-
indexes requires BWT(S), C(S) and a 2D n x |X| array
rank(S) [In many papers, rank(S) is referred to as
Occ(S), but to avoid confusion with occ(P, S), the name
‘rank’ is used]. This array is defined as rank[i, ¢]=|occ
(¢, BWTI[..i])|, 0<i<n, ce X. For the running example,
rank(S) is shown as columns 9 — 13 in Table 1. The role of
rank(S) is similar to the role offset(S) plays in the inverse
transformation of BWT(S). However, while offset(S) only
stores information on the number of occurrences of one
character for each index position, rank(S) contains this
information for all the characters in the alphabet in all
index positions. The extra information contained in
rank(S) compared with offset(S) gives it the advantage
of granting random access to LF(S). Furthermore,
rank(S) is easier to compress than offset(S) or LF(S) (51).

During the course of the search algorithm, P is matched
from right to left. For every step 7, 0 <i<m, an interval
BWT[s; .. ¢;] is maintained that contains all occurrences of
Plm —i..]. Initially, [sq..eo]=[0..n— 1], and after m steps
[$,. .- €] contains the suffix array interval corresponding to
occ(P, S). Given [s;..¢;] and ¢ = P[m—i—1], the next
interval is found using the formulas s;; = C[c]+ rank[c,
s;—1] and e;1 = C[c]+rank[c, e;+1]—1. Here, array
C(S) is used to locate the interval of suffixes starting
with ¢ in SA(S) and array rank(S) is used to find the
number of suffixes starting with ¢ that are
lexicographically smaller and larger than the ones
prefixed by c¢P[m—i.]. As an example of backward
searching, again consider matching P = CA to the
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running example in Table 1. Initially, the backward search
interval is [0..11]. Since C[a]=1 and C[C] =6, the
backward  search interval narrows down @ to
[s1..e1] = [1..5] in the next step, which corresponds to the
suffix array interval containing suffixes starting with A.
Note that BWT[3] = BWT[4] = C, so there are two
suffixes starting with A that are preceded by C.
Consequently, s, = C[C]+rank[0, C]=6+0=6 and
e, = C[C]+rank[5, C]—1=6+2—1=7. The answer
loce(P, S)| =7—6+1 =2 is found in O(m) time. rank]0,
C] = 0 means that there are no suffixes starting with C
located in SA[0..0] and rank[5, C] = 2 means that there
are 2 suffixes starting with C located in SA[0..5].
Also note the resemblance between LF-mapping
and backward search: s, also could have been found as
the first occurrence of C in BWTJL..5], which is 3:
LF[3] = 6 = 5,. Likewise, ¢, could have been found as
the last occurrence of C in BWTJL..5]. However, instead
of locating these occurrences, note that offset[3] = rank[3,
C]—1 =rank[l, c]—1. Thus, the offset(S) values are
stored in rank(S) at the boundaries of every interval,
allowing search intervals to be narrowed down in
constant time. As a result, the reverse search algorithm
of the FM-index simulates a top-down search in a suffix
‘trie’, i.e. a suffix tree where every edge label contains only
a single character.

After backward searching has terminated, occ(P, S) is
still unknown. Using LF-mapping, this set can be
retrieved from the interval BWT]s,, .. ¢,,]. One possibility
is to count the number of backward searches it takes to
reach character $ for every s,,<i<e,. However, this
would require too much time. To achieve better
performance, FM-indexes mark additional positions
with suffix array values in BWT(S). The number of
suffix array values stored constitutes a time-space trade-
off. Recall that LF[i] returns the position in SA(S) of
suffix S[SA[/]—1..]. Thus SA[LF[i]] = SA[{]—1, such
that LF(S) can be used to find the next smaller suffix
array value. The ability of LF(S) to find smaller suffix
array values is used as an argument to classify FM-
indexes as compressed suffix arrays (45). Moreover,
LF(S) and W(S) are each others’ inverse: SA[LF[{]] =
SA[i]—1 and SA[Y[]] = SA[i]+1, hence LF[Y[{]] =
WILF[{]] = i.

FM-indexes combine fast string matching with low
memory requirements. Their original design (45) com-
presses BWT(S) using move-to-front lists, run-length
encoding and a variable-length prefix code. In the
original paper, rank(S) was compressed using the ‘Four-
Russians’ technique (53). Roughly speaking, this
technique comes down to subdividing the problem into
small enough subproblems and indexing all solutions to
these small problems in a global table. The subdivision
into smaller subproblems is done by recursively splitting
arrays into equally sized blocks and storing answers
to queries relative to the larger parent block. Other
compression methods have been proposed that show
better performance in practice (49) or that give different
space-time trade-offs (47,48,50,54,55).

Since they allow fast pattern matching while having
small memory requirements, FM-indexes have become a

very popular tool for different types of genome analyses.
Compressed full-text index structures are mainly used
for exact string matching, but algorithms for inexact
string matching exist (51,56). FM-indexes have started to
become used as part of de novo genome assembly
algorithms (17) and are supporting popular tools for
mapping reads to reference sequences such as Bowtie
(7), BWA (8) and SOAP2 (9).

TIME-MEMORY TRADE-OFFS

The increase in sequencing data requires efficient
algorithms and data structures to form the backbone of
computational tools for storing, processing and analyzing
these sequences. Without the use of index structures, many
algorithms that rely on string searching would become
unfeasible due to a long execution time. However, index
structures also incur a memory overhead to sequence
analysis.

Over the last decade, much energy has been put into
decreasing the memory consumption of index structures.
The proposals differ in the performance overhead incurred
by lowering the memory footprint. Some index structures
suffer from a logarithmic slowdown, while others allow
for the tuning of the space-time trade-off. There are
indexes that have been especially designed for certain
types of data, whereas others are tweaked for particular
hardware architectures. An example of a data-specific
property influencing index structure performance is
the alphabet size of the sequences. Another major factor
that allows classifying index structures is their
expressiveness. Suffix trees are considered to have full
expressiveness (29), supporting a large variety of string
algorithms. Conversely, the bulk of recent compressed
self-index structures are limited to performing mainly
(in)exact string matching. These string matching self-
indexes are often compared on the basis of four criteria:
their performance of extracting a random substring of S,
calculating |occ(P, S)| and occ(P, S) and their size. An
overview of the memory taken by several index structures
discussed in this section can be found in Table 3. This
table represents memory requirements both in general
terms of number of bits required per indexed character,
as well as in terms of its size for indexing full genomes.
Note, however, that the list of index structures in Table 3
is not complete nor gives a full overview of the memory-
time trade-offs. For example, external memory index
structures were omitted, but can be found in ‘Index
structures in external memory’ section. Additionally,
peak memory requirements during construction can be
much higher than the figures described here (see
‘Construction’ section). Furthermore, index structures
contain parameters that allow manual tuning of the
memory-time trade-off. Finally, because the expressive-
ness differs greatly between index structures, Table 3
does not include any time-related results. Partial results
for some algorithms can be found elsewhere (39,54,57,58).

The remainder of this section focuses on the basic
principles behind these index structures and the



Table 3. Representative memory requirements for different index
structure implementations, expressed both as bits per indexed
character (column 2) and estimated size in megabytes for several
known genomes (columns 3-5)

Name index structure  Bits/char Size for genome in MB Reference

Yeast Fruit fly Human

2-bit encoded string 2 3 35 775 NCBI*
CSA Grossi et al. 2.4 4 42 931 (59,60)
FM-index 3.36 5 59 1302 (45,39)
SSA (best) 4 6 70 1551  (47,57)
CST Russo et al.® 5 8 87 1939 (61,62)
CSA Sadakane (best) 5.6 8 98 2171 (63,64)
LZ-index (best) 6.64 10 116 2574 (57)

byte encoded string 8 12 139 3102 NCBI*
CST Navarro® 12 18 209 4653  (62)
SSA (worst) 20 30 349 7754 (47,57)
CST Sadakane® 30 45 523 11 632 (44,62)
LZ-index (worst) 352 53 614 13 648 (65,39)
Suffix array 40 60 697 15509 (35)
Enhanced SA 72 109 1255 27916 (19)
WOTD suffix tree 76 115 1325 29 467 (33)
ST McCreight 232 350 4045 89 952 (34,33)

Column 6 contains references to the original theoretical proposals and
an additional reference to the articles from which these practical
estimates originate. For ease of comparison purposes, the index
structures are sorted by increasing memory requirements. As a
reference, the original (non-indexed) sequence is also included (bold),
both stored using 2-bit encoding and byte encoding.

?Genome sizes were taken from the NCBI genome information
pages http://www.ncbi.nlm.nih.gov/genome of Saccharomyces cerevisiae
(yeast), Drosophila melanogaster (fruit fly) and Homo Sapiens (human).
®Mean of the interval of possible memory requirements given in (62).

memory-time trade-offs induced by design choices and
confounding factors such as application and data types.

Uncompressed index structures

Choosing appropriate data structures for implementing
the different components of suffix trees forms a basic
step in lowering their memory requirements. These
components include nodes, edges, edge labels, leaf
numbers and suffix links. The topological information of
ST(S) and the edge labels are traditionally stored as
pointers, resulting in suffix trees that require O(n) words
of usually 32 bits. Note that for very large strings
(n>2%%~4.10°) 32 bits is insufficient for storing the
pointers, thus larger representations are required. This
factor is often overlooked when presenting theoretical
results.

There is only one major O(|X|)-sized memory-time
trade-off in this traditional representation. This trade-off
comes from the data structure that handles access to child
vertices. Most implementations make use of—roughly
ordered from high-memory requirements to low access
time—static arrays, dynamic arrays (39), hash tables,
linked lists and layouts with only pointers toward the
first child and next sibling. Furthermore, mixed data
structures that represent vertices with different numbers
of children have also been proposed (66). Note that
for DNA sequences, |X| is very small, turning array
implementations into a workable solution. Also note
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that algorithms that perform full suffix tree traversals,
such as repeat finding and many other string problems
(29), do not suffer from a performance loss when
implemented with more memory-efficient data structures.

In practice, suffix trees and suffix arrays require
between 34n and 152n bits of memory. The suffix tree
implementations described by Kurtz (66) perform very
well and are implemented in the latest release of
MUMmer (10), an open-source sequence analysis tool.
The implementation in MUMmer allows indexing DNA
sequences up to 250 Mbp on a computer with 4 GB of
memory. Single human chromosomes are thus well within
reach of standard suffix trees. Another implementation by
Giegerich et al. (33) is even smaller, but lacks suffix links.
Enhanced suffix arrays (19) also reach full expressiveness
of suffix trees, as described in the previous section. When
carefully implemented, they require anything between 40n
and 72n bits. Enhanced suffix arrays use a linked list to
represent the vertices of the tree. However, the O(|X|)
performance penalty for string matching can be reduced
to O(llogX|) (41). Furthermore, enhanced suffix arrays
form the basis of the Vmatch program that finds different
types of exact and approximate repeats in sequences of
several hundreds of Mbp in a few seconds. Moreover,
according to a comparison between several implementa-
tions of suffix trees and enhanced suffix arrays (39),
enhanced suffix arrays show the best overall performance
for both the memory footprint and the traversal times.
Finally, their modular design allows replacing some
arrays by a compressed counterpart to further reduce
space.

Sparse indexes

An intuitive solution for decreasing index structure
memory requirements is sparsification or sampling of
suffixes or array indexes. ‘Sparse suffix trees’ (67) and
‘sparse suffix arrays’ (68) adopt the idea of utilizing a
sparse set of suffixes, whereas compressed suffix arrays
and trees sample values in W(S), C(S), rank(S) and other
arrays involved in their design. As a consequence of
sparsification, more string comparisons and sequential
string searches are required. This, however, gives the
opportunity to optionally tweak the size of the index
structure based on the available memory. Although
compressed index structures have received more attention
in bioinformatics applications, sparse suffix arrays have
been successfully used for exact pattern matching,
retrieval of maximal exact matches (69) and read
alignment (70). Furthermore, splitting indexes over
multiple sparse index structures has been used for index
structures that reside on disk (71) and for distributed
query processing (72).

Word-based index structures are special cases of sparse
index structures which only sample one suffix per word.
Although word-based index structures are most popular in
the form of inverted files, word-based suffix trees (73,74)
and suffix arrays (68) also exist. Although it is possible to
divide biological sequences into ‘words’, word-based index
structures are generally designed to answer pattern
matching queries on natural language data. On natural
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language data, Transier and Sanders (75) found that
inverted files outperformed full-text indexes by a wide
margin. Unfortunately, the inverted files were not
compared against word-based implementations of suffix
trees and suffix arrays. A somewhat dual approach was
taken by Puglisi et al. (76), who adapted inverted files to
become full-text indexes able to perform substring queries.
They found compressed suffix arrays to generally
outperform inverted files for DNA sequences, but the
opposite conclusion was drawn for protein sequences. It
turns out that compressed suffix arrays perform relatively
better compared with inverted files when searching for
patterns having fewer occurrences. Note that both
comparative studies were performed in primary memory.

Compressed index structures

Compressed and succinct index structures are currently
the most popular forms of index structures used in
bioinformatics. Index structures such as compressed
suffix arrays and FM-indexes are gradually built
into state-of-the-art read mapping tools and other
bioinformatics applications. Where traditional index
structures require O(nlog n) bits of storage, succinct
index structures require O(n) bits and the memory
footprint of compressed index structures is defined
relative to the ‘empirical entropy’ (77) of a string.
Furthermore, these self-indexes contain S itself, thus
saving again O(n) bits. Theoretically, this means that the
size of compressed index structures can become a fraction
of § itself. In practice, however, DNA and protein
sequences do not compress very well (2,70). For this
reason, the size of compressed index structures is
roughly similar to the size of storing S using a compact
bit representation. The major disadvantage of compressed
index structures is the logarithmic increase in computation
time for many string algorithms. This is, however, not the
case for all string algorithms. For example, calculating
locc(P, S)| can still be done in O(m) time for some
compressed indexes. These internal differences between
compressed index structures result from their complex
nature, as they combine ideas from classical index
structures, compression algorithms, coding strategies and
other research fields. In the following paragraphs, the
conceptual differences of state-of-the-art compressed
index structures are surveyed, illustrated with theoretical
and practical comparisons wherever possible. A more
technical review is found in (42).

Auxiliary data structures

Understanding the organization details and properties of
compressed index structures requires prior knowledge of
the auxiliary data structures involved in their design.
Compressed indexes consist of many auxiliary structures
that influence their memory-time trade-off, and have
properties that dictate their expressiveness and perfor-
mance for certain types of data. Representation of these
auxiliary structures forms an active field of research. What
follows is a brief summary of several commonly used
auxiliary structures, not including the rather technical
implementation details.

Almost all compressed index structures make use of bit
vectors B to support random access and rank(B) and
select(B) queries. Intuitively, rank(B) queries count the
number of zeroes or ones before a certain index in the
vector. Dual to this, select(B) queries return the position
in B of the i-th zero or one. They often play a role in
granting random access to a compressed or permutated
string. Their usefulness, however, goes further than
being mere building blocks of compressed index
structures. For example, they can also be used to
succinctly represent de Bruijn graphs (15), a typical data
structure used in de novo genome assembly. Formally,
rank(B) is represented as a 2D array defined by
rank[i, c]=|occ(c, B[..i])|, 0<i<|B|, c€{0, 1}, similar
to rank(S) for FM-indexes. select(B) is defined as
select[i, c¢]=j iff i=rank[j, ¢], 0<i<]occ(c, B),
c€{0, 1}. These data structures and their generalizations
to non-binary strings strongly influence the memory-time
trade-off of compressed index structures (48). As an
example, the array rank(S) used in FM-indexes takes up
to half of its size. As is the case for other data structures,
there is no single optimal implementation for every
application, but many proposals exist (78-80). The
performance also depends on the restrictions imposed by
the compressed index structure or the properties of the
data, such as the sparsity of the original bit vector.
From extremely sparse to more balanced, the best
implementations require 0.2n bits (80) (1% ones), 0.8n
bits (79) (20% ones) and 1.4n bits (80) (50% ones).

The above results for bit vectors have been generalized
to non-binary strings (48,79), as worked with in
many applications, including FM-indexes. A simple idea
toward such a generalization is to create | X| bit vectors B,,
with B[] =1 iff S[j]=c¢. However, this entails an
overhead both in time (random access to S) and
memory. A careful implementation allows eliminating
this overhead (48), but ‘wavelet trees’ (59) form an even
more elegant solution.

Wavelet trees are balanced binary trees with | 2| leaves.
Every node v in the tree represents a subsequence S’ of
S formed by the concatenation of all characters that
belong to some interval X[i..j]. The two children of v
are the subsequences formed by the concatenation of
all characters of S’ that belong to X[i..[i+j/2]] and
X[[i+j/21+ 1.j] respectively. Vertex v itself is
represented by a bit vector B of size |S’| that is defined
as B[] =0 iff S'[i] € Z[i..[i+j/2]]. Furthermore, B is
preprocessed as to resolve rank(B) and select(B) in
constant time. The wavelet tree for BWT(S) of the
running example is shown in Figure 2, and has the same
functionality as BWT(S) and rank(S). From this figure,
BWTI9] can be found as follows. The root bit vector
learns that Bs[9] = 0, meaning that BWT[9] is a character
from the first half of the alphabet. Since Bx[9] is the sixth
occurrence of 0 in By (rank[9,0] = 5), it corresponds to
Benc[S] (zero-based index). Repetition of this procedure
for the vertices corresponding to S¢ac = SCCAAAAA and
Ssa = SAAAAA yields BWT[9] = A. rank(S) queries can be
resolved in a similar way. Further research on wavelet
trees gave rise to Huffman-shaped wavelet trees (60) and
non-binary wavelet trees (48). This elegant, but somewhat
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Figure 2. Wavelet tree for indexing string S = GTSCCGAATAAA. Only
the binary strings are stored in practice. Subsequences of S are shown
only to ease the interpretation. This figure does not include data
structures for resolving rank and select queries for every bit vector.
For this small example, however, the answer to these queries is
straightforward.

complex data structure, has become very popular in index
structure design. As an example result, all maximal repeats
occurring in the complete human genome could be found
in <17 h on a desktop PC (81) with 8 GB internal memory
using an index structure based on the Burrows—Wheeler
transform combined with a sparse wavelet tree implem-
entation of the LCP array. Similar tests using suffix trees
or enhanced suffix arrays failed due to the memory
bottleneck.

Other important index structure building blocks are
auxiliary tree representations. Index structures use
various types of trees, but a common design problem is
the representation of their topology. As an example, suffix
tree topology is traditionally implemented using pointers,
requiring O(nlogn) bits of memory. In contrast, a popular
way to succinctly represent tree topology by a sequence of
balanced parentheses (82) only requires 2n+ o(n) bits of
memory. This implementation represents nodes in the tree
as a pair of parentheses ‘(). The nested structure of the
parentheses then represents the tree (83), similar to a
reduced form of the known Newick Tree Format (84).
More tree operations are generally supported in constant
or near-constant time by succinct tree topology
representations compared with classical pointer-based
representations, which only supports top-down traversals
in constant time. Node depth, subtree size and the lowest
common ancestor of two nodes (85) are examples of
properties that can be retrieved in constant time from
succinct representations where pointer-based representa-
tions require additional data structures to achieve the
same performance. In theory, this means that a highly
expressive suffix tree topology can be stored using
4n+o(n) bits instead of 64n bits using 32-bit pointers.
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Note, however, that the o(n)-term may become large
in practice and even surpass the higher order term.
For biological sequences, tests (83) show that these
representations require something in between 2.1 and
4.84 bits per node, which has to be multiplied by 2n
nodes in the worst case.

Retrieval of the lowest common ancestor of two nodes
vi and v,, mentioned in the previous paragraph, is a
fundamental operation for inexact string matching
algorithms (29). Denoted by LCA(vq, v»), it is defined as
the unique node v3 for which holds that £(v3) = ¢(LCA(vy,
v,)) = LCP(£(v1), £(v»)). This operation is supported by a
combination of LCP arrays and data structures for
resolving range minimum queries (86). This directly
follows from the definition of LCA(v;, v,). Range
minimum query data structures return the positions of
the smallest values in any interval of an array. In LCP
arrays, they return the length of the LCP of any two
suffixes. Furthermore, range minimum query data
structures can replace the child array in enhanced suffix
arrays (40), because £-indexes are the positions of minimal
values in LCP intervals.

Compressed suffix arrays

Compression of suffix arrays is based on storing a sparse
representation of SA(S) and storing W(S) in compressed
form. W(S) has the property that it is increasing in areas
of SA(S) that point to suffixes starting with the same
character (87), which makes it compressible. The first
real compressed suffix array was designed by Grossi and
Vitter (43,87). They built on a hierarchical decomposition
of SA(S) that halves the size of SA(S) in every level by
removing values pointing to odd suffixes and dividing
even suffix array values by two. W(S) is stored in every
level for odd suffix array values. rank(S) and select(S) data
structures are used to retrieve the parity of suffixes on
every level of the hierarchy and in an encoding of W(S)
(43,88). The number of levels stored in this representation
is a parameter that tunes the memory-time trade-off.

Sadakane (63) further improved the above implementa-
tion by incorporating the compressed string into the index
structure. A basic version of this self-index does not
allow direct access to SA[i], but instead allows access to
S[SA[{]], which is sufficient for pattern matching and
finding |occ(P, S)|. Direct access to SA[i]] and SA™[]]
and random access to S is achieved by incorporating the
hierarchical structure by Grossi and Vitter. Sadakane’s
compressed suffix array was implemented (64) and
constructed for the human genome. The index required
~5.6n bits of memory, resulting in an overall memory
footprint of <2 GB. Additionally, Sadakane designed a
backward search algorithm, similar to that used by FM-
indexes, for counting patterns (89). This strategy is much
faster than the traditional binary search used by suffix
arrays.

Other compressed suffix array designs incorporated
wavelet trees (59). In practice, an example implementation
(60) required 2.4n bits of memory for real DNA sequences.

A different solution to lower the memory requirements
of suffix arrays was used for ‘compact suffix arrays’ (90).
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Here, the compression is based on self-repetitions, so-
called runs, in SA(S). These are suffix array intervals
[i..i+ €] for which another interval [j..j+£] exists such
that SA[i+k] = SA[j+k]+1 for 0<k<¢. In practice,
compact suffix arrays take up more memory than
existing compressed suffix arrays, but are also faster. It
was shown that the number of self-repetitions in SA(S)
is related to the number of equal-characters runs in
BWT(S) (91), which can be compressed by run-length
encoding. In terms of compression, however, this
technique was superseded by other FM-indexes (47).

The above compressed suffix arrays are especially
geared toward pattern matching. Some compressed
index structures (42) are able to find |occ(P, S)| in O(m)
time, but in practice they all require at least O(|occ(P,
S)|logn) time for retrieving the actual occurrences of
pattern P. Furthermore, locating the patterns requires a
lot of random accesses to the index structures, resulting in
degrading performance due to cache misses. This becomes
even more severe when ported to secondary memory (92).
This also holds for FM-indexes, as discussed further.
Gonzalez and Navarro (92) designed locally compressed
suffix arrays to cope with this problem. Their index
structures are based on sampling exact suffix array
values, differentially encoding SA(S) and encoding this
array using dictionaries. However, these index structures
are not self-indexes and have to be incorporated into
existing compressed suffix arrays or FM-indexes. In
practice, the speed for locating patterns is indeed much
faster, even compared with the Lempel-Ziv index
structures described further. However, their compression
rate is not that high, as it requires up to 85% of the size of
regular suffix arrays for DNA sequences and 70% for
protein sequences.

A practical performance comparison between com-
pressed suffix arrays and plain suffix arrays was made
by Sadakane and Shibuya (64). They both tested for the
application of approximate string matching. Compressed
suffix arrays required one sixth of the memory typically
needed by plain suffix arrays, but were 2 — 20 times slower.

FM-indexes

As previously stated, FM-indexes are compressed full-text
indexes based on the Burrows—Wheeler transform.
Different memory-time trade-offs are reached for FM-
indexes by using different techniques for compressing
BWT(S) and rank(S). As a reminder, in the original
proposal (45,55), BWT(S) is compressed by applying
move-to-front transformation, run-length compression
and a version of Elias-y prefix codes (93). rank(S) is
encoded by cutting the array in blocks and using the
Four-Russians technique. In the original practical
implementation (49), the dictionary used for the Four-
Russians technique is replaced by a linear scan of a bit
vector.

The above representation of FM-indexes is heavily
dependent on the alphabet size. A simple way to reduce
this dependence is to use a wavelet tree over BWT(S) and
use any representation of rank(S) for bit vectors in every
internal node (42). Huffman-shaped wavelet trees are used

by ‘succinct suffix arrays’ (47). In a recent practical survey
(54), this implementation shows the best known practical
time-memory trade-offs for the most used basic operations
on compressed index structures when applied to DNA
and protein sequences. Although its memory footprint is
somewhat higher (4n—20n bits) than that of the standard
FM-index, it is 20 times faster than its classical
counterpart (39). Compared to suffix trees, however, it is
20 times slower. There exist even smaller FM-indexes,
such as ‘run-length FM-indexes’ (47) that apply run-
length compression to BWT(S) prior to building a
wavelet tree. A more recent proposal by Ferragina et al.
(48), the ‘alphabet-friendly FM-indexes’, theoretically
supersedes all previous FM-index implementations. In
practice (54), however, the alphabet-friendly FM-index is
superseded by the succinct suffix array for biological
sequences. Only for strings with a large alphabet and
small high-order entropy (making them highly
compressible), such as natural language strings or XML
files, alphabet-friendly FM-indexes outperform other FM-
indexes.

Another possibility for lowering the memory
dependence of FM-indexes was explored by Grabowski
et al. (50). They first Huffman-encoded S and then
applied the Burrows—Wheeler transform. They require
sampling some characters from S additionally to the
sampling of SA(S). Their best implementation slightly
outperforms succinct suffix arrays on biological sequences
and requires 3.28n bits of memory on average.

Note that locating patterns using FM-indexes is done
by sampling suffix array values, which turns out to be
rather slow in practice. A memory-time trade-off is
imposed by the sampling rate. Improvements on the
pattern locating performance can be made by using
more complex sampling strategies, different from basic
evenly spaced sampling (49,54). An alternative is to
incorporate another index structure that supports fast
locating of patterns (55,92).

Lempel-Ziv index structures

Similar to the above compressed full-text index structures,
Lempel-Ziv indexes (94) are mainly designed for pattern
matching. Unlike the above compressed index structures,
however, Lempel-Ziv indexes are not based on suffix
arrays or the Burrows—Wheeler transform. Instead, they
build on the dictionary-based Lempel-Ziv (95) com-
pression technique. Briefly, the LZ78 (96) compression is
achieved by traversing S and replacing substrings of S
with tuples (w, ¢), where w is a word from the dictionary
and ¢ € 3. Assume that at some point, S[..i — 1] has been
compressed and the next tuple in the compressed string
is (w, ¢). w equals the code word for the longest prefix
of S[i..], say S[i..J], that is already part of the dictionary
and ¢ = S[j+1]. Furthermore, S[i..j+ 1] is added to the
dictionary. Note that there are other variants of Lempel—-
Ziv compression, similar to the technique described here,
which are omitted for the sake of brevity.

Due to space limitations, details on the structure and
search algorithms of Lempel-Ziv indexes are omitted, but
can be found elsewhere (42). What is important to note



about their structure, however, is that Lempel-Ziv indexes
contain many building blocks: compressed or sparse
(suffix) tree data structures to compactly represent the
dictionaries of forward and reverse code words, data
structures for linking those trees and several other
auxiliary data structures that answer rank(S) queries and
data structures to answer orthogonal range queries. As a
direct consequence, further improvements in these
building blocks will improve the performance of
Lempel-Ziv indexes. Compared with other compressed
index structures, Lempel-Ziv index structures require
more memory than other self-indexes on average and
they are not competitive for counting occurrences of
patterns [O(m?) time]. They, however, excel at retrieving
the exact set of all occurrences occ(P, S).

Lempel-Ziv indexes have been turned into self-indexes
by Navarro (65), who also designed an efficient
implementation (97). Further improvements in counting
occurrences were made by Ferragina and Manzini (55),
who attached FM-indexes to Lempel-Ziv indexes. Other
approaches (98,99) have minimized the redundancy
caused by an overload of building blocks and have
experimented with new auxiliary data structures. Recent
tests (54,57,99) show that those new implementations have
made Lempel-Ziv indexes more competitive compared
with compressed suffix arrays and FM-indexes, but
succinct suffix arrays are still reported to have better
memory-time trade-offs. In the near future, however,
Lempel-Ziv indexes could outperform other indexes for
highly compressible strings because all building blocks of
Lempel-Ziv index structures can be compressed, while
other compressed indexes contain sampled suffix array
values, which are incompressible (98).

Compressed suffix trees

The above compressed index structures were mainly
designed for exact string matching. As such, they do not
reach the full expressiveness of suffix trees. Examples of
this expressiveness have been previously given as
illustration of the different traversal types of suffix trees.
In recent years, efforts have been made to increase the
flexibility of compressed index structures either by
designing index-specific algorithms or by implementing
additional auxiliary data structures. Analogous to
enhanced suffix arrays, the main auxiliary data structures
used for augmenting compressed suffix arrays are succinct
representations of LCP arrays (89), data structures for
top-down tree traversals and suffix link support. As an
example, the combination of Burrows Wheeler index
structures and wavelet trees for succinct LCP arrays was
used for locating all maximal repeats in the whole human
genome (81). Ohlebush et al. (100), among others, noted
that the backward search mechanism mimics top-down
suffix ‘trie’ traversal. Using additional data structures to
simulate suffix links, they calculated maximal exact
matches between DNA sequences, using less memory
than, for example, MUMmer (10).

Instead of developing application-specific compressed
index structures, several ‘compressed suffix trees’ (44)
or ‘compressed enhanced suffix arrays’ (101) have been
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designed that even surpass the expressiveness of classical
suffix trees. Furthermore, because compressed suffix trees
extend compressed self-indexes, they are self-indexes
themselves. The difference between these structures and
the compressed suffix arrays and FM-indexes on
which they are built, is their ability to directly implement
suffix tree algorithms using these structures. Although
the extra data structures increase their memory
footprint, compressed suffix trees are still smaller than
classical suffix arrays. Furthermore, space-time trade-
offs can be tuned to a certain extent, similar to the
sparsification parameter in compressed suffix arrays and
FM-indexes.

Over the last years, several compressed suffix tree
designs have been proposed. These can be classified by
their choice of auxiliary data structures, especially the
representation of the suffix tree topology (102). They
either use sequences of balanced parentheses or implicit
representation by LCP intervals. Additional building
blocks are succinct representations of LCP arrays and
data structures for performing lowest common ancestor
queries, which in turn support suffix links. As an
example, the first compressed suffix tree reaching full
expressiveness was given by Sadakane (44). It consists of
a compressed suffix array, succinct LCP array, balanced
parentheses representation for suffix tree topology and
additional data structures for solving range minimum
queries. In practice, an engineered version (58) of this
compressed suffix tree required 25n—35n bits of memory
and was able to index the complete human genome using
only 8.5 GB. Compared with classical suffix trees, this
compressed variant is two orders of magnitude slower
on average. Nevertheless, compressed suffix trees are still
much faster than brute force algorithms. Furthermore,
many auxiliary data structures used in the design offer a
memory-time trade-off which can be optimized for the
available memory. Advancements made in representing
auxiliary data structures have led to index structures
with even smaller memory requirements (85). The
smallest compressed suffix tree we know of (61) requires
only 4n—6n bits of memory and is based on sampling the
suffix tree. This low memory footprint, however, is paid
for by giving up performance, and it is several orders of
magnitude slower than Sadakane’s compressed suffix tree
(62). Another compressed suffix tree proposed by Fischer
et al. (103) has a memory-time trade-off which lies
between the two previously mentioned compressed suffix
trees. Canovas and Navarro (62) engineered an implemen-
tation of this compressed suffix tree and compared the
impact of different LCP array implementations on the
compressed suffix tree. Depending on the implementation
of the LCP arrays used, the compressed suffix tree requires
between 87 and 16n bits of memory. A compressed
enhanced suffix array reaching full expressiveness is
given by Ohlebusch and Gog (101). However, it does
not support lowest common ancestor queries. Prospects
are that space-time trade-offs of compressed index
structures will keep improving due to improvements in
auxiliary data structures, especially improvements in
compressed suffix arrays and compressed LCP arrays.
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Index structures in external memory

The solution for the memory bottleneck suffered by (main
memory) index structures are index structures in external
or secondary memory, such as hard disks. This paradigm
shift is necessary when even the smallest compressed index
structures cannot be stored in main memory. This limit is
usually reached when even a compressed form of .S cannot
be stored in main memory. Secondary or external memory
has the advantages of low cost, abundance and the
persistence given to index structures. However, random
access to secondary memory (disk) is much slower than
random access to primary memory (RAM). In practice,
this difference can be up to five orders of magnitude (24).
Since index structures, such as suffix trees, intrinsically
access data structures and input strings in a random
manner, this leads to the so-called ‘I/O bottleneck’.
Several techniques are used to minimize the effect of this
bottleneck, both in hardware and in algorithm and data
structure design. Solid-State disks, for example, are one
order of magnitude faster than classical hard disks. Also,
sequential disk access is almost as fast as random access
on RAM. Another solution is to limit the number of 1/O
operations altogether by, for example, decreasing the size
of the index structure. Buffering is another strategy
commonly employed, as well as improving locality of
information that is closely connected. To achieve this
locality, redundancy is often introduced in the data
structure, which is opposite to the space-saving techniques
seen in main memory indexes. These techniques are not
only applied for designing the spatial layout of index
structures, but also for their traversal algorithms. In this
section, existing index structures for external memory are
reviewed with an emphasis on the high-level strategies
employed. Other, more technical, reviews on this topic
can be found elsewhere (25,71,104).

Suffix arrays

Both suffix trees and suffix arrays perform poorly when
naively implemented in secondary memory. Since of their
simple design, however, suffix arrays are easier to
implement on disk. The basic idea is to use levels of
sparse suffix arrays in faster memory to guide searches
in the full suffix array stored on disk. Baeza-Yates et al.
(105) proposed a two-level index structure. They also
augmented the sparse suffix array, stored in RAM, with
exact prefixes of the suffixes represented in the sparse
suffix array. This has the advantage that no random
access to S is needed for matching in the sparse suffix
array. Tests revealed that this implementation is five
times faster than a naive implementation (106) of a
single-level suffix array on disk. Later, Sinha ez al. (106)
replaced sparse suffix arrays by pruned suffix ‘tries’ for the
first level of the hierarchy. Again, labels on the pruned
suffix ‘trie” are explicitly stored instead of pointers to S.
Sinha et al. also improved the second level of the hierarchy
by storing SA(S), LCP(S) and substrings of S, to minimize
random access to S. Note that in primary memory,
redundancy is eliminated, whereas in secondary memory
it is introduced to increase performance. Tests showed
that this method is five times faster than the two-level

method of Baeza-Yates et al. and requires ~10 times less
non-sequential I/O operations for pattern matching.

A larger number of levels is used in the design of ‘string
B-trees’ (107). These index structures act as conceptual
B-trees (27) over suffix arrays. Similar to B-trees,
internal nodes are B-ary and the final suffix array values
are found in the leaves. To speed up the search through
the B-tree, each internal node v contains a ‘Patricia tree or
blind tree’ for the suffixes in v. Blind trees are suffix tree
variants for which edge labels are stored as the first
character of the label and its length. Pattern matching in
blind trees consists of two phases. A first phase, similar to
pattern matching in suffix trees, finds candidate positions
according to the matched characters on the edges of the
tree. A second phase explicitly compares the pattern to the
candidate substrings in S. This type of edge labeling
followed by a blind search can also be applied to all
external memory suffix tree implementations to minimize
random access to S. This data structure has the advantage
that pattern matching is theoretically I/O optimal
and updates are supported due to its B-tree nature.
Furthermore, succinct cache-oblivious string B-trees
have been developed (108). Note that string B-trees are
not suffix trees and thus do not reach full expressiveness.
Another disadvantage is that the blind search method
used is impractical for inexact string matching (109).

Distribution of suffix arrays has also been proposed
(72). This allows processing batches of queries in parallel
by dividing SA(S) in intervals or by interleaving suffix
array values. This interleaving can be done by grouping
every k-th suffix to a single computing unit or by grouping
the suffixes of a substring of S together in one node,
thus minimizing access to S. Although these designs
look promising, we have no knowledge of any recent
performance results for string matching algorithms on
biological data using any of the above external memory
suffix arrays.

Suffix trees

Because of the underlying tree data structure, efficient
implementation on disk is more difficult for suffix trees
than for suffix arrays. Although many papers about
external memory suffix trees exist, most of them focus
on construction in external memory. Less attention has
been given to optimizing suffix tree layout for traversals
and even fewer performance tests are available for
algorithms that make use of external memory suffix
trees. The most important factor in designing external
memory representations of suffix trees is the grouping
of nodes into blocks and the layout of these blocks
onto disk. Other important aspects are node and edge
label representations. For locality reasons, array-based
representations are superior to other implementations
(110) and nodes contain more information than their
primary memory counterparts, while edge labels can be
compactly represented by their first character and length
as in blind trees. An example of this strategy is one of the
earliest external suffix trees, the ‘compact Patricia tree’
(111), which uses a topology representation similar to
the balanced parentheses representation.



A very intuitive external memory suffix tree layout
is that of partitioning by prefixes. The suffix tree is
split into an upper root-block and blocks containing the
subtrees of a given prefix. This layout is similar to the two-
level hierarchical layout for suffix arrays. For top-down
traversals of the suffix tree, it works well in practice.
Furthermore, this layout is created naturally during
construction (109,110). A disadvantage, however, is its
scalability. Although these indexes can be constructed
for the human genome (112), larger sequences or data
sets suffer from either a large growth in the size of the
partitions or an exponential growth in the number of
partitions. Moreover, data skewness results in decreasing
performance, as some partitions are much larger than
others. In theory, a multi-level hierarchical structure
could alleviate the scalability problem and data skewness
has already been tackled by using variable length prefixes
(113,114). Another weakness of external memory suffix
trees are suffix links. These links imply a lot of random
access and are thus optional (113,114) or completely
omitted (109,112). On the other hand, some authors
(113) claim that the use of suffix links in external
memory improves performance of some search
algorithms, such as finding maximal exact matches.
Clifford (115) designed ‘distributed suffix trees’, which
contain a local version of suffix links, called ‘sparse
suffix links’. These links point to the local root if the
normal suffix link would point to a node in a different
partition. Clifford points out that prefix partitioning
allows traversals on the suffix tree to be run in parallel
on the distributed subtrees. Furthermore, he claims
that most bioinformatics applications do not require
traversals that require communications between the
different prefix-partitioned parts. Thus prefix-partitioning
enables the parallelization of most search algorithms on
suffix trees.

For exact pattern matching, prefix partitioned suffix
trees work well. For other queries, however, transforming
the tree layout to an already constructed prefix-partitioned
suffix tree has been proposed. The goal of changing
layouts is to increase scalability and improve the locality
of the nodes. For pattern matching, however, the new
layout could increase the number of I/O operations.
Different techniques have been proposed to achieve this
goal. Clark and Munro (111) focused on minimizing the
number of blocks required to store suffix trees using a
greedy bottom-up algorithm. ‘STELLAR’ (116), on the
other hand, focused on improving locality of nodes for
both parent—hild links as well as suffix links. Other
layouts introduce redundancy of data by having the
subtrees stored in blocks on disk overlap (117,118).
Although the redundancy introduced increases the
memory footprint of the index structures, it improves
locality of the nodes and improves the scalability of the
index structures. Care has to be taken, however, not to
destroy some of the expressiveness of suffix trees,
including LCP values and suffix links.

In practice, the largest indexed single DNA sequence
found in the literature contains 12 billion base pairs
(119). Although no extensive performance results for
string algorithms on this index were given, disk-based
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index structures are known to be several times faster
than non-indexed methods for string matching on the
scale of the human genome. Compared with string
B-trees, disk-based suffix trees require a similar number
of 1/O operations (104) for pattern matching.
Furthermore, Halachev er al. (120) showed that for
protein data, pattern matching on disk-based suffix trees
can be almost as fast as pattern matching on enhanced
suffix arrays. As an example of other applications, a
disk-based enhanced suffix array has been used to locate
repeats in human chromosomes (12).

Compressed index structures

Data compression and indexing are very important in com-
putational biology, although they seem to be opposites at
first sight. With the rise of compressed index structures,
this dichotomy can be considered solved (2) for the RAM
model. However, designing a disk-based version of these
indexes is non-trivial, because compressed suffix arrays
and FM-indexes perform many random accesses and
show a poor locality (92). Nevertheless, some compressed
index structures for external memory do exist.

Mikinen et al. (121) designed a secondary memory
version of the compressed suffix array by Sadakane (88)
using a multi-level hierarchical structure. They also
designed a distributed compressed suffix array. External
memory variants of FM-indexes have been developed by
Gonzalez and Navarro (122). They proposed external
memory versions for auxiliary data structures for
calculating rank(B) and select(B) and proposed a two-
level hierarchy for storing rank(S). Different structures
were designed for representing BWT(S) on disk, all
having different trade-offs depending on the size of the
available main memory. For fast locating, they adopted
the locally compressed suffix array designed for fast
locating (92). Arroyuelo and Navarro (123) designed an
external memory Lempel-Ziv index based on the Lempel—
Ziv index structure proposed by Navarro (65). A recent
article by Russo er al. (124) shows how parallel and
distributed compressed suffix arrays can efficiently
answer more advanced queries such as longest common
substrings. Furthermore, they designed parallel and
distributed compressed suffix trees.

Although the idea of reducing space in external memory
to reduce the number of I/O-operations is interesting, it is
not known how this affects performance in practice. Some
tests on natural language data suggest that compressed
index structures are competitive in practice, although
they are somewhat slower than string B-trees (122).

Recently, Chien ez al. (125) proposed a new trans-
formation, called the ‘geometric Burrows—Wheeler
transform’, which connects index structures with range
searching. It translates characters of a string into 2D
points and vice versa and uses the vast research on 2D
range queries to answer pattern matching queries. To
achieve a succinct representation, sparsification is used
by grouping substrings in meta characters. For external
memory purposes it uses a string B-tree to find ranges
in the sparse suffix array, while 2D search can be done
using a wavelet tree. Tests (104) show that these
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compressed index structures are smaller compared with
other external memory index structures, but they require
more I/O operations. Another application opened by these
index structures is the possibility to answer relevance
queries (104). As an example, it would be possible
to retrieve only the top k most similar sequences in a
database.

CONSTRUCTION

Before index structures can be used, they first have to be
constructed. Although construction is fast in theory, it is
not always the case in practice. The current bottlenecks in
constructing disk-based index structures for very large
strings are memory limitations in the working space,
cache misses and a high number of random accesses to
secondary memory. The working space is the amount of
memory required by the construction algorithm, which is
usually higher than the memory required by the final
index. Apart from dealing with these issues, some
research has focused on parallelizing construction
algorithms. In this section, an overview of existing
construction algorithms for various index structures is
given, illustrated with practical results found in the
literature. Note that the figures in this section represent
some of the historical breakthroughs in index structure
construction, and are not meant as a comparison
between the cited implementations. As a general reference,
reported index structure construction times for the human
genome, or for sequences in the same order of magnitude,
were in the range of a few hours on desktop computers
and in the range of minutes on clusters and specialized
hardware.

Suffix trees

Historically, suffix tree construction goes back to Weiner
(28), who gave a first O(n) algorithm. Later, Ukkonen
(126) gave a simpler O(n) algorithm, which has the nice
property of being online, i.e. a new string can be added to
the suffix tree by appending it to the back of the previous
strings. The WOTD suffix tree by Giegerich et al. (33)
comes with a lazy construction algorithm, in the sense
that suffix tree nodes are added the first time that a
traversal algorithm requires these nodes. Thus, suffix
trees can also be efficiently used for smaller applications
that do not require information about the whole tree.
The suffix links that are a by-product of Ukkonen’s
algorithm have very nice features, as discussed in
‘Popular index structures’ Section, but they are omitted
in other construction algorithms. To retrieve these suffix
links, some post-processing algorithms exist (127).
Although the above mentioned suffix tree construction
algorithms only scale up to chromosome level, they form
the basis for many external memory construction
algorithms. Although a main memory suffix tree for the
whole human genome was constructed by Kurtz (66),
most main memory index structure construction
algorithms focus on suffix arrays and compressed index
structures.

Suffix arrays

Originally, linear time suffix array construction required
the construction of the suffix tree (29). During the last
decade, however, many direct suffix array construction
algorithms have been proposed. A taxonomy of existing
suffix array construction algorithms is given by Puglisi ez
al. (128). Since suffix array construction consists of sorting
all suffixes of S, many algorithms are based on known
sorting algorithms. One of the most popular algorithms
is the recursive O(n) KS3 algorithm of Kéarkkdinen and
Sanders (129). It can be modified to a parallel and external
memory version, called DC3 (130), which can construct
SA(S) for the whole human genome using only 1 GB
RAM and for which a Message Passing Interface (MPI)
version exists that has indexed the human genome in only
a few minutes (on specialized hardware) (131). However, it
was noted elsewhere that DC3 is unable to index strings
longer than 4 Gb (132). Other algorithms try to minimize
the working space in internal memory. So-called
‘lightweight” (133,134) construction algorithms have a
working space that approaches the theoretical minimum.
Furthermore, according to extensive tests on biological
sequences made by Mori (among others, http://code.
google.com/p/libdivsufsort/), they are the fastest
construction algorithms in practice. Another trick
utilized is to only sort suffixes up to a certain LCP
value, leading to ‘partial suffix arrays’. Although the
expressiveness of partial suffix arrays is unclear, they
have already been applied for error correction of
sequencing reads (14). For the construction of enhanced
suffix arrays, efficient LCP array construction algorithms
have been developed (38) and O(n) algorithms exist for the
construction of the other tables (19,127).

Compressed index structures

Working space is even more important for compressed
full-text index structures. Compressed suffix arrays, FM-
indexes and regular suffix arrays can easily be obtained
from one another. However, suffix array construction
requires 40n — 48n bits of memory, whereas FM-indexes
can be stored in only 2n bits. Despite this, lightweight
suffix array construction algorithms (134) are used by
Burrows—Wheeler-based read mapping tools, such as
BWA (8). Direct and lightweight construction of
compressed index structures is therefore an important
issue. A gap between theory and practice existed for
several years, but several practical results have been
reported recently. For example, a lightweight Burrows—
Wheeler construction algorithm by Kérkkdinen (135)
requires only 87 bits of working space for DNA sequences
(which is equal to the size of a normal text string) and was
implemented in the short read mapping tool Bowtie (7).
Other direct construction algorithms include the parallel
algorithm of Sirén (136) and the lightweight construction
algorithms in both internal and external memory settings
of Ferragina et al. (132). The former has the added value
of being able to merge existing compressed suffix arrays,
and the latter have very low working spaces. Moreover, a
parallel BWT(S) construction algorithm (137) based on
the Google MapReduce (18) framework has recently
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indexed the human genome in ~10 min on the Amazon
Elastic Compute Cloud. Finally, a lightweight
construction algorithm for Lempel-Ziv indexes (138) has
been reported that is competitive with construction
algorithms for other compressed full-text indexes.

External memory suffix tree construction

Most work on external memory index structures has been
done on construction algorithms, which have been
extensively reviewed by Barsky et al. (71). To summarize
their results, external memory allows for larger sequences
to be indexed, but the scalability of the algorithms is
limited by the number of random accesses to S and the
suffix tree under construction. This means that the
practical performance of many construction algorithms
is limited to sequences which are smaller than the size of
the available main memory. As an exception, the B2ST
algorithm (119) was able to index DNA sequences of
12 Gb in <8 h, making this algorithm the first to partially
overcome the above-mentioned bottlenecks. Furthermore,
the authors believe the algorithm will scale up to
sequences of 60 Gb.

CONCLUSION

In this review, we have shown the importance of data
structures for processing and searching in strings, known
as index structures. Many current sequence analysis tools
heavily rely upon index structures for handling large
amounts of data, which is currently a major concern
to bioinformaticians. In the first main section, details
concerning the most commonly used index structures
were presented. The details given in this review are often
omitted in articles describing tools and applications.
However, we believe that these details are important to
fully grasp the possibilities and limitations of these
sequence analysis tools.

We have made a basic classification of existing index
structures and explained the memory-time trade-offs
related to these data structures. Since the number of
available index structures is vast, we were only able to
skim over the technical details involved in the design of
these data structures. However, the interested reader was
guided to more in-depth work in the literature. Note that
the index structures discussed in this review mainly are
all-purpose full-text index structures, although some
focused on exact pattern matching. There are, however,
other index structures specially designed for specific
applications, as discussed in the first section of this review.

Furthermore, both main purpose full-text index
structures and specialized index structures will always be
hampered with space-time trade-offs. Several index
structures allow tuning this trade-off by sectting a
sparsification parameter. This optimization of the
available main memory is required because of the large
difference in speed between internal and external
memory. In some cases, the available main memory does
not suffice and external memory index structures have to
be used. Moreover, we saw that the performance of
external memory index structures highly depends on the
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application for which the index structure is used. There
is still a lot of work to be done on increasing the
performance of disk-based index structures.

Construction of index structures in external memory
has seen more investigation and clearly shows that the
use of current index structures is limited to sequences
that fit in main memory. Main memory construction
algorithms are limited by the available work space for
which the demand is several times higher than the
memory required for the final index structure.

In the future, algorithms and data structures will have
to be improved further to keep up with the rapidly
evolving sequencing technology and the growing amount
of data in general. To tackle the bottlenecks related to
index structures mentioned here, new directions for their
design have to be investigated (2). As a final note, we give
some prospects for research on index structures for
bioinformatics applications. Currently, the biggest issue
in index structure research is closing the gap between
theory and practice, which is illustrated by the fact that
many theoretically superior index structures do not
outperform simpler designs in practice. More engineering
work has to be done to improve the practical performance
of these index structures. These implementations should
be grouped under a common interface in libraries and
benchmarked using different types of (biological)
sequences. One such library-project is the ‘Pizza&Chili
website” [two mirrors at http://pizzachili.di.unipi.it and
http://pizzachili.dcc.uchile.cl], which bundles full-text
compressed index structures for use in exact pattern
matching. Another library containing several index
structures, but also focusing on biological applications,
is the SeqAn library (139).

Another significant topic for further research is the
adaptation of index structures to modern hardware, such
as multi-core CPUs (140,141) and solid-state disks.
Recently, even more specialized hardware has been
considered, including Graphical Processing Units
(GPUs) (11) and GPFAs (142). Alternatively, large
computer clusters, local or on the cloud, could allow for
massive parallelization of index structures. Some
applications have already been ported to these new
platforms, including read mapping and SNP finding
(143) using cloud computing, sequence alignment (11) on
GPUs and suffix array construction (137) using Google’s
MapReduce (18). However, these techniques and
implementations are very novel and further research will
have to indicate their scope and potential.

For applications which require maintenance of the
index structure, such as sequence databases or updating
an existing index of the human genome, dynamic index
structures are required. Historically, this is challenging
due to the intrinsic interrelationship of suffixes, where
insertion of a single character in a string can change the
lexicographical order of many suffixes. However, some
index structures that allow addition and removal of
whole strings (61,107) and single characters (144,145)
can be found in the literature. Moreover, several index
structures were recently proposed for processing a set of
very similar strings (146,147), where the size of the index
structure only depends on a single reference sequence in
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the collection, rather than the combined size of all
sequences in it.

Given these developments, index structures will
continue to increase the performance of bioinformatics
applications while coping with the continuous growth in
sequence sizes.
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