Learning and Natural Language
doc. Mgr. Bc. Vít Nováček, PhD
Learning and Natural Language

EXAM TOPICS:

  • Natural language (pre)processing techniques (the "classical" NLP pipeline)

  • Classes of machine learning algorithms, examples of models representing the classes

  • Typical machine learning pipeline

  • Typical applications of machine learning - a selection of examples, detailed description of one approach

  • Bag of words representation of text - pros and cons

  • Distributional hypothesis - historical context, linguistic motivations and practical implementations

  • Distributional vs. formal semantics

  • Word embeddings - the basic principles, example of a specific technique, pros and cons

  • Latent semantic analysis - basic principles, pros and cons

  • Document classification and text clustering

  • Perceptron - motivation and basic principles

  • Deep learning - description of the approach, and how does it differ from other machine learning techniques

  • Gradient descent and back-propagation - motivation and basic principles

  • Feed-forward neural networks - basic principles, pros and cons

  • Convolutional neural networks - basic principles, pros and cons

  • Recurrent neural networks - basic principles, pros and cons

  • Vanishing/exploding gradients and how to deal with them - description of a selected approach

  • Encoder-decoder architecture - basic principles

  • LSTM architecture - motivation and basic principles

  • Attention mechanism - motivation and basic principles

  • Transformer architecture - motivation and basic principles

  • Basic principles of language models (both traditional and neural ones)

  • Training language models - typical approaches and architecture of the models

  • Evaluation of standard machine learning models - description of the process and an example of an evaluation metric

  • Evaluation of language models - description of the process and an example of an evaluation metric

  • Typical applications of language models - a selection of examples, detailed description of one approach

  • Sentiment analysis - the problem addressed, justification of its practical relevance, general description of typical approaches

  • Detailed overview of a selected lexicon-based approach to sentiment analysis

  • Detailed overview of a selected classical machine learning approach to sentiment analysis

  • Detailed overview of a selected deep learning approach to sentiment analysis

  • Comparison of lexicon-based, classical machine learning and deep learning approaches to sentiment analysis

  • Basic principles of knowledge representation

  • Ontologies vs. knowledge graphs - pros and cons of each approach to knowledge representation

  • The stack of typical tasks in ontology learning

  • Main challenges and open problems of ontology learning

  • Techniques used for term extraction, synonym discovery and concept formation

  • Techniques used for taxonomy extraction

  • Techniques used for relation, rule and axiom extraction

  • Overview of a selected deep learning approach to knowledge extraction

Kapitola obsahuje:
1
Další soubory
1
PDF
1
Studijní text
1
Web
Učitel doporučuje studovat od 23. 9. 2024 do 29. 9. 2024.
Kapitola obsahuje:
1
Další soubory
1
PDF
1
Studijní text
Učitel doporučuje studovat od 30. 9. 2024 do 6. 10. 2024.
Kapitola obsahuje:
1
PDF
1
Studijní text
1
Web
Učitel doporučuje studovat od 7. 10. 2024 do 13. 10. 2024.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 14. 10. 2024 do 20. 10. 2024.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 21. 10. 2024 do 27. 10. 2024.
Učitel doporučuje studovat od 28. 10. 2024 do 3. 11. 2024.
Kapitola obsahuje:
1
Další soubory
1
PDF
1
Studijní text
Učitel doporučuje studovat od 4. 11. 2024 do 10. 11. 2024.
Kapitola obsahuje:
1
Studijní text
Učitel doporučuje studovat od 11. 11. 2024 do 17. 11. 2024.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 18. 11. 2024 do 24. 11. 2024.
Kapitola obsahuje:
1
PDF
1
Studijní text
Učitel doporučuje studovat od 25. 11. 2024 do 1. 12. 2024.
Kapitola obsahuje:
1
Studijní text
Učitel doporučuje studovat od 2. 12. 2024 do 8. 12. 2024.
Kapitola obsahuje:
1
PDF
1
Video
1
Studijní text
Učitel doporučuje studovat od 9. 12. 2024 do 15. 12. 2024.
Kapitola obsahuje:
1
Studijní text
Učitel doporučuje studovat od 16. 12. 2024 do 22. 12. 2024.
Předchozí