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Problems with statistical NLP

many distinct words (items) (from Zipf)

zero counts

MLE gives zero probability

p(w3|w1,w2) =
count(w1,w2,w3)
count(w1,w2)

not handling similarities

some words share some (important) features

driver, teacher, butcher

small, little, tiny
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Many distinct words
How to solve:

use only most frequent ones (ignore outliers)

use smaller units (subwords)

prefixes, suffixes

-er, -less, pre-

But:

we want to add more words

black hole is not black or hole

even less frequent words are important

deagrofertizace from “The deagrofertization of the state must come.”
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Zero counts
How to solve:

complicated smoothing strategies

Good-Turing, Kneser–Ney, back-off, . . .

bigger corpora

more data = better estimation

But:

sometimes there is no more data

Shakespeare, new research field

Maltese (MaCoCu Web/EUR-Lex: 400M tokens)

any size is not big enough

Pavel Rychlý · Continuous Space Representation · 18 Sep 2023 4 / 24



How big corpus?

Noun test

British National Corpus

15789 hits, rank 918

word sketches from the Sketch Engine

object-of: pass, undergo, satisfy, fail, devise, conduct, administer, perform,
apply, boycott

modifier: blood, driving, fitness, beta, nuclear, pregnancy

can we freely combine any two from that lists?
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How big corpus?

Collocations of noun test

blood test in BNC

object-of: order (3), take (12)

blood test in enClueWeb16 (16 billion tokens)

object-of: order (708), perform (959), undergo (174), administer (123),
conduct (229), require (676), repeat (80), run (347), request (105), take
(1215)
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How big corpus?
Phrase pregnancy test in 16 billion corpus
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How big corpus?
Phrase black hole in 16 billion corpus
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Similarities of words

Distinct words?:

supermassive, super-massive, Supermassive

small, little, tiny

black hole, star

apple, banana, orange

red, green, orange

auburn, burgundy, mahogony, ruby
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Continuous space representation

words are not distinct

represented by a vector of numbers

similar words are closer each other

more dimensions = more features

tens to hundreds, up to 1000
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Words as vectors

continue = [0.286, 0.792,−0.177,−0.107, 0.109,−0.542, 0.349]

Pavel Rychlý · Continuous Space Representation · 18 Sep 2023 11 / 24



Word features
gramatical

part of speech, nuber, gender

syntactic

used with “in”/“at”, always with a particle

semantic

positive sentiment, movement meaning, fruits

style (formal, colloquial)

domain (math, biology)

form

starting with “a”, in capital letters
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Word features

features are not independent

math – scientific

used with “in” – noun

in capital form – proper noun

features are not discrete

each feature corespond to a (set of) dimension

most features are valid for only small set of words

most words have (almost) 0 for most features

multiple meanings = union of features
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How to create a vector representation

From co-occurrence counts:

Singular value decomposition (SVD)

each word one dimension

select/combine important dimenstions

factorization of co-occurrence matrix

Principal component analysis (PCA)

Latent Dirichlet Allocation (LDA)

learning probabilities of hidden variables

Neural Networks
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Neural Networks

training from examples = supervised training

sometimes negative examples

generating examples from texts

from very simple (one layer) to deep ones (many layers)
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NN training method

one training example = (input, expected output) = (x, y)

random initialization of parameters

for each example:

get output for input: y′ = NN(x)

compute loss = difference between expected output and real output:
loss = |y − y′|

update paremeters to decrease loss
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Are vectors better than IDs

even one hit could provide useful information

Little Prince corpus (21,000 tokens)

modifiers of “planet”

_seventh, stately, sixth, wrong, tine, fifth, ordinary, next, little, whole

each with 1 hit

many are close together, share a feature
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Simple vector learning

each word has two vectors

node vector (nodew )

context vector (ctxw )

generate (node, context) pairs from text

for example from bigrams: w1, w2

w1 is context, w2 is node

move closer ctxw1 and nodew2
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Simple vector learning

node_vec = np.random.rand(len(vocab), dim) * 2 -1
ctx_vec = np.zeros((len(vocab), dim))

def train_pair(nodeid, ctxid, alpha):
global node_vec, ctx_vec
Nd = node_vec[nodeid]
Ct = ctx_vec[ctxid]
loss = 1 - expit(np.dot(Nd, Ct))
corr = loss * alpha
Nd += corr * (Ct - Nd)
Ct += corr * (Nd - Ct)
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Expit (sigmoid) function
expit(x) = 1/(1 + exp(−x)) = 1/(1 + e−x)

limit range: output in (0, 1)
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Simple vector learning

for e in range(epochs):
last = tokIDs[0]
for wid in tokIDs[1:]:
train_pair(wid, last, alpha)
last = wid
# update alpha
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Embeddings advantages

no problem in number of parameters

similarity in many different directions

good estimations of scores

generalization

learnig for some words generalize to similar words

Pavel Rychlý · Continuous Space Representation · 18 Sep 2023 22 / 24



Embeddings of other items

lemmata

part of speech

topics

any list of items with some structure
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Summary

numeric vectors provides continues space representation of words

similar words are closer

similarity in many different directions (features)

morphology (number, gender)

domain/style

word formation
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