Natural Language Processing
with Deep Learning

CS224N/Ling284

P

John Hewitt

Lecture 8: Self-Attention and Transformers
Adapted from slides by Anna Goldie, John Hewitt

The Transformer Decoder

23

A Transformer decoder is how
we’ll build systems like
language models.

It’s a lot like our minimal self-
attention architecture, but
with a few more components.

The embeddings and position
embeddings are identical.

We’'ll next replace our self-
attention with multi-head self-
attention.

Masked Multi-
Head Attention

Add Position
Embeddings

Embeddings

Transformer Decoder

Recall the Self-Attention Hypothetical Example

attention
weights
for
I “learned”
. I .

went to Stanford CS 224n an learned
24

Hypothetical Example of Multi-Head Attention

I 25

Attention head 1
attends to entities

vV V \" A"
k k k Kk
I went to Stanford
I went

Y
k

CS

Y
k

224n

to

g
\" \%
K Kk
and learned
Stanford

Attention head 2 attends to
syntactically relevant words

q
V V V V V

V V VvV
k k k k Kk k k k

went to Stanford CS 224n and learned

CS 224n and learned

Sequence-Stacked form of Attention

e Let’s look at how key-query-value attention is computed, in matrices.
e LetX = [xy;...;x,] € R™*4 phe the concatenation of input vectors.
« First, note that XK € R™*¢, XQ € R™4, XV € R™"*¢,
* The output is defined as output = softmax(XQ(XK)T)XV €e R™*4.

First, take the query-key dot All pairs of
products in one matrix X0 = XxQKTXT attention scores!
multiplication: XQ(XK)T KT xT e RIXT
Next, softmax, and (3
compute the weighted softmax| xokTXxT | xy =
average with another

output € R™**4

matrix multiplication. \ /
26

Multi-headed attention

27

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xlTQTKxj is high, but maybe we want
to focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Kp,V, € Rdxﬁ, where h is the number of attention heads, and € ranges
from 1 to h.

Each attention head performs attention independently:
- output, = softmax(XQ,K; X) * XV,, where output, € R4/"
Then the outputs of all the heads are combined!

- output = [outputy; ...; output,]Y, where Y € R4*¢

Each head gets to “look” at different things, and construct value vectors
differently.

Multi-head self-attention is computationally efficient

* Even though we compute h many attention heads, it’s not really more costly.
« We compute XQ € R™ 4, and then reshape to R™*"*a/1 (| ikewise for XK, XV .)
* Then we transpose to R?™Xd/h. now the head axis is like a batch axis.
* Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot 3 sets of all pairs of
products in one matrix X0 — XQKT X7 attention scores!

multiplication: XQ(XK)T KT xT c R3Xnxn

/_/

Next, softmax, and ()
compute the weighted softmax| XokTxT | xy =

average with another p
matrix multiplication. \ /

output € R™*4

)8 MixX

Scaled Dot Product [Vaswani et al., 2017}

29

“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

* Because of this, inputs to the softmax function can be large, making the
gradients small.

Instead of the self-attention function we’ve seen:

output, = softmax(XQ,K; XT) x XV,
We divide the attention scores by /d/h, to stop the scores from becoming large
just as a function of d /h (The dimensionality divided by the number of heads.)

XQpK; X7

output, = softmax(Jam) * XV,

The Transformer Decoder

Add & Norm
* Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
c e . . Add & Norm
optimization tricks that end up
Masked Multi-

being : ,
Head Attention

* Residual Connections (
* Layer Normalization

* |n most Transformer diagrams, Add Position
these are often written Embeddings
together as “Add & Norm -

Transformer Decoder

30

The Transformer Encoder: Residual connections [He et al., 2016]

« Residual connections are a trick to help models train better.

* Instead of X = Layer(X“~1) (where i represents the layer)

XD — Layer xW

« Welet X = XD 4 Layer(X“~1D) (so we only have to learn “the residual”
from the previous layer)

XU — | ayer ?—’ xW

* Gradient is great through the residual
connection; it’s 1!

* Bias towards the identity function! [no residuals] [residuals]

[Loss landscape visualization,
31 Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization [Ba et al., 2016]

* Layer normalization is a trick to help models train faster.

e |dea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

« Let x € R? be an individual (word) vector in the model.

e lLetu = Zj-lzlxj; this is the mean; u € R.

2
e leto = \/% Zj-izl(xj — ,u) : this is the standard deviation; o € R.

« Lety € R%and 8 € R? be learned “gain” and “bias” parameters. (Can omit!)
* Then layer normalization computes:

X —u

output = *yY + [

o+ €
Normalize by scalar /\/_ \ Modulate by learned

- mean and variance elementwise gain and bias

The Transformer Decoder

33

The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

Each Block consists of:
* Self-attention
 Add & Norm
* Feed-Forward
 Add & Norm

That’s it! We’ve gone through
the Transformer Decoder.

Repeat for number

of encoder blocks

Probabilities

Softmax
N
Linear
N

Add & Norm
AN

Feed-Forward

T

(%

Add & Norm
N
Masked Multi-

Head Attention

w Block

Add Position
Embeddings

/l\
Embeddings

Decoder Inputs

The Transformer Encoder Probabilities

Softmax
N
 The Transformer Decoder LSrcaEi
constrains to unidirectional N
context, as for language Add & Norm
models. C o
_ o . 3L Feed-Forward
 What if we want bidirectional = 2
. D O
context, like in a bidirectional c |
o Add & Norm
RNN? RS
o § M It'AH d
e This is the Transformer o G VitImried
. i T Attention
Encoder. The only difference is v ©

that we remove the masking (w Block

in the self-attention. |
Add Position

. Embeddings
No Masking! T

Embeddings

Decoder Inputs
34

Probabilities

The Transformer Encoder-Decoder softman
Linear
e Recall that in machine 8
. Add & Norm
translation, we processed the A
source sentence with a Feed-Forward
bidirectional model and)
. Add & Norm
generated the target with a Add & Norm A
idirectional model & HuerHead
uni ' Feed-Forward salol
e For this kind of seq2seq A j
format, we often use a Add & Norm Add & Norm
Transformer Encoder-Decoder. o — Masked Multi-

- Head Attention
« We use a normal Transformer 6L

Encoder. w _— w Block

e Qur Transformer Decoder is | . Add Position
. Add Position Ermbeddings
modified to perform cross- Embe/fl\dings 3 9

attention to the output of the Embeddings

Embeddings
35 Encoder. Encoder Inputs Decoder Inputs

Cross-attention (details)

36

We saw that self-attention is when keys,
queries, and values come from the same
source.

In the decoder, we have attention that
looks more like what we saw last week.

Add & Norm
Add & Norm N
Let h4, ..., h,, be output vectors from the PN Multi-Head
Attention
Transformer encoder; x; € R4 Feed-Forward r 1 7
. ¢ { 1’ EEnR
Let z4, ..., Zz,, be input vectors from the dd & Norm Add & Norm
N
Transformer decoder, z; € R% - Masked Multi-
: Head Attention
Then keys and values are drawn from the Attention w
encoder (like a memory): w R Block
_ _ | -
* ki =Kh;, v, =Vh,. Add Position Add Position
. Embeddings Enie g
And the queries are drawn from the
Embeddings

decoder, q; = Qz;. Embeddings

Encoder Inputs Decoder Inputs

y Ly

Great Results with Transformers: Machine Translation

First, Machine Translation results from the original Transformers paper!

BLEU Training Cost (FLOPs)
Model EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-101° 1.4-10%°
ConvS2S [9] 25.16 40.46 9.6-10® 1.5-10%
MOoE [32] 26.03 40.56 2.0-10* 1.2-10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 2636 41.29 7.7-101% 1.2.10%
Transformer (base model) 27.3 38.1 3.3-1018
Transformer (big) 284 41.8 2.3-10%

7 [Test sets: WMT 2014 English-German and English-French] [Vaswani et al., 2017]

Great Results with Transformers: SuperGLUE

SuperGLUE is a suite of challenging NLP tasks, including question-answering, word sense
disambiguation, coreference resolution, and natural language inference.

Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE wiC WwWSC AX-b AX-g

1 JDExplore d-team Vega v2 g 91.3 90.5 98.6/99.2 99.4 88.2/62.4 94.4/93.9 96.0 77.4 98.6 -0.4 100.0/50.0

+ 2 Liam Fedus ST-MoE-32B g 91.2 92.4 96.9/98.0 99.2 89.6/65.8 95.1/94.4 93.5 77.7 96.6 72.3 96.1/94.1
3 Microsoft Alexander v-team Turing NLR v5 g 90.9 92.0 95.9/97.6 98.2 88.4/63.0 96.4/95.9 941 771 97.3 67.8 93.3/95.5

4 ERNIE Team - Baidu ERNIE 3.0 g 90.6 91.0 98.6/99.2 97.4 88.6/63.2 94.7/94.2 92.6 77.4 97.3 68.6 92.7/94.7

5 YiTay PalLM 540B C}J' 90.4 919 94.4/96.0 99.0 88.7/63.6 94.2/93.3 94.1 774 959 729 95.5/90.4

-l- 6 Zirui Wang T5 + UDG, Single Model (Google Brain) C}J' 90.4 91.4 95.8/97.6 98.0 88.3/63.0 94.2/93.5 93.0 77.9 96.6 69.1 92.7/91.9
+ 7 DeBERTa Team - Microsoft ~ DeBERTa / TuringNLRv4 g 90.3 90.4 95.7/97.6 98.4 88.2/63.7 94.5/94.1 93.2 77.5 95.9 66.7 93.3/93.8
8 SuperGLUE Human Baselines SuperGLUE Human Baselines g 89.8 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 76.6 99.3/99.7

+ 9 T5 Team - Google T5 g 89.3 91.2 93.9/96.8 94.8 88.1/63.3 94.1/93.4 92.5 76.9 93.8 65.6 92.7/91.9
10 SPoT Team - Google Frozen T5 1.1 + SPoT g 89.2 91.1 95.8/97.6 95.6 87.9/61.9 93.3/92.4 92.9 75.8 93.8 66.9 83.1/82.6

g [Test sets: SuperGLUE Leaderboard Version: 2.0] [Wang et al., 2019]

Great Results with Transformers: Rise of Large Language Models!

Today, Transformer-based models dominate LMSYS Chatbot Arena Leaderboard!

Rank 4 @ Model 4 7 Arena Elo Al 95% CI A & Votes A Organization 4 License 4 Knowledge Cutoff 4
1 GPT-4-Turbo-2024-04-09 1258 +4/-4 26444 OpenAI Proprietary 2023/12
1 GPT-4-1106-preview 1253 +3/-3 68353 OpenAI Proprietary 2023/4
1 Claude_3. Opus 1251 +3/-3 71500 Anthropic Proprietary 2023/8
2 Gemini.l1.5.Pxo ARL-0409: 1249 +4/-5 22211 Google Proprietary 2023/11
Preview
3 GPT-4-0125-preview 1248 +2/-3 58959 OpenAI Proprietary 2023/12
6 Meta Llama 3 70b Instruct 1213 +4/-6 15809 Meta Llama 3 Community 2023/12
6 Bard (Gemini Pro) 1208 +7/-6 12435 Google Proprietary Online
7 Claude_ 3 Sonnet 1201 +4/-2 73414 Anthropic Proprietary 2023/8

Gemini / Bard ChatGPT / GPT-4 Claude 3 Llama 3 i
9 (Google) (OpenAl) (Anthropic) (Meta) [Chlang et aI., 2024]

Transformers Even Show Promise Outside of NLP

Protein Folding

Systems ML

The international journal of science / 26 August 2021

/‘7
2 | cone QIO
l Classificati OO W e G]
mage Classification it 1111 0
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms tsrtiaver [IM0-AMIAID om0 A0

ResNet-based baselines with substantially less compute. tsitver . [[AJAIDA[MIHD o (A0
Embedding D D D |:| I:l I:I Embedding |:| |:| D D D

Ours-JFT Ours-JET Ours-121k BiT-L Noisy Student Encoder Decoder
(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)

ImageNet 88.55+004 87.76+003 85.30+002 87.54+0.02 88.4/88.5% M L f Sy t
ImageNet RealL 90.72+005 90.54+0.03 88.62+0.05 90.54 90.55 o r s e m S

ggggag\

l]
I
1
1
1
y|
H

CIFAR-10 99.50+006 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+004 93.90+0.05 93.25+0.05 93.51 +0.08 - Z 20201: -
Oxford-IIIT Pets 97.56+003 97.32+011 94.67+015 96.62+0.23 — [hOU. etal. 20 0] A Transformer-based
Oxford Flowers-102 99.68£002 99.74£000 99.61+002 99.63+0.03 - compiler model (GO-one) speeds up a
VTAB (19 tasks) T7.63+023 T76.28+046 T72.72+021 76.29 +1.70 - T f d ||
TPUv3-core-days 2.5k 0.68k 0.23k 9.0k 12.3k ranstormer model!
Run time Search
GO HP METIS HDP
s | | 8| W | i |
2 layer RNNLM (2) 0173 0.192 0355 0.191 9.9% /9.4% 295x
4—liycr RNNLM (4) 0.210 0.239 0503 0.251 13.8% / 16.3% 1.76x
8-layer RNNLM (8) 0.320 0.332 00M 0.764 3.8%/58.1% 27.8x
" . layer GNMT (2) 0.301 038 0344 0327 7765 1 143% 0x
| 4layer GNMT (4) 0350 0469 0.466 0432 34% /23.4% 588
i . i 0.440 0.562 00M 0.693 21.7% ! 36.5% 7.35x
[Jumper et al. 2021] aka AIphaFoId2 : Zlayer Transformer-XL (2) 0223 0268 037 0262 20.1% 17.4% a0x
“layer Transformer.XL (4) 027 00M 0259 17.4% 1 12.6% 267
-layer Transformer-XL (8) 046 00M 0.425 23.9% / 16.7% 167%
.. 0312 00M 0.301 26.6% /23.9% 13.5x
Inception (2) b64 0.423 0731 00M 0.498 42.1%1293% 21.0x
AmoebaNet (3) 0.394 044 0426 0418 %6.1%76.1% 58.8x
2-stack 18-layer WaveNel (2) 0.317 0.376 00M 0354 18.6% / 11.7% 6.67x
4-stack 36-layer WaveNet (4) 0.659 0.988 00M 0721 50% 19.4% 20¢
GEOMEAN B B B - 20.5% [18.2% Tx

13

Scaling Laws: Are Transformers All We Need?

« With Transformers, language modeling performance improves smoothly as we increase
model size, training data, and compute resources in tandem.

* This power-law relationship has been observed over multiple orders of magnitude with
no sign of slowing!

* |f we keep scaling up these models (with no change to the architecture), could they
eventually match or exceed human-level performance?

7 4.2

—— L=(D/5.4-10%%)7%0% | 5.6 —— L =(N/8.8+103)"0.076

3.9 48

3.6 4.0

3.3 3.2

Test Loss

3.0
2.4

L =(Cmin/2.3-108)70.050

2 : r 1 - 2.7 . ; . ; r 1 .
10 1077 1075 1073 107! 10! 108 109 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

[Kaplan et al., 2020]

14

What would we like to fix about the Transformer?

e Quadratic compute in self-attention (today):

* Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

* For recurrent models, it only grew linearly!
e Position representations:

* Are simple absolute indices the best we can do to represent position?
* As we learned: Relative linear position attention [Shaw et al., 2018]

* Dependency syntax-based position [Wang et al., 2019]

* Rotary Embeddings [Su et al., 2021]

58

Recent work on improving on quadratic self-attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O(T?) all-pairs self-attention cost?

* For example, Linformer [\Wang et al., 2020]

Linear 120 F — Linformer, k=2048
f —s— Linformer, k=1024
—_ —d— Linformer, k=512
Key idea: map the St = g |~ Linformer, k=256
£ | : — = Linformer, k=128
sequence le ngt h - PTr— y g —r— Transformer
dimension to a lower- . Mtnl . S ol
. . " () e
dimensional space for Projetion | [Peeiosion =
I k f = -—t = HE 10+ S S 2 &
values, keys - Linem:_]. Linear 1 B . '_.‘.‘:_:'__".-_—_?_-f-_—.—:?_t -_-.-_-.:-.*_-. == E-. — —_-:__*:__'-':'*

I

K

512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1
Sequence length / batch size

o-@

59

Recent work on improving on quadratic self-attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O(T?) all-pairs self-attention cost?

* For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

p

_| DE _IEI
Ll L
Ijl_l I_l[|:ll_l

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

60

Do Transformer Modifications Transfer?

e "Surprisingly, we find that most modifications do not meaningfully improve
performance.”

Model Params Ops Stop/s Early loss Final loss SGLUE XSum WebQ | WMT EnDe
Vanilla Transformer 223M 1117 2.182 £ 0.005 1838 T1.66 17.78 2302 | 26.62
S
11T 27.12
1117
1111
11T
i
Softplus ii g
e n Do Transformer Modifications Transfer Across Implementations
ey i and Applications?
Ve Sharan Narang* Hyung Won Chung Yi Tay William Fedus

beddings

Encoder only block sharing ~ 170M 1117 1929 660 16323 2302 26,23
Decoder only block sharing 1440 1117 2.082 67.93 16.13 23.81 26.08 1,
et wn n = oa unonn| oam ibault Fi Michael Matena’ Karishma Malkan' Noah Fiedel
., o = 3 um 23| % Thibault Fevry ichael Matena arishma Malkan oah Fiede
dings
Tied encoder/decoder in- 248M 11T 3.55 2.192 £0.002 1840 TLTO 17.72 24.34 26.49
put embeddin
Tied decoder input and out- 2480 1117 3 2.187 £0.007 1827 T4.86 17.74 24.87 26.67 N S h Z h h L 1’ Y - Zh W- - L.
it embeddi
%‘:ni:’tlo:;h:‘l%xm 273IM 11T . X L1834 7299 23.28 26,48 Oam azeer enz ong an anql ou e" l
Adaptive input embeddings 2040 9.2T . 2.2 002 1.899 66.57 16.21 24.07 26.66
Adaptive softmax 204M 927 1982 T2.91 16.67 2116 25.56
Adaptive softmax without 223M 10.5T 1914 TL82 17.10 23.02 %72 . . 1,
-
Pt e v e Nan Ding Jake Marcus Adam Roberts Colin Raffel
Lightweight convelution 1.989 7 1486

Evolved Transformer . 1863 7367 1076
230021 1962 6103 1497
21910010 1840 7308 1696
218040007 1828 7425 1T
207M 04T 1.968 6278 1539 2355 26.42
2M 01T 2,009 5427 1035 1956 26.44
202M 1207 1842 7382 1704 2487 26.43
292M 1207 1828 7524 1708 24.08 26,39
Universal Transformer M 4007 2.053 013 108 1905 23.91
Mixture of experts B48M 1LTT 1785 74.55 1813 24.08
Switch Transformer 1H00M 117T 1758 7588 18.02 2619
el Transforme WM 19T 1918 1626
Weighted Transformer 28OM TLOT 1,989 16.98
Product key memory AZIM 386.6T 1798 76516 1704 26.73

61

