Natural Language Processing with Deep Learning **CS224N/Ling284**

John Hewitt Lecture 8: Self-Attention and Transformers Adapted from slides by Anna Goldie, John Hewitt

The Transformer Decoder

- A Transformer decoder is how \bullet we'll build systems like language models.
- . It's a lot like our minimal selfattention architecture, but with a few more components.
- The embeddings and position embeddings are identical.
- We'll next replace our self- \bullet attention with multi-head selfattention.

Transformer Decoder

Recall the Self-Attention Hypothetical Example

Hypothetical Example of Multi-Head Attention

Attention head 2 attends to syntactically relevant words

 $\mathbf I$ Stanford **CS** 224n learned and went to

Sequence-Stacked form of Attention

- Let's look at how key-query-value attention is computed, in matrices.
	- Let $X = [x_1; ...; x_n] \in \mathbb{R}^{n \times d}$ be the concatenation of input vectors.
	- First, note that $XK \in \mathbb{R}^{n \times d}$, $XQ \in \mathbb{R}^{n \times d}$, $XV \in \mathbb{R}^{n \times d}$.
	- The output is defined as output = softmax $(XQ(XK)^T)XV \in \mathbb{R}^{n \times d}$.

Multi-headed attention

- What if we want to look in multiple places in the sentence at once?
	- For word *i*, self-attention "looks" where $x_i^T Q^T K x_j$ is high, but maybe we want to focus on different j for different reasons?
- We'll define multiple attention "heads" through multiple Q, K, V matrices
- Let, Q_ℓ , K_ℓ , $V_\ell \in \mathbb{R}^{d \times \frac{d}{h}}$, where h is the number of attention heads, and ℓ ranges from 1 to h .
- Each attention head performs attention independently:
	- output_e = softmax($XQ_{\ell}K_{\ell}^{T}X^{T}$) * XV_{ℓ} , where output $_{\ell} \in \mathbb{R}^{d/h}$
- Then the outputs of all the heads are combined!
	- output = \lceil output₁; ...; output_h $\lceil Y$, where $Y \in \mathbb{R}^{d \times d}$
- Each head gets to "look" at different things, and construct value vectors \bullet differently.

Multi-head self-attention is computationally efficient

- Even though we compute h many attention heads, it's not really more costly.
	- We compute $XQ \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times d/h}$. (Likewise for XK, XV.)
	- Then we transpose to $\mathbb{R}^{h \times n \times d/h}$; now the head axis is like a batch axis.
	- Almost everything else is identical, and the matrices are the same sizes.

Scaled Dot Product [Vaswani et al., 2017]

- "Scaled Dot Product" attention aids in training.
- When dimensionality d becomes large, dot products between vectors tend to \bullet become large.
	- Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we've seen:

output_e = softmax $(XQ_{\ell}K_{\ell}^{\top}X^{\top})$ * XV_{ℓ}

• We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (The dimensionality divided by the number of heads.)

output<sub>$$
\ell
$$</sub> = softmax $\left(\frac{XQ_{\ell}K_{\ell}^{T}X^{T}}{\sqrt{d/h}}\right) * XV_{\ell}$

The Transformer Decoder

- Now that we've replaced self- \bullet attention with multi-head selfattention, we'll go through two optimization tricks that end up $being:$
	- Residual Connections
	- Layer Normalization
- In most Transformer diagrams, \bullet these are often written together as "Add & Norm"

Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

- **Residual connections** are a trick to help models train better. \bullet
	- Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where *i* represents the layer)

$$
X^{(i-1)} \longrightarrow \text{Layer} \longrightarrow X^{(i)}
$$

• We let $X^{(i)} = X^{(i-1)} +$ Layer $(X^{(i-1)})$ (so we only have to learn "the residual" from the previous layer)

$$
X^{(i-1)} \longrightarrow \text{Layer} \longrightarrow X^{(i)}
$$

- Gradient is great through the residual connection; it's 1!
- Bias towards the identity function!

Ind residuals *<u>[residuals]</u>* [Loss landscape visualization, Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization [Ba et al., 2016]

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation within each layer.
	- LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{i=1}^d x_i$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

The Transformer Decoder

- The Transformer Decoder is a \bullet stack of Transformer Decoder Blocks.
- Each Block consists of: \bullet
	- Self-attention
	- Add & Norm
	- Feed-Forward
	- Add & Norm
- That's it! We've gone through the Transformer Decoder.

The Transformer Encoder

- The Transformer Decoder \bullet constrains to **unidirectional** context, as for language models.
- What if we want **bidirectional** \bullet context, like in a bidirectional RNN?
- This is the Transformer Encoder. The only difference is that we remove the masking in the self-attention.

The Transformer Encoder-Decoder

- Recall that in machine \bullet translation, we processed the source sentence with a bidirectional model and generated the target with a unidirectional model.
- For this kind of seq2seq \bullet format, we often use a Transformer Encoder-Decoder.
- We use a normal Transformer Encoder.
- Our Transformer Decoder is \bullet modified to perform crossattention to the output of the Encoder.

Probabilities

Cross-attention (details)

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like what we saw last week.
- Let $h_1, ..., h_n$ be output vectors from the Transformer encoder; $x_i \in \mathbb{R}^d$
- Let $z_1, ..., z_n$ be input vectors from the Transformer decoder, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the \bullet encoder (like a memory):
	- $k_i = Kh_i$, $v_i = Vh_i$.
- And the queries are drawn from the decoder, $q_i = Qz_i$.

Great Results with Transformers: Machine Translation

First, Machine Translation results from the original Transformers paper!

[Vaswani et al., 2017]

Great Results with Transformers: SuperGLUE

SuperGLUE is a suite of challenging NLP tasks, including question-answering, word sense disambiguation, coreference resolution, and natural language inference.

8 [Test sets: SuperGLUE Leaderboard Version: 2.0]

[Wang et al., 2019]

Great Results with Transformers: Rise of Large Language Models!

Today, Transformer-based models dominate LMSYS Chatbot Arena Leaderboard!

Gemini / Bard (Google)

ChatGPT / GPT-4 (OpenAI)

Claude 3 (Anthropic) Llama 3 (Meta)

[Chiang et al., 2024]

Transformers Even Show Promise Outside of NLP

Protein Folding

[Jumper et al. 2021] aka AlphaFold2!

Attention Mar

Image Classification

[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms ResNet-based baselines with substantially less compute.

Systems **ML STM** Laver **LSTM** Layer LSTM Lave LSTM La **LSTM** Lay Embeddi Encoder Decoder

ML for Systems

[Zhou et al. 2020]: A Transformer-based compiler model (GO-one) speeds up a Transformer model!

Scaling Laws: Are Transformers All We Need?

- With Transformers, language modeling performance improves smoothly as we increase model size, training data, and compute resources in tandem.
- This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing!
- If we keep scaling up these models (with no change to the architecture), could they eventually match or exceed human-level performance?

[Kaplan et al., 2020]

What would we like to fix about the Transformer?

- **Quadratic compute in self-attention (today)**:
	- Computing all pairs of interactions means our computation grows **quadratically** with the sequence length!
	- For recurrent models, it only grew linearly!
- **Position representations**:
	- Are simple absolute indices the best we can do to represent position?
	- As we learned: Relative linear position attention [Shaw et al., 2018]
	- Dependency syntax-based position [Wang et al., 2019]
	- Rotary Embeddings [Su et al., 2021]

Recent work on improving on quadratic self-attention cost

- Considerable recent work has gone into the question, *Can we build models like* Transformers without paying the $O(T^2)$ all-pairs self-attention cost?
- For example, **Linformer** [Wang et al., 2020]

Key idea: map the sequence length dimension to a lowerdimensional space for values, keys

Recent work on improving on quadratic self-attention cost

- Considerable recent work has gone into the question, *Can we build models like* Transformers without paying the $O(T^2)$ all-pairs self-attention cost?
- For example, **BigBird** [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, **like local windows**, **looking at everything**, and **random interactions**.

(c) Global Attention

(a) Random attention

(b) Window attention

Do Transformer Modifications Transfer?

• "Surprisingly, we find that most modifications do not meaningfully improve performance."

Do Transformer Modifications Transfer Across Implementations and Applications?

