Algebra I – autumn 2023

All your assertions should be carefully justified.

1. (10 points) Consider the subsets I_1 , I_2 , I_3 of the ring $\mathbb{Z}[\sqrt{10}][x]$, with I_j consisting exactly of those polynomials whose constant coefficient belongs to the set C_j and whose linear coefficient belongs to the set L_j , where

$$C_{1} = \{ 10a + b\sqrt{10} \mid a, b \in \mathbb{Z}, [a]_{9} = [b]_{9} \},$$

$$L_{1} = \{ 2c + d\sqrt{10} \mid c, d \in \mathbb{Z}, [c]_{3} = [-d]_{3} \},$$

$$C_{2} = \{ 5a + b\sqrt{10} \mid a, b \in \mathbb{Z}, [a]_{3} = [-b]_{3} \},$$

$$L_{2} = \{ 2c + d\sqrt{10} \mid c, d \in \mathbb{Z} \},$$

$$C_{3} = L_{3} = \{ 5a + b\sqrt{10} \mid a, b \in \mathbb{Z}, [a]_{4} = [b]_{4} \}.$$

For each of the subsets I_1, I_2, I_3 , decide whether it is an ideal of the ring $\mathbb{Z}[\sqrt{10}][x]$.

2. (10 points) Determine all elements of the transition monoid of the automaton

3. (15 points) Find a direct product of well-known groups that is isomorphic to the quotient group $(G, \cdot)/H$, where

$$G = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b \in \mathbb{Z}, \ c \in \mathbb{Z}[i] \right\},\$$
$$H = \left\{ \begin{pmatrix} 1 & 2d & 2di + e \\ 0 & 1 & 4d \\ 0 & 0 & 1 \end{pmatrix} \middle| d, e \in \mathbb{Z} \right\}.$$

- 4. (10 points) Find the minimal polynomial of $\sqrt{\sqrt{3}+1} \cdot i \sqrt{3}+1$ over \mathbb{Q} .
- 5. (15 points) Express the number

$$\frac{1}{\alpha^3 + \alpha^2 - \alpha}$$

without using other than rational numbers in denominators, provided that the number α satisfies the equality $\alpha^4 + 3\alpha^3 = 3 \cdot (1 - \alpha^2) \cdot (\alpha + 1)$.

- 6. (10 points) Provide an example of a ring $(R, +, \cdot)$ that is not a subring of any field, and a subring of $(R, +, \cdot)$ that is a field.
- 7. (10 points) Provide an example of a group (G, \cdot) , an isomorphism $\varphi \colon G \to G$ and a subgroup $H \subseteq G$ such that $\varphi(H) \subseteq H$ and at the same time $\varphi(H) \neq H$.
- 8. (5 points) What does it mean for an integral domain $(R, +, \cdot)$ to have the unique factorization property?
- **9.** (5 points) Describe ideals of polynomial rings over fields. Which of them are such that the corresponding quotient ring is a field/integral domain?
- 10. (10 points) Using only the definitions of groups and homomorphisms, prove that every homomorphism of groups preserves identities and inverses.