
Rotations and quaternions

Jiří Chmelík, Marek Trtík

PA199

► Rotation matrix

► Euler angles

► Tait-Bryan angles

► Axis-angle representation

► Quaternions
► Rotations via quaternions

► Quaternion derivative

Outline

 Well know topic from computer graphics courses.

=> We only discuss relation between basis vectors and rotation matrix.

 Let 𝒊′, 𝒋′, 𝒌′ be orthonormal basis vectors of a coordinate system inside

the world coordinate system.

 Then, the orientation of the coordinate system is

represented by the rotation matrix:

𝑅 =

𝒊𝑥
′ 𝒋𝑥

′ 𝒌𝑥
′

𝒊𝑦
′ 𝒋𝑦

′ 𝒌𝑦
′

𝒊𝑧
′ 𝒋𝑧

′ 𝒌𝑧
′

► 𝑅 transforms vectors “to world space”.

► 𝑅−1 = 𝑅⊤ transforms vectors “from world space”.

Rotation matrix

3

𝑥

𝑦

𝑧

𝑥′

𝑦′

𝑧′

𝒊′

𝒋′

𝒌′

𝑁 = 𝑧 × 𝑍

𝛾

► Three rotations are always sufficient to transform a source frame 𝑥𝑦𝑧

to a target one 𝑋𝑌𝑍:
► 𝛼 ∈ (0,2𝜋ۦ
► 𝛽 ∈ 0, 𝜋
► 𝛾 ∈ (0,2𝜋ۦ

► Actual rotations:

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍

𝛼

𝛽

𝑥𝑦-plane

𝑋𝑌-plane

When planes 𝑥𝑦 and 𝑋𝑌

are equal, then the

statement is clearly true.
4

“Line of nodes”

𝑁 = 𝑧 × 𝑍

𝛾

► Three rotations are always sufficient to transform a source frame 𝑥𝑦𝑧

to a target one 𝑋𝑌𝑍:
► 𝛼 ∈ (0,2𝜋ۦ
► 𝛽 ∈ 0, 𝜋
► 𝛾 ∈ (0,2𝜋ۦ

► Actual rotations:
► Start with frame 𝑋0𝑌0𝑍0 = 𝑥𝑦𝑧.

► Rotate 𝑋0𝑌0𝑍0 about 𝑍0 by 𝛼.

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍

𝛼

𝛽

𝑥𝑦-plane

𝑋𝑌-plane

5

When planes 𝑥𝑦 and 𝑋𝑌

are equal, then the

statement is clearly true.

𝑋0 =

= 𝑌0

𝑍0 =

“Line of nodes”

𝑁 = 𝑧 × 𝑍

𝛾

► Three rotations are always sufficient to transform a source frame 𝑥𝑦𝑧

to a target one 𝑋𝑌𝑍:
► 𝛼 ∈ (0,2𝜋ۦ
► 𝛽 ∈ 0, 𝜋
► 𝛾 ∈ (0,2𝜋ۦ

► Actual rotations:
► Start with frame 𝑋0𝑌0𝑍0 = 𝑥𝑦𝑧.

► Rotate 𝑋0𝑌0𝑍0 about 𝑍0 by 𝛼.

► Rotate 𝑋1𝑌1𝑍1 about 𝑋1 by 𝛽.

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍

𝛼

𝛽

𝑥𝑦-plane

𝑋𝑌-plane

6

When planes 𝑥𝑦 and 𝑋𝑌

are equal, then the

statement is clearly true.

𝑋1 =

𝑌1

𝑍1 =

“Line of nodes”

𝑁 = 𝑧 × 𝑍

𝛾

► Three rotations are always sufficient to transform a source frame 𝑥𝑦𝑧

to a target one 𝑋𝑌𝑍:
► 𝛼 ∈ (0,2𝜋ۦ
► 𝛽 ∈ 0, 𝜋
► 𝛾 ∈ (0,2𝜋ۦ

► Actual rotations:
► Start with frame 𝑋0𝑌0𝑍0 = 𝑥𝑦𝑧.

► Rotate 𝑋0𝑌0𝑍0 about 𝑍0 by 𝛼.

► Rotate 𝑋1𝑌1𝑍1 about 𝑋1 by 𝛽.

► Rotate 𝑋2𝑌2𝑍2 about 𝑍2 by 𝛾.

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍

𝛼

𝛽

𝑥𝑦-plane

𝑋𝑌-plane

7

When planes 𝑥𝑦 and 𝑋𝑌

are equal, then the

statement is clearly true.

𝑌2

𝑍2 =

𝑋2 =
“Line of nodes”

𝑁 = 𝑧 × 𝑍

𝛾

► Three rotations are always sufficient to transform a source frame 𝑥𝑦𝑧

to a target one 𝑋𝑌𝑍:
► 𝛼 ∈ (0,2𝜋ۦ
► 𝛽 ∈ 0, 𝜋
► 𝛾 ∈ (0,2𝜋ۦ

► Actual rotations:
► Start with frame 𝑋0𝑌0𝑍0 = 𝑥𝑦𝑧.

► Rotate 𝑋0𝑌0𝑍0 about 𝑍0 by 𝛼.

► Rotate 𝑋1𝑌1𝑍1 about 𝑋1 by 𝛽.

► Rotate 𝑋2𝑌2𝑍2 about 𝑍2 by 𝛾.

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍

𝛼

𝛽

𝑥𝑦-plane

𝑋𝑌-plane

8

When planes 𝑥𝑦 and 𝑋𝑌

are equal, then the

statement is clearly true.

= 𝑌3

𝑍3 =

= 𝑋3

“Line of nodes”

► Let 𝑅 𝜑, 𝑎 denotes a rotation matrix about an axis 𝑎 by an angle 𝜑.

► So, our rotations can be expressed by matrices:
► 𝑅 𝛼, 𝑍0

► 𝑅 𝛽, 𝑋1

► 𝑅 𝛾, 𝑍2

► We compose them by the matrix multiplication:

𝑅 𝛾, 𝑍2 𝑅 𝛽, 𝑋1 𝑅 𝛼, 𝑍0

► Here we work with 𝑍-𝑋-𝑍 convention. But there are 5 more:
► 𝑋-𝑌-𝑋, 𝑋-𝑍-𝑋, 𝑌-𝑋-𝑌, 𝑌-𝑍-𝑌, and 𝑍-𝑌-𝑍.

► We can choose any of the conventions we want.

► Observation: 1st and 3rd rotation axes are the same.

Euler angles

9

► The rotations 𝑅 𝛼, 𝑍0 , 𝑅 𝛽, 𝑋1 , 𝑅 𝛾, 𝑍2 about the axes of the rotated

(target) frame 𝑋𝑌𝑍 are called intrinsic.

► A practical disadvantage of intrinsic rotations is that some of

rotations are about arbitrary oriented axis.
► In CG courses we only learned how to build rotation matrices for fixed

axes 𝑥, 𝑦, 𝑧.

► But axes 𝑋1, 𝑍2 may be arbitrary (the axis 𝑍0 is OK, since 𝑍0 = 𝑧).

► Fortunately, we can also transform a source frame 𝑥𝑦𝑧 to a target

one 𝑋𝑌𝑍 using extrinsic rotations 𝑅 𝛼, 𝑧 , 𝑅 𝛽, 𝑥 , 𝑅 𝛾, 𝑧 .
► Let us figure out how to do that…

Euler angles

10

► Start with the 𝑋𝑌𝑍 aligned with 𝑥𝑦𝑧.

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍

11

𝑋 =

= 𝑌

𝑍 =

► Start with the 𝑋𝑌𝑍 aligned with 𝑥𝑦𝑧.

► Apply 𝑅 𝛼, 𝑥 to rotate the tip of 𝑍 to

the plane 𝜌.
► 𝜌 is parallel with 𝑥𝑦 plane and

contains the tip of 𝑍.

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍
𝛼

12

𝑌

𝑍 𝜌

𝑋 =

► Start with the 𝑋𝑌𝑍 aligned with 𝑥𝑦𝑧.

► Apply 𝑅 𝛼, 𝑥 to rotate the tip of 𝑍 to

the plane 𝜌.
► 𝜌 is parallel with 𝑥𝑦 plane and

contains the tip of 𝑍.

► Apply 𝑅 𝛽, 𝑧 to rotate the tip of 𝑍 to

the tip of 𝑍.

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍
𝛼

13

𝑌
𝜌

𝑋

𝑍 =
𝛽

► Start with the 𝑋𝑌𝑍 aligned with 𝑥𝑦𝑧.

► Apply 𝑅 𝛼, 𝑥 to rotate the tip of 𝑍 to

the plane 𝜌.
► 𝜌 is parallel with 𝑥𝑦 plane and

contains the tip of 𝑍.

► Apply 𝑅 𝛽, 𝑧 to rotate the tip of 𝑍 to

the tip of 𝑍.

► Apply the “twist” rotation 𝑅 𝛾, 𝑍 to

align 𝑋 with 𝑋 and 𝑌 with 𝑌.
► But, this is not extrinsic rotation!

► We can fix it by applying the twist
𝑅 𝛾, 𝑧 as the first rotation.

► The value of 𝛾 will be different since the

other two rotations affect the twist too.

Euler angles

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍
𝛼

14

𝜌

𝑍 =
𝛽

= 𝑋

= 𝑌

𝛾

More intuition is in video: [5]

► Planes 𝑥𝑦 and 𝑋𝑌 are parallel => 1 degree of freedom is lost = gimbal lock.

► The special value of 𝛼 “locks” the other two rotations

 into the same plane (although they can rotate freely in that plane).

Euler angles: gimbal lock

15

𝑥

𝑦

𝑍 = 𝑧

𝑋

𝑌

Case: 𝛼 = 0
𝛽, 𝛾: ambiguous
𝛽 + 𝛾: unique

𝑥

𝑦

𝑧

𝑋
𝑌

𝑍

Case: 𝛼 = 𝜋

𝛽, 𝛾: ambiguous
𝛽 − 𝛾: unique

► We can use 3 angles to express any orientation of an object in 3D

space:
 public class Orientation {

 float alpha;

 float beta;

 float gamma;

 };

►Pros:
► Low memory footprint.

► Easy to understand.

►Cons:
► Suffers from the gimbal lock.

► Slow conversion to matrix representation (sin and cos for each angle).

Euler angles representation

16

► Same as Euler angles, except that all three axes are different.

► There are 6 possible conventions:
► 𝑋-𝑌-𝑍, 𝑋-𝑍-𝑌, 𝑌-𝑋-𝑍, 𝑌-𝑍-𝑋, 𝑍-𝑋-𝑌, and 𝑍-𝑌-𝑋.

► The line of nodes is different: It is an intersection of the 𝑥𝑦-plane and

the plane orthogonal to the 3rd rotation axis of the convention.

► The angles 𝛼, 𝛽, 𝛾 are often called yaw, pitch, roll, respectively.

Tait-Bryan angles

17

► Euler’s rotation theorem (one of the versions): Any reconfiguration of

an object in 3D space with one of its points fixed is equivalent to its

single rotation about an axis passing through the fixed point.

► Proof:
► We look for a rotation axis passing though 𝑆.
► We “paint” a great circle (green) on the sphere

 in the initial position.

► We rotate the sphere => We get the rotated

 green circle, which is depicted as red circle.

► If the circles coincide, then the axis clearly exists.

 Otherwise, the circles intersect - two points 𝐴, 𝑍.

► 𝐴 is on red circle => its pre-image 𝐵 is on green one.

 𝐴 is on green circle => its post-image 𝐶 is on red one.

Axis-angle rotation

18

𝑆
𝐶

𝐵𝐴

𝑍

► Construct a great circle (blue) passing through 𝐴, 𝑍 and bisecting the

angle 𝐵𝐴𝐶.

► Find a point 𝑂 on the blue circle s.t. the length of arcs 𝐴𝑂 and 𝐵𝑂 is the

same.

► The length of the arc 𝐴𝑂 must be equal to the length

 of the arc 𝐶𝑂, because lengths of arcs 𝐴𝐵 and 𝐴𝐶
 are the same and the blue circle in the bisector

 of the angle 𝐶𝐴𝐵.
 Triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 on the sphere must be

 the same.
 Actually, 𝐴𝐵𝑂 becomes 𝐶𝐴𝑂 after the rotation.

 The point 𝑂 lies on the searched rotation axis,

 because it does not move when rotating the

 triangles.

 𝑆𝑂 is the rotation axis and the arc length 𝐴𝐵 is the angle.

Axis-angle rotation

19

𝑂

𝑆

𝐴 𝐵

𝐶

𝑍

►Rodrigues' rotation formula: A vector 𝑣 ∈ 𝑅3 rotated about a unit axis

𝑎 ∈ 𝑅3 by an angle 𝜃 ∈ :0,2𝜋) is the vectorۦ

ҧ𝑣 = cos 𝜃 𝑣 + 1 − cos 𝜃 𝑎 ⋅ 𝑣 𝑎 + sin 𝜃 𝑎 × 𝑣.
► Proof:

𝑣𝑎 = 𝑎 ⋅ 𝑣 𝑎,

𝑣⊥ = 𝑣 − 𝑣𝑎 = 𝑣 − 𝑎 ⋅ 𝑣 𝑎,

𝑣× = 𝑎 × 𝑣⊥ = 𝑎 × 𝑣 − 𝑣𝑎 = 𝑎 × 𝑣.

Note: |𝑣×| = |𝑣⊥|.
ҧ𝑣⊥ = cos 𝜃 𝑣⊥ + sin 𝜃 𝑣×.
ҧ𝑣 = 𝑣𝑎 + ҧ𝑣⊥

 = 𝑣𝑎 + cos 𝜃 𝑣⊥ + sin 𝜃 𝑣×

 = 𝑎 ⋅ 𝑣 𝑎 + cos 𝜃 (𝑣 − 𝑎 ⋅ 𝑣 𝑎) + sin 𝜃 𝑎 × 𝑣
 = cos 𝜃 𝑣 + 1 − cos 𝜃 𝑎 ⋅ 𝑣 𝑎 + sin 𝜃 𝑎 × 𝑣.

Axis-angle rotation

𝜃

𝑎

𝑣 ҧ𝑣

𝑣𝑎 𝑣⊥

𝑣×

ҧ𝑣⊥

20

►Vector triple product: 𝑢 × 𝑣 × 𝑤 = 𝑢 ⋅ 𝑤 𝑣 − 𝑢 ⋅ 𝑣 𝑤
► If 𝑎 = 1, then 𝑎 × 𝑎 × 𝑣 = 𝑎 ⋅ 𝑣 𝑎 − 𝑎 ⋅ 𝑎 𝑣 = 𝑎 ⋅ 𝑣 𝑎 − 𝑣

► Matrix representation of the cross product:

𝑢 × 𝑣 =

0 −𝑢𝑧 𝑢𝑦

𝑢𝑧 0 −𝑢𝑥

−𝑢𝑦 𝑢𝑥 0
𝑣 = 𝑢 𝑣.

►Matrix representation of the axis-angle:

ҧ𝑣 = cos 𝜃 𝑣 + 1 − cos 𝜃 𝑎 ⋅ 𝑣 𝑎 + sin 𝜃 𝑎 × 𝑣

 = cos 𝜃 𝑣 + 1 − cos 𝜃 (𝑎 × 𝑎 × 𝑣 + 𝑣) + sin 𝜃 𝑎 × 𝑣

 = 𝑣 + 1 − cos 𝜃 𝑎 × 𝑎 × 𝑣 + sin 𝜃 𝑎 × 𝑣

 = 𝑣 + 1 − cos 𝜃 𝑎 2𝑣 + sin 𝜃 𝑎 𝑣

 = 𝐼 + 1 − cos 𝜃 𝑎 2 + sin 𝜃 𝑎 𝑣
 = 𝑅 𝜃, 𝑎 𝑣

Axis-Angle to rotation Matrix

21

►Given two axis-angle rotations 𝑅 𝜑, 𝑎 and 𝑅 𝜓, 𝑏 , the linearly

interpolated rotation is then 𝑅 1 − 𝑡 𝜑 + 𝑡𝜓,
(1−𝑡)𝑎+𝑡𝑏

|(1−𝑡)𝑎+𝑡𝑏|
, 𝑡 ∈ 0,1 .

► Technical issues related to |(1 − 𝑡)𝑎 + 𝑡𝑏|:
► Slow – we must compute the square root.

► The result is not defined when =0.

►Problem: The velocity is not constant (increases and decreases) .
Visible visual artefact – we prefer uniform blending between rotations.

►Can we do better?
► Yes, use spherical linear interpolation.

Linear interpolation (lerp)

22

►Given two linearly independent unit vectors 𝑢, 𝑣 and a parameter 𝑡 ∈
0,1 , find a unit vector 𝑤 = 𝛼𝑢 + 𝛽𝑣 s.t. 𝛼, 𝛽 > 0 and angle between

𝑢, 𝑤 is 𝑡𝜃, where 𝜃 is the angle between 𝑢, 𝑣.

► 𝑣⊥
∗ =

𝑣−cos 𝜃𝑢

(𝑣−cos 𝜃𝑢)(𝑣−cos 𝜃𝑢)
=

𝑣−cos 𝜃𝑢

1−cos2 𝜃
=

𝑣−cos 𝜃𝑢

sin 𝜃
.

► 𝑤 = cos 𝑡𝜃 𝑢 + sin 𝑡𝜃
𝑣−cos 𝜃𝑢

sin 𝜃

 = cos 𝑡𝜃 −
sin 𝑡𝜃 cos 𝜃

sin 𝜃
𝑢 +

sin 𝑡𝜃

sin 𝜃
𝑣

 =
cos 𝑡𝜃 sin 𝜃−sin 𝑡𝜃 cos 𝜃

sin 𝜃
𝑢 +

sin 𝑡𝜃

sin 𝜃
𝑣

 =
sin(1−𝑡)𝜃

sin 𝜃
𝑢 +

sin 𝑡𝜃

sin 𝜃
𝑣.

►Given two axis-angle rotations 𝑅 𝜑, 𝑎 and 𝑅 𝜓, 𝑏 , the interpolated

rotation is then 𝑅 1 − 𝑡 𝜑 + 𝑡𝜓,
sin(1−𝑡)𝜃

sin 𝜃
𝑎 +

sin 𝑡𝜃

sin 𝜃
𝑏 .

Spherical linear interpolation (slerp)

23

𝑢

𝑣
𝑤

𝜃
𝑡𝜃

𝑣⊥

𝑣⊥ = 𝑣 − cos 𝜃 𝑢

𝑣⊥
∗ = 𝑣⊥/|𝑣⊥|

𝑣⊥
∗

𝑤 = cos 𝑡𝜃 𝑢 + sin 𝑡𝜃 𝑣⊥
∗

►We can use axis-angle to express any orientation of object in 3D

space.
 public class Orientation {

 float angle;

 Vector3 unitAxis;

 };

►Pros:
► Fast conversion to matrix representation (sine and cosine for one angle).

► We can use lerp and slerp.

► Easy to understand.

► Low memory footprint.

►Cons:
► Complicated composition of rotations (often solved via other rep.).

Axis-angle representation

24

► Let 𝑎, 𝑏 are real numbers and 𝒊2 = −1 be an imaginary unit. Then

𝑎 + 𝑏𝒊
 is a complex number (constructed by the pairing process).

► Let 𝑎 + 𝑏𝒊, 𝑐 + 𝑑𝒊 are complex numbers and 𝒋2 = −1 be an imaginary

unit, 𝒊 ≠ 𝒋. Then

𝑎 + 𝑏𝒊 + 𝑐 + 𝑑𝒊 𝒋 =
𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒊𝒋 =

𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌
 where 𝒌 = 𝒊𝒋, is a quaternion.

► 𝒌2 = −1 is another unique imaginary unit, i.e., 𝒌 ≠ 𝒊, 𝒌 ≠ 𝒋.
►Relations between imaginary units:

 𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊 , 𝒌𝒊 = 𝒋,
 𝒋𝒊 = −𝒌, 𝒌𝒋 = −𝒊 , 𝒊𝒌 = −𝒋.

Quaternions

25

How to remember these? Think of the cross

product of basis vectors 𝒊, 𝒋, 𝒌, e.g., 𝒊 × 𝒋 = 𝒌.

► A quaternion 𝑞 = 𝑠 + 𝑢𝑥𝒊 + 𝑢𝑦𝒋 + 𝑢𝑧𝒌 can be written in a scalar-vector

notation as a pair 𝑞 = (𝑠, 𝑢), where the vector 𝑢 = 𝑢𝑥, 𝑢𝑦, 𝑢𝑧
⊤

.

► Let 𝑞 = 𝑠, 𝑢 , 𝑝 = (𝑡, 𝑣) be quaternions and 𝑐 a real number. Then
► 𝑞 + 𝑝 = 𝑠, 𝑢 + 𝑡, 𝑣 = 𝑠 + 𝑢𝑥𝒊 + 𝑢𝑦𝒋 + 𝑢𝑧𝒌 + 𝑡 + 𝑣𝑥𝒊 + 𝑣𝑦𝒋 + 𝑣𝑧𝒌 = (𝑠 + 𝑡, 𝑢 + 𝑣).

► 𝑐𝑞 = (𝑐𝑠, 𝑐𝑢). −1 𝑞 = −𝑞 = (−𝑠, −𝑢).
► 𝑞𝑝 = ⋯ (use distributive law) ⋯ = (𝑠𝑡 − 𝑢 ⋅ 𝑣, 𝑠𝑣 + 𝑡𝑢 + 𝑢 × 𝑣). 𝑐 𝑞𝑝 = 𝑐𝑞 𝑝.
► Conjugation 𝑞∗ = 𝑠 − 𝑢𝑥𝒊 − 𝑢𝑦𝒋 − 𝑢𝑧𝒌 = (𝑠, −𝑢). 𝑐𝑞∗ = 𝑐𝑞 ∗.

► Length 𝑞 = 𝑞𝑞∗ = 𝑠2 + 𝑢 ⋅ 𝑢. If 𝑞 = 𝑝 = 1, then 𝑞𝑝 = 1.

► Additive unit quaternion (0,0), multiplicative unit quaternion (1,0).

► 𝑞−1 =
1

𝑞 2 𝑞∗. If 𝑞 = 1, then 𝑞−1 = 𝑞∗.

► 𝑞 + 𝑝 ∗ = 𝑞∗ + 𝑝∗.
► 𝑞𝑝 ∗ = 𝑝∗𝑞∗.

► Dot product: 𝑞 ⋅ 𝑝 = 𝑠𝑡 + 𝑢 ⋅ 𝑣.

► Addition and multiplication are associative. Only addition is commutative.

Quaternions

26

►Let 𝑞 = 𝑠, 𝑢 be a quaternion s.t. 𝑞 = 1. Then there exists an angle

𝛼 ∈ 0,2𝜋) s.t. 𝑞ۦ = cos 𝛼 , sin 𝛼 𝑣 , where 𝑣 = 0 if |𝑠| = 1, else 𝑣 = 𝑢/ sin 𝛼.

 Proof:

 If 𝑠 = 1 ⇒ 𝛼 = 0. Otherwise,

𝑞 = 1 ⇒ 𝑠 < 1 ⇒ 𝛼 = cos−1 𝑠 (choose 𝛼 s.t. sin 𝛼 > 0),

 12 = 𝑞 2 = 𝑠2 + 𝑢 ⋅ 𝑢 = cos2 𝛼 + 𝑢 2 ⇒ 𝑢 2 = 1 − cos2 𝛼 = sin2 𝛼 ⇒ 𝑢 = | sin 𝛼 |.

► Let 𝑞 = 𝑠, 𝑢 , 𝑝 = (0, 𝑣) be quaternions s.t. 𝑞 = 1. Then we define
 𝑅𝑞 𝑝 = 𝑞𝑝𝑞−1 = 𝑞𝑝𝑞∗ = ⋯ = (0, 𝑠2 − 𝑢 ⋅ 𝑢 𝑣 + 2 𝑢 ⋅ 𝑣 𝑢 + 2𝑠(𝑢 × 𝑣)).

►Let us compare the Rodrigues' rotation formula with 𝑅𝑞 𝑝 :

 cos 𝜃 𝑣 + 1 − cos 𝜃 𝑎 ⋅ 𝑣 𝑎 + sin 𝜃 𝑎 × 𝑣. rotation formula
𝑠2 − 𝑢 ⋅ 𝑢 𝑣 + 2 𝑢 ⋅ 𝑣 𝑢 + 2𝑠 𝑢 × 𝑣 vector of 𝑅𝑞 𝑝

►Question: Is the vector part of 𝑅𝑞 𝑝 equal to Rodrigues’ formula?

Rotation via quaternion

27

TADY→

► 𝑞 = 𝑠, 𝑢 can be expressed as 𝑞 = cos 𝛼 , sin 𝛼 𝑎 , 𝑠 = cos 𝛼 , 𝑢 = sin 𝛼 𝑎.
► Therefore, the vector part of 𝑅𝑞 𝑝 is:

𝑠2 − 𝑢 ⋅ 𝑢 𝑣 + 2 𝑢 ⋅ 𝑣 𝑢 + 2𝑠 𝑢 × 𝑣 =
cos2 𝛼 − sin2 𝛼 𝑣 + 2 sin2 𝛼 𝑎 ⋅ 𝑣 𝑎 + 2 cos 𝛼 sin 𝛼 𝑎 × 𝑣.

 So, the angle 𝛼 must satisfy these three equalities (relevant
 trigonometry identities are on the right):
 cos 𝜃 = cos2 𝛼 − sin2 𝛼 // cos 2𝛼 = cos2 𝛼 − sin2 𝛼
 1 − cos 𝜃 = 2 sin2 𝛼 // cos 2𝛼 = 1 − 2 sin2 𝛼
 sin 𝜃 = 2 cos 𝛼 sin 𝛼 // sin 2𝛼 = 2 cos 𝛼 sin 𝛼
 A solution exists: 𝜃 = 2𝛼. So, 𝑅𝑞 𝑝 rotates 𝑝 about axis 𝑎 by 2𝛼.
►Observations, for quaternions 𝑞, 𝑞′, 𝑝 s.t. 𝑞 = 𝑞′ = 1:

►𝑞∗𝑅𝑞 𝑝 𝑞 = 𝑞∗ 𝑞𝑝𝑞∗ 𝑞 = 𝑝. => 𝑞∗ is the inverse rotation to 𝑞.
►𝑅−𝑞 𝑝 = −𝑞 𝑝 −𝑞 ∗ = 𝑞𝑝𝑞∗ = 𝑅𝑞 𝑝 . => −𝑞 is the same rotation as 𝑞.

►𝑅𝑞′ 𝑅𝑞 𝑝 = 𝑅𝑞′ 𝑞𝑝𝑞∗ = 𝑞′ 𝑞𝑝𝑞∗ 𝑞′∗
= 𝑞′𝑞 𝑝 𝑞′𝑞 ∗ = 𝑅𝑞′𝑞 𝑝 .

Rotation via quaternion

28

►Conversion axis-angle to quaternion: A vector 𝑣 ∈ 𝑅3 rotated about a

unit axis 𝑎 ∈ 𝑅3 by an angle 𝜃 ∈ 0,2𝜋) can be computed usingۦ
quaternions as 𝑅𝑞 𝑝 = 𝑞𝑝𝑞∗, where 𝑝 = 0, 𝑣 , 𝑞 = (cos 𝜃/2 , sin 𝜃/2 𝑎).

►Conversion quaternion to axis-angle: Let 𝑞 be a quaternion s.t. 𝑞 = 1

expressed in the form 𝑞 = cos 𝛼 , sin 𝛼 𝑎 , 𝑎 = 1. Then 𝑞 represents

rotation about the axis vector 𝑎 by the angle 2𝛼.

►Conversion quaternion to rotation matrix: Let 𝑞 = (𝑠, 𝑢) be a
quaternion s.t. 𝑞 = 1. Then the vector part of 𝑅𝑞 (0, 𝑣) is:

𝑠2 − 𝑢 ⋅ 𝑢 𝑣 + 2 𝑢 ⋅ 𝑣 𝑢 + 2𝑠 𝑢 × 𝑣 =
𝑠2 − (1 − 𝑠2) 𝑣 + 2 𝑢 × 𝑢 × 𝑣 + (1 − 𝑠2)𝑣 + 2𝑠 𝑢 × 𝑣 =

𝑣 + 2 𝑢 2𝑣 + 2𝑠 𝑢 𝑣 =
𝐼 + 2 𝑢 2 + 2𝑠 𝑢 𝑣

Quaternions and other representations

29

𝑞 2 = 12 = 𝑠2 + 𝑢 ⋅ 𝑢
𝑢 × 𝑢 × 𝑣 = 𝑢 ⋅ 𝑣 𝑢 − 𝑢 ⋅ 𝑢 𝑣
 = 𝑢 ⋅ 𝑣 𝑢 − (1 − 𝑠2)𝑣

►Given quaternions 𝑞, 𝑝 s.t. 𝑞 = 𝑝 = 1 we can linearly interpolate

between them by 𝑡 ∈ 0,1 :

𝑄 𝑡 =
1 − 𝑡 𝑞 + 𝑡𝑝

| 1 − 𝑡 𝑞 + 𝑡𝑝|
.

► Technical issues related to | 1 − 𝑡 𝑞 + 𝑡𝑝|:
► Slow – we must compute the square root.

► The result is not defined when =0.

►Problem: The velocity is not constant (increases and decreases) .
Visible visual artefact – we prefer uniform blending between rotations.

►Can we do better?
► Yes, use spherical linear interpolation.

Linear interpolation (lerp)

30

►Let us first compute a quaternion Δ𝑞 representing a rotation from a

quaternion 𝑞0 = 𝑠, 𝑢 to 𝑞1 = ℎ, 𝑣 . We assume Δ𝑞 = 𝑞0 = 𝑞1 = 1.
 Δ𝑞𝑞0 = 𝑞1

 Δ𝑞 = 𝑞1𝑞0
−1 = 𝑞1𝑞0

∗ = 𝑠ℎ + 𝑢 ⋅ 𝑣, 𝑠𝑣 − ℎ𝑢 + 𝑢 × 𝑣 = cos 𝛼 , sin 𝛼 𝑎 .

where,

 𝛼 = cos−1(𝑠ℎ + 𝑢 ⋅ 𝑣), 𝑎 = 𝑠𝑣 − ℎ𝑢 + 𝑢 × 𝑣 / sin 𝛼 (𝑎 = 0 for 𝛼 = 0, 𝜋).

►For 𝑡 ∈ 0,1 we define Δ𝑞 𝑡 = cos 𝑡𝛼 , sin 𝑡𝛼 𝑎 . So, we get:

 slerp 𝑞0, 𝑞1, 𝑡 = Δ𝑞 𝑡 𝑞0 = cos 𝑡𝛼 , sin 𝑡𝛼 𝑎 𝑞0.

Spherical linear interpolation (slerp)

31

► Let 𝑞(𝑡) = 𝑠 𝑡 + 𝑢𝑥 𝑡 𝒊 + 𝑢𝑦 𝑡 𝒋 + 𝑢𝑧 𝑡 𝒌 = (𝑠 𝑡 , 𝑢(𝑡)), be a quaternion

where 𝑠 𝑡 , 𝑢𝑥 𝑡 , 𝑢𝑦 𝑡 , 𝑢𝑧 𝑡 are functions of 𝑡 ∈ 𝑅. Then we define

d𝑞(𝑡)

d𝑡
= ሶ𝑞 𝑡 = lim

Δ𝑡→0

𝑞 𝑡+Δ𝑡 −𝑞(𝑡)

Δ𝑡
=

 = lim
Δ𝑡→0

𝑠 𝑡+Δ𝑡 −𝑠(𝑡)

Δ𝑡
+ 𝒊 lim

Δ𝑡→0

𝑢𝑥 𝑡+Δ𝑡 −𝑢𝑥(𝑡)

Δ𝑡
+ 𝒋 lim

Δ𝑡→0

𝑢𝑦 𝑡+Δ𝑡 −𝑢𝑦(𝑡)

Δ𝑡
+

 𝒌 lim
Δ𝑡→0

𝑢𝑧 𝑡+Δ𝑡 −𝑢𝑧(𝑡)

Δ𝑡
=

 =
d𝑠(𝑡)

d𝑡
+

d𝑢𝑥(𝑡)

d𝑡
𝒊 +

d𝑢𝑦(𝑡)

d𝑡
𝒋 +

d𝑢𝑧(𝑡)

d𝑡
𝒌 =

 =
d𝑠 𝑡

d𝑡
,

d𝑢 𝑡

d𝑡
.

►Note: ∫ 𝑞 𝑡 𝑑𝑡 = ∫ 𝑠 𝑡 𝑑𝑡 + 𝒊∫ 𝑢𝑥 𝑡 𝑑𝑡 + 𝒋∫ 𝑢𝑦 𝑡 𝑑𝑡 + 𝒌∫ 𝑢𝑧 𝑡 𝑑𝑡.

Quaternion derivative

32

► Example: Let’s compute a derivative of the

 orientation of a frame of reference (orange)

 rotating a constant angular speed |𝜔| about

 the unit axis vector ෝ𝜔 = 𝜔/|𝜔|.
►Solution:

►Let 𝑞(𝑡) be an orientation (rotation) of the

 orange frame in the green one (world).

►We express the rotation about ෝ𝜔:

 Δ𝑞 Δ𝑡 = cos
|𝜔|Δ𝑡

2
, sin

|𝜔|Δ𝑡

2
ෝ𝜔 .

► ሶ𝑞 𝑡 = lim
Δt→0

𝑞 𝑡+Δ𝑡 − 𝑞(𝑡)

Δt
= lim

Δt→0

Δ𝑞 Δ𝑡 𝑞 𝑡 − 𝑞(𝑡)

Δt
= lim

Δt→0

Δ𝑞 Δ𝑡 − (1, 0)

Δt
𝑞(𝑡)

Quaternion derivative

33

𝑥

𝑦

𝑧

𝑋

𝑌

𝑍
𝜔

 = lim
Δ𝑡→0

cos
|𝜔|Δ𝑡

2
 − 1

Δt
, lim

Δ𝑡→0

sin
|𝜔|Δ𝑡

2

Δ𝑡
 ෝ𝜔 𝑞(𝑡) // cos 2𝜑 = 1 − 2sin2 𝜑

 = lim
Δ𝑡→0

−2sin2 |𝜔|Δ𝑡

4

Δt
, lim

Δ𝑡→0

sin
|𝜔|Δ𝑡

2

Δ𝑡
 ෝ𝜔 𝑞(𝑡)

 =
d

d𝑡
(−2sin2 |𝜔|𝑡

4
)(0),

d

d𝑡
(sin

|𝜔|𝑡

2
)(0) ෝ𝜔 𝑞(𝑡)

 = (−2
|𝜔|

4
cos

|𝜔|𝑡

4
2sin

|𝜔|𝑡

4
)(0), (

|𝜔|

2
cos

|𝜔|𝑡

2
)(0) ෝ𝜔 𝑞(𝑡)

 = 0,
|𝜔|

2
ෝ𝜔 𝑞(𝑡) // Observe: 0, |𝜔| ෝ𝜔 represents 𝜔.

 =
1

2
𝜔𝑞(𝑡).

Quaternion derivative

34

►We can use quaternions to express any orientation of object in 3D

space.
 public class Orientation { // Equals to a quaternion q=(s,u), |q|=1.

 float s; // the scalar part

 Vector3 u; // the vector part

 };

►Pros:
► Low memory footprint.

► Fast conversion to rotation matrix (no need to compute cosine & sine).

► Fast composition of rotations (just multiply the quaternions).

► We can use lerp and slerp.

►Cons:
► Less human readable.

Quaternion representation

35

► There is no single winner – each representation has pros and cons.

► Examples:
► When specifying a rotation along a coordinate axis (e.g., world Z), then

Euler angles are a good choice.

► When specifying a rotation along non-coordinate axis, then axis-angle

representation is a good choice.

► When composing rotations of some joint of a skeleton, then quaternions

can do it quickly.

► When rotations must be composed with other transformations, then use

matrix representation.

► Game engine should provide all representations and conversions

between them.

What representation to use?

36

► [1] D.M.Mount; Lecture notes CMSC 425 Game Programming;

University of Maryland, 2016.

► [2] E.B.Dam,M.Koch,M.Lillholm; Quaternions, Interpolation and

Animation; TechnicalReport DIKU-TR-98/5, University of Copenhagen,

1998.

► [3] M.C.Nechyba; Lecture notes EEL6667: Kinematics, Dynamics and

Control of Robot Manipulators - Introduction to quaternions; 2003,

https://mil.ufl.edu/nechyba/www/__eel6667.f2003/course_materials.

html.

► [4] Y.-B. Jia; Lecture notes (Com S 477/577 Notes) Quaternions; 2018.

► [5] Euler angles: https://www.youtube.com/watch?v=A6lf8t9WXn8

References

37

	Slide 1: Rotations and quaternions
	Slide 2: Outline
	Slide 3: Rotation matrix
	Slide 4: Euler angles
	Slide 5: Euler angles
	Slide 6: Euler angles
	Slide 7: Euler angles
	Slide 8: Euler angles
	Slide 9: Euler angles
	Slide 10: Euler angles
	Slide 11: Euler angles
	Slide 12: Euler angles
	Slide 13: Euler angles
	Slide 14: Euler angles
	Slide 15: Euler angles: gimbal lock
	Slide 16: Euler angles representation
	Slide 17: Tait-Bryan angles
	Slide 18: Axis-angle rotation
	Slide 19: Axis-angle rotation
	Slide 20: Axis-angle rotation
	Slide 21: Axis-Angle to rotation Matrix
	Slide 22: Linear interpolation (lerp)
	Slide 23: Spherical linear interpolation (slerp)
	Slide 24: Axis-angle representation
	Slide 25: Quaternions
	Slide 26: Quaternions
	Slide 27: Rotation via quaternion
	Slide 28: Rotation via quaternion
	Slide 29: Quaternions and other representations
	Slide 30: Linear interpolation (lerp)
	Slide 31: Spherical linear interpolation (slerp)
	Slide 32: Quaternion derivative
	Slide 33: Quaternion derivative
	Slide 34: Quaternion derivative
	Slide 35: Quaternion representation
	Slide 36: What representation to use?
	Slide 37: References

