

Continuous Space Representation

PA153

Pavel Rychlý

18 Sep 2023

Pavel Rychlý • Continuous Space Representation • 18 Sep 2023

Problems with statistical NLP

many distinct words (items) (from Zipf)

zero counts

MLE gives zero probability

$$p(w_3|w_1, w_2) = \frac{count(w_1, w_2, w_3)}{count(w_1, w_2)}$$

not handling similarities

- some words share some (important) features
- driver, teacher, butcher
- small, little, tiny

Many distinct words

How to solve:

- use only most frequent ones (ignore outliers)
- use smaller units (subwords)
 - prefixes, suffixes
 - -er, -less, pre-

But:

- we want to add more words
- black hole is not black or hole
- even less frequent words are important

deagrofertizace from "The deagrofertization of the state must come."

Pavel Rychly • Continuous Space Representation • 18 Sep 2023

Zero counts

How to solve:

- complicated smoothing strategies
 - Good-Turing, Kneser–Ney, back-off, ...
- bigger corpora
- more data = better estimation

But:

- sometimes there is no more data
 - Shakespeare, new research field
 - Maltese (MaCoCu Web/EUR-Lex: 400M tokens)
- any size is not big enough

Noun test

- British National Corpus
- 15789 hits, rank 918
- word sketches from the Sketch Engine
- object-of: *pass, undergo, satisfy, fail, devise, conduct, administer, perform, apply, boycott*
- modifier: *blood*, *driving*, *fitness*, *beta*, *nuclear*, *pregnancy*
- can we freely combine any two from that lists?

Collocations of noun test

blood test in BNC

• object-of: *order (3), take (12)*

blood test in enClueWeb16 (16 billion tokens)

object-of: order (708), perform (959), undergo (174), administer (123), conduct (229), require (676), repeat (80), run (347), request (105), take (1215)

Phrase pregnancy test in 16 billion corpus

pregnancy test (noun) enclueWeb - Sketches freq = 13677 (0.8 per million)

(test-n filtered by pregnancy)

Constructio	<u>ns</u>		<u>PP_X</u>	<u>955</u>		N_mod	13677	-1.6	and_or	<u>1684</u>	-4.2
wh	<u>243</u>	-3.6	PP in-i	<u>175</u>	-4.8	urine	<u>314</u>	3.07	ultrasound	<u>65</u>	2.25
that_0	<u>212</u>	-4.7	<u>PP_at-i</u>	<u>150</u>	-3.1	home	<u>2204</u>	2.68	urine	<u>39</u>	1.31
Vinf_to	<u>211</u>	-4.8	PP on-i	<u>139</u>	-3.9	blood	<u>248</u>	1.36	counseling	<u>44</u>	0.9
			PP_for-i	<u>82</u>	-5.0	serum	<u>53</u>	0.56	condom	<u>23</u>	0.66
object_of	<u>5530</u>	-2.2	PP_after-i	<u>60</u>	-2.3	at-home	<u>37</u>	0.21	urinalysis	<u>14</u>	0.44
take	<u>1765</u>	1.15	PP with-i	<u>55</u>	-5.1				test	<u>190</u>	0.33
perform	<u>203</u>	0.84	PP from-i	<u>37</u>	-5.1	AVP_post_m	<u>od 431</u>	-2.8	smear	<u>14</u>	0.25
buy	<u>237</u>	0.67	PP within-i	<u>32</u>	-3.1	prior	<u>27</u>	0.11			
administer	<u>40</u>	0.05	PP to-i	<u>31</u>	-6.6				N_premod	<u>1505</u>	nan
			PP as-i	<u>26</u>	-5.3	AJ_premod	<u>3077</u>	7 -3.0	kit	<u>317</u>	2.48
			PP before-i	<u>26</u>	-3.2	positive	<u>85</u> 3	3.66	ept	<u>54</u>	1.15

Pavel Rychlý • Continuous Space Representation • 18 Sep 2023

Phrase black hole in 16 billion corpus

WOR	D SKETC	CH enT	enTen [2012]	Q (j			
black hole	e 30,327×						
← →	X Ø HE	,c →	III 🛛 🗙	<i>₽</i> ≣	• Ø ×	.≓ ≣	
ob	ject_of	subje	ect_of	modifie	modifier		
accrete		accrete		supermassive		quasar	
orbit		evaporate		super-massive		wormhole	
gape		orbit		stellar-mass		pulsar	
harbor		swallow		primordial		supernova	
collide		gobble		Supermassive		quark	
evaporate		collide		intermediate-ma	ISS •••	astronomer	
harbour		devour		stellar		comet	
yawn		lurk		massive		galaxy	
rotate		coalesce		Schwarzschild		remnant	

gravity

...

8/24

PaweciRguelý · Continuous Space Radiasentation · 18 Sep 2023 miniature

Similarities of words

Distinct words?:

supermassive, super-massive, Supermassive

small, little, tiny

- black hole, star
- apple, banana, orange
- red, green, orange
- auburn, burgundy, mahogony, ruby

Continuous space representation

- words are not distinct
- represented by a vector of numbers
- similar words are *closer* each other
- more dimensions = more features
 - tens to hundreds, up to 1000

Words as vectors

continue = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349]

Word features

gramatical

part of speech, nuber, gender

syntactic

- used with "in"/"at", always with a particle
- semantic
 - positive sentiment, movement meaning, fruits
- style (formal, colloquial)
- domain (math, biology)

form

■ starting with "a", in capital letters

Word features

features are not independent

math – scientific

used with "in" – noun

in capital form – proper noun

features are not discrete

each feature corespond to a (set of) dimension

most features are valid for only small set of words

most words have (almost) 0 for most features

multiple meanings = union of features

How to create a vector representation

From co-occurrence counts:

- Singular value decomposition (SVD)
 - each word one dimension
 - select/combine important dimensions
 - factorization of co-occurrence matrix
- Principal component analysis (PCA)
- Latent Dirichlet Allocation (LDA)
 - learning probabilities of hidden variables

Neural Networks

Neural Networks

- training from examples = supervised training
- sometimes negative examples
- generating examples from texts
- from very simple (one layer) to deep ones (many layers)

NN training method

- one training example = (input, expected output) = (x, y)
- random initialization of parameters
- for each example:
 - **get output for input:** y' = NN(x)
 - compute loss = difference between expected output and real output: loss = |y - y'|
 - update paremeters to decrease loss

Are vectors better than IDs

- even one hit could provide useful information
- Little Prince corpus (21,000 tokens)
- modifiers of "planet"
 - _seventh, stately, sixth, wrong, tine, fifth, ordinary, next, little, whole
 - each with 1 hit
 - many are *close* together, share a feature

Simple vector learning

each word has two vectors

node vector (node_w)

context vector (ctx_w)

generate (node, context) pairs from text

■ for example from bigrams: w1, w2

■ w1 is context, w2 is node

move closer ctx_{w1} and $node_{w2}$

Simple vector learning

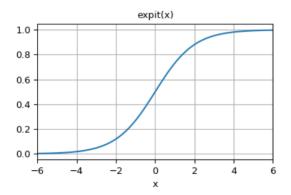
```
node_vec = np.random.rand(len(vocab), dim) * 2 -1
ctx_vec = np.zeros((len(vocab), dim))
```

```
def train_pair(nodeid, ctxid, alpha):
    global node_vec, ctx_vec
    Nd = node_vec[nodeid]
    Ct = ctx_vec[ctxid]
    loss = 1 - expit(np.dot(Nd, Ct))
    corr = loss * alpha
    Nd += corr * (Ct - Nd)
    Ct += corr * (Nd - Ct)
```

Expit (sigmoid) function

•
$$expit(x) = 1/(1 + exp(-x)) = 1/(1 + e^{-x})$$

■ limit range: output in (0, 1)



Pavel Rychlý • Continuous Space Representation • 18 Sep 2023

Simple vector learning

```
for e in range(epochs):
    last = tokIDs[0]
    for wid in tokIDs[1:]:
        train_pair(wid, last, alpha)
        last = wid
        # update alpha
```

Embeddings advantages

- no problem in number of parameters
- similarity in many different directions
- good estimations of scores
- generalization
 - learnig for some words generalize to similar words

Embeddings of other items

lemmata

part of speech

topics

any list of items with some structure

- numeric vectors provides continues space representation of words
- similar words are closer
- similarity in many different directions (features)
 - morphology (number, gender)
 - domain/style
 - word formation