Natural Language Processing with Deep Learning CS224N/Ling284

John Hewitt Lecture 8: Self-Attention and Transformers *Adapted from slides by Anna Goldie, John Hewitt*

The Transformer Decoder

- A Transformer decoder is how we'll build systems like language models.
- It's a lot like our minimal selfattention architecture, but with a few more components.
- The embeddings and position embeddings are identical.
- We'll next replace our selfattention with multi-head selfattention.

Transformer Decoder

Recall the Self-Attention Hypothetical Example

Hypothetical Example of Multi-Head Attention

Attention head 2 attends to syntactically relevant words

I went to Stanford CS 224n and learned

Sequence-Stacked form of Attention

- Let's look at how key-query-value attention is computed, in matrices.
 - Let $X = [x_1; ...; x_n] \in \mathbb{R}^{n \times d}$ be the concatenation of input vectors.
 - First, note that $XK \in \mathbb{R}^{n \times d}$, $XQ \in \mathbb{R}^{n \times d}$, $XV \in \mathbb{R}^{n \times d}$.
 - The output is defined as output = $\operatorname{softmax}(XQ(XK)^{\top})XV \in \in \mathbb{R}^{n \times d}$.

Multi-headed attention

- What if we want to look in multiple places in the sentence at once?
 - For word *i*, self-attention "looks" where x[⊤]_iQ[⊤]Kx_j is high, but maybe we want to focus on different *j* for different reasons?
- We'll define multiple attention "heads" through multiple Q,K,V matrices
- Let, $Q_{\ell}, K_{\ell}, V_{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$, where *h* is the number of attention heads, and ℓ ranges from 1 to *h*.
- Each attention head performs attention independently:
 - $\operatorname{output}_{\ell} = \operatorname{softmax}(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$, where $\operatorname{output}_{\ell} \in \mathbb{R}^{d/h}$
- Then the outputs of all the heads are combined!
 - output = $[output_1; ...; output_h]Y$, where $Y \in \mathbb{R}^{d \times d}$
- Each head gets to "look" at different things, and construct value vectors differently.

Multi-head self-attention is computationally efficient

- Even though we compute *h* many attention heads, it's not really more costly.
 - We compute $XQ \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times d/h}$. (Likewise for XK, XV.)
 - Then we transpose to $\mathbb{R}^{h \times n \times d/h}$; now the head axis is like a batch axis.
 - Almost everything else is identical, and the matrices are the same sizes.

Scaled Dot Product [Vaswani et al., 2017]

- "Scaled Dot Product" attention aids in training.
- When dimensionality *d* becomes large, dot products between vectors tend to become large.
 - Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we've seen:

output_{$$\ell$$} = softmax $(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$

• We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (The dimensionality divided by the number of heads.)

output_{$$\ell$$} = softmax $\left(\frac{XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}}{\sqrt{d/h}}\right) * XV_{\ell}$

The Transformer Decoder

- Now that we've replaced selfattention with multi-head selfattention, we'll go through two optimization tricks that end up being :
 - Residual Connections
 - Layer Normalization
- In most Transformer diagrams, these are often written together as "Add & Norm"

Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

- **Residual connections** are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where *i* represents the layer)

$$X^{(i-1)}$$
 — Layer $\longrightarrow X^{(i)}$

• We let $X^{(i)} = X^{(i-1)} + Layer(X^{(i-1)})$ (so we only have to learn "the residual" from the previous layer)

$$X^{(i-1)} \longrightarrow X^{(i)}$$

- Gradient is **great** through the residual connection; it's 1!
- Bias towards the identity function!

[no residuals] [residuals] [Loss landscape visualization, Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization [Ba et al., 2016]

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation **within each layer**.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{j=1}^{d} x_j$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

The Transformer Decoder

- The Transformer Decoder is a stack of Transformer Decoder Blocks.
- Each Block consists of:
 - Self-attention
 - Add & Norm
 - Feed-Forward
 - Add & Norm
- That's it! We've gone through the Transformer Decoder.

The Transformer Encoder

- The Transformer Decoder constrains to unidirectional context, as for language models.
- What if we want bidirectional context, like in a bidirectional RNN?
- This is the Transformer Encoder. The only difference is that we remove the masking in the self-attention.

The Transformer Encoder-Decoder

- Recall that in machine translation, we processed the source sentence with a bidirectional model and generated the target with a unidirectional model.
- For this kind of seq2seq format, we often use a Transformer Encoder-Decoder.
- We use a normal Transformer Encoder.
- Our Transformer Decoder is modified to perform crossattention to the output of the Encoder.

Probabilities

Cross-attention (details)

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like what we saw last week.
- Let $h_1, ..., h_n$ be **output** vectors **from** the Transformer **encoder**; $x_i \in \mathbb{R}^d$
- Let $z_1, ..., z_n$ be input vectors from the Transformer **decoder**, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the **encoder** (like a memory):
 - $k_i = Kh_i$, $v_i = Vh_i$.
- And the queries are drawn from the **decoder**, $q_i = Qz_i$.

Great Results with Transformers: Machine Translation

First, Machine Translation results from the original Transformers paper!

Madal	BL	EU	Training Cost (FLOPs)			
Widdei	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	10 ¹⁸		
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}		

[Vaswani et al., 2017]

Great Results with Transformers: SuperGLUE

SuperGLUE is a suite of challenging NLP tasks, including question-answering, word sense disambiguation, coreference resolution, and natural language inference.

	Rank	Name	Model	URL	Score	BoolQ	СВ	СОРА	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g
	1	JDExplore d-team	Vega v2		91.3	90.5	98.6/99.2	99.4	88.2/62.4	94.4/93.9	96.0	77.4	98.6	-0.4	100.0/50.0
÷	2	Liam Fedus	ST-MoE-32B		91.2	92.4	96.9/98.0	99.2	89.6/65.8	95.1/94.4	93.5	77.7	96.6	72.3	96.1/94.1
	3	Microsoft Alexander v-team	Turing NLR v5		90.9	92.0	95.9/97.6	98.2	88.4/63.0	96.4/95.9	94.1	77.1	97.3	67.8	93.3/95.5
	4	ERNIE Team - Baidu	ERNIE 3.0		90.6	91.0	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.7
	5	Yi Tay	PaLM 540B		90.4	91.9	94.4/96.0	99.0	88.7/63.6	94.2/93.3	94.1	77.4	95.9	72.9	95.5/90.4
+	6	Zirui Wang	T5 + UDG, Single Model (Google Brain)		90.4	91.4	95.8/97.6	98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6	69.1	92.7/91.9
+	7	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	66.7	93.3/93.8
	8	SuperGLUE Human Baseline	es SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	76.6	99.3/99.7
+	9	T5 Team - Google	Т5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	65.6	92.7/91.9
	10	SPoT Team - Google	Frozen T5 1.1 + SPoT		89.2	91.1	95.8/97.6	95.6	87.9/61.9	93.3/92.4	92.9	75.8	93.8	66.9	83.1/82.6

8 [Test sets: SuperGLUE Leaderboard Version: 2.0]

[Wang et al., 2019]

Great Results with Transformers: Rise of Large Language Models!

Today, Transformer-based models dominate LMSYS Chatbot Arena Leaderboard!

Rank 🔺	🚔 Model 🔺	🚖 Arena Elo 🔺	∎ 95% CI 🔺	🔹 Votes 🔺	Organization	License 🔺	Knowledge Cutoff
1	<u>GPT-4-Turbo-2024-04-09</u>	1258	+4/-4	26444	OpenAI	Proprietary	2023/12
1	GPT-4-1106-preview	1253	+3/-3	68353	OpenAI	Proprietary	2023/4
1	<u>Claude 3 Opus</u>	1251	+3/-3	71500	Anthropic	Proprietary	2023/8
2	<u>Gemini 1.5 Pro API-0409-</u> Preview	1249	+4/-5	22211	Google	Proprietary	2023/11
3	GPT-4-0125-preview	1248	+2/-3	58959	OpenAI	Proprietary	2023/12
6	<u>Meta Llama 3 70b Instruct</u>	1213	+4/-6	15809	Meta	Llama 3 Community	2023/12
6	<u>Bard (Gemini Pro)</u>	1208	+7/-6	12435	Google	Proprietary	Online
7	Claude 3 Sonnet	1201	+4/-2	73414	Anthropic	Proprietary	2023/8

Gemini / Bard (Google) ChatGPT / GPT-4 (OpenAI) Claude 3 (Anthropic) Llama 3 (Meta)

[Chiang et al., 2024]

Transformers Even Show Promise Outside of NLP

Protein Folding

[Jumper et al. 2021] aka AlphaFold2!

Attention Map

Image Classification

[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms ResNet-based baselines with substantially less compute.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^{*}$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	-
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Systems ML Systems LSTM Layer 4 LSTM Layer 4 LSTM Layer 2 LSTM Layer 2 LSTM Layer 2 LSTM Layer 1 LSTM Layer 1 LSTM Layer 1 LSTM Layer 1 LSTM Layer 2 LSTM Layer 3 LSTM Layer 2 LSTM Layer 2 LSTM Layer 1 LSTM Layer 2 LSTM Layer 1 LSTM LAYER 1

ML for Systems

[Zhou et al. 2020]: A Transformer-based compiler model (GO-one) speeds up a Transformer model!

Model (#devices)	GO-one (s)	HP (s)	METIS (s)	HDP (s)	Run time speed up over HP / HDP	Search speed up over HDP
2-layer RNNLM (2)	0.173	0.192	0.355	0.191	9.9% / 9.4%	2.95x
4-layer RNNLM (4)	0.210	0.239	0.503	0.251	13.8% / 16.3%	1.76x
8-layer RNNLM (8)	0.320	0.332	OOM	0.764	3.8% / 58.1%	27.8x
2-layer GNMT (2)	0.301	0.384	0.344	0.327	27.6% / 14.3%	30x
4-layer GNMT (4)	0.350	0.469	0.466	0.432	34% / 23.4%	58.8x
0 1 CD D (T (0)	0.440	0.562	OOM	0.693	21.7% / 36.5%	7.35x
2-layer Transformer-XL (2)	0.223	0.268	0.37	0.262	20.1% / 17.4%	40x
4-layer Transformer-XL (4)	0.230	0.27	OOM	0.259	17.4% / 12.6%	26.7x
8-layer Transformer-XL (8)	0.350	0.46	OOM	0.425	23.9% / 16.7%	16.7x
meepuon (a) ooa	0.229	0.312	OOM	0.301	26.6% / 23.9%	13.5x
Inception (2) b64	0.423	0.731	OOM	0.498	42.1% / 29.3%	21.0x
AmoebaNet (4)	0.394	0.44	0.426	0.418	26.1% / 6.1%	58.8x
2-stack 18-layer WaveNet (2)	0.317	0.376	OOM	0.354	18.6% / 11.7%	6.67x
4-stack 36-layer WaveNet (4)	0.659	0.988	OOM	0.721	50% / 9.4%	20x
GEOMEAN	-	-	-	-	20.5% / 18.2%	15x

Scaling Laws: Are Transformers All We Need?

- With Transformers, language modeling performance improves smoothly as we increase model size, training data, and compute resources in tandem.
- This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing!
- If we keep scaling up these models (with no change to the architecture), could they eventually match or exceed human-level performance?

[Kaplan et al., 2020]

What would we like to fix about the Transformer?

- Quadratic compute in self-attention (today):
 - Computing all pairs of interactions means our computation grows quadratically with the sequence length!
 - For recurrent models, it only grew linearly!
- Position representations:
 - Are simple absolute indices the best we can do to represent position?
 - As we learned: Relative linear position attention [Shaw et al., 2018]
 - Dependency syntax-based position [Wang et al., 2019]
 - Rotary Embeddings [Su et al., 2021]

Recent work on improving on quadratic self-attention cost

- Considerable recent work has gone into the question, Can we build models like Transformers without paying the $O(T^2)$ all-pairs self-attention cost?
- For example, Linformer [Wang et al., 2020]

Key idea: map the sequence length dimension to a lowerdimensional space for values, keys

Recent work on improving on quadratic self-attention cost

- Considerable recent work has gone into the question, *Can we build models like* • Transformers without paying the $O(T^2)$ all-pairs self-attention cost?
- For example, **BigBird** [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local windows, looking at everything, and random interactions.

(b) Window attention

(d) **BIGBIRD**

Do Transformer Modifications Transfer?

 "Surprisingly, we find that most modifications do not meaningfully improve performance."

Model	Params	Ops	Step/s	Early loss	Final loss	SGLUE	XSum	WebQ	WMT EnDe
Vanilla Transformer	223M	11.1T	3.50	2.182 ± 0.005	1.838	71.66	17.78	23.02	26.62
GeLU	223M	11.1T	3.58	2.179 ± 0.003	1.838	75.79	17.86	25.13	26.47
Swish	223M	11.1T	3.62	2.186 ± 0.003	1.847	73.77	17.74	24.34	26.75
ELU	223M	11.1T	3.56	2.270 ± 0.007	1.932	67.83	16.73	23.02	26.08
GLU	223M	11.1T	3.59	2.174 ± 0.003	1.814	74.20	17.42	24.34	27.12
GeGLU	223M	11.1T	3.55	2.130 ± 0.006	1.792	75.96	18.27	24.87	26.87
ReGLU	223M	11.1T	3.57	2.145 ± 0.004	1.803	76.17	18.36	24.87	27.02
SeLU	223M	11.1T	3.55	2.315 ± 0.004	1.948	68.76	16.76	22.75	25.99
SwiGLU	223M	11.1T	3.53	2.127 ± 0.003	1.789	76.00	18.20	24.34	27.02
LiGLU	223M	11.1T	3.59	2.149 ± 0.005	1.798	75.34	17.97	24.34	26.53
Sigmoid	223M	11.1T	3.63	2.291 ± 0.019	1.867	74.31	17.51	23.02	26.30
Softplus	223M	11.1T	3.47	2.207 ± 0.011	1.850	72.45	17.65	24.34	26.89
RMS Norm	223M	11.1T	3.68	2.167 ± 0.008	1.821	75.45	17.94	24.07	27.14
Rezero	223M	11.1T	3.51	2.262 ± 0.003	1.939	61.69	15.64	20.90	26.37
Rezero + LayerNorm	223M	11.1T	3.26	2.223 ± 0.006	1.858	70.42	17.58	23.02	26.29
Rezero + RMS Norm	223M	11.1T	3.34	2.221 ± 0.009	1.875	70.33	17.32	23.02	26.19
Fixup	223M	11.1T	2.95	2.382 ± 0.012	2.067	58.56	14.42	23.02	26.31
24 layers, $d_{\rm ff} = 1536, H = 6$	224M	11.1T	3.33	2.200 ± 0.007	1.843	74.89	17.75	25.13	26.89
18 layers, $d_{\rm ff} = 2048, H = 8$	223M	11.1T	3.38	2.185 ± 0.005	1.831	76.45	16.83	24.34	27.10
8 layers, $d_{\text{ff}} = 4608, H = 18$	223M	11.1T	3.69	2.190 ± 0.005	1.847	74.58	17.69	23.28	26.85
6 layers, $d_{\rm ff} = 6144, H = 24$	223M	11.1T	3.70	2.201 ± 0.010	1.857	73.55	17.59	24.60	26.66
Block sharing	65M	11.1T	3.91	2.497 ± 0.037	2.164	64.50	14.53	21.96	25.48
+ Factorized embeddings	45M	9.4T	4.21	2.631 ± 0.305	2.183	60.84	14.00	19.84	25.27
+ Factorized & shared em- beddings	20M	9.1T	4.37	2.907 ± 0.313	2.385	53.95	11.37	19.84	25.19
Encoder only block sharing	170M	11.1T	3.68	2.298 ± 0.023	1.929	69.60	16.23	23.02	26.23
Decoder only block sharing	144M	11.1T	3.70	2.352 ± 0.029	2.082	67.93	16.13	23.81	26.08
Factorized Embedding	227M	9.4T	3.80	2.208 ± 0.006	1.855	70.41	15.92	22.75	26.50
Factorized & shared embed-	202M	9.1T	3.92	2.320 ± 0.010	1.952	68.69	16.33	22.22	26.44
dings									
Tied encoder/decoder in-	248M	11.1T	3.55	2.192 ± 0.002	1.840	71.70	17.72	24.34	26.49
put embeddings									
Tied decoder input and out-	248M	11.1T	3.57	2.187 ± 0.007	1.827	74.86	17.74	24.87	26.67
put embeddings									
Untied embeddings	273M	11.1T	3.53	2.195 ± 0.005	1.834	72.99	17.58	23.28	26.48
Adaptive input embeddings	204M	9.2T	3.55	2.250 ± 0.002	1.899	66.57	16.21	24.07	26.66
Adaptive softmax	204M	9.2T	3.60	2.364 ± 0.005	1.982	72.91	16.67	21.16	25.56
Adaptive softmax without	223M	10.8T	3.43	2.229 ± 0.009	1.914	71.82	17.10	23.02	25.72
projection									
Mixture of softmaxes	232M	16.3T	2.24	2.227 ± 0.017	1.821	76.77	17.62	22.75	26.82
Transparent attention	223M	11.1T	3.33	2.181 ± 0.014	1.874	54.31	10.40	21.16	26.80
Dynamic convolution	257M	11.8T	2.65	2.403 ± 0.009	2.047	58.30	12.67	21.16	17.03
Lightweight convolution	224M	10.4T	4.07	2.370 ± 0.010	1.989	63.07	14.86	23.02	24.73
Evolved Transformer	217M	9.9T	3.09	2.220 ± 0.003	1.863	73.67	10.76	24.07	26.58
Synthesizer (dense)	224M	11.4T	3.47	2.334 ± 0.021	1.962	61.03	14.27	16.14	26.63
Synthesizer (dense plus)	243M	12.6T	3.22	2.191 ± 0.010	1.840	73.98	16.96	23.81	26.71
Synthesizer (dense plus al-	243M	12.6T	3.01	2.180 ± 0.007	1.828	74.25	17.02	23.28	26.61
pha)									
Synthesizer (factorized)	207M	10.1T	3.94	2.341 ± 0.017	1.968	62.78	15.39	23.55	26.42
Synthesizer (random)	254M	10.1T	4.08	2.326 ± 0.012	2.009	54.27	10.35	19.56	26.44
Synthesizer (random plus)	292M	12.0T	3.63	2.189 ± 0.004	1.842	73.32	17.04	24.87	26.43
Synthesizer (random plus	292M	12.0T	3.42	2.186 ± 0.007	1.828	75.24	17.08	24.08	26.39
alpha)									
Universal Transformer	84M	40.0T	0.88	2.406 ± 0.036	2.053	70.13	14.09	19.05	23.91
auxture of experts	648 <i>M</i>	11.71	3.20	$z.148 \pm 0.006$	1.785	74.55	18.13	24.08	26.94
Switch Transformer	1100M	11.77	3.18	2.135 ± 0.007	1.758	75.38	18.02	26.19	26.81
Funnel Transformer	223M	1.97	4.30	2.288 ± 0.008	1.918	67.34	16.26	22.75	23.20
weighted Transformer	280M	71.01	0.59	2.378 ± 0.021	1.989	69.04	16.98	23.02	26.30
Product key memory	421M	386.6T	0.25	2.155 ± 0.003	1.798	75.16	17.04	23.55	26.73

Do Transformer Modifications Transfer Across Implementations and Applications?

Sharan Narang*	Hyung Won Chung	Yi Tay	William Fedus
${\bf Thibault \ Fevry}^\dagger$	${\bf Michael} \; {\bf Matena}^\dagger$	Karishma Malkan †	Noah Fiedel
Noam Shazeer	${\bf Zhenzhong}{\bf Lan}^\dagger$	Yanqi Zhou	Wei Li
Nan Ding	Jake Marcus	Adam Roberts	${\bf Colin} \; {\bf Raffel}^\dagger$