Rotations and quaternions

Jiří Chmelík, Marek Trtík PA199

Outline

- ► Rotation matrix
- ► Euler angles
- ► Tait-Bryan angles
- ► Axis-angle representation
- ► Quaternions
	- ► Rotations via quaternions
	- ► Quaternion derivative

Rotation matrix

- Well know topic from computer graphics courses. => We only discuss relation between basis vectors and rotation matrix.
- ► Let *i', j', k'* be **orthonormal** basis vectors of a coordinate system inside the world coordinate system**.**
- \blacktriangleright Then, the orientation of the coordinate system is represented by the rotation matrix:

$$
R = \begin{pmatrix} \mathbf{i}'_x & \mathbf{j}'_x & \mathbf{k}'_x \\ \mathbf{i}'_y & \mathbf{j}'_y & \mathbf{k}'_y \\ \mathbf{i}'_z & \mathbf{j}'_z & \mathbf{k}'_z \end{pmatrix}
$$

- \blacktriangleright R transforms vectors "to world space".
- $R^{-1} = R^{T}$ transforms vectors "from world space".

 \blacktriangleright Three rotations are always sufficient to transform a source frame xyz to a target one XYZ :

 $\blacktriangleright \alpha \in (0,2\pi)$ \blacktriangleright $\beta \in \langle 0, \pi \rangle$ $\blacktriangleright \gamma \in (0, 2\pi)$ ► Actual rotations:

 \blacktriangleright Three rotations are always sufficient to transform a source frame xyz to a target one XYZ :

 $\blacktriangleright \alpha \in (0,2\pi)$ \blacktriangleright $\beta \in \langle 0, \pi \rangle$ $\blacktriangleright \gamma \in (0, 2\pi)$ ► Actual rotations: Start with frame $X_0Y_0Z_0 = xyz$. \blacktriangleright Rotate $X_0Y_0Z_0$ about Z_0 by α .

 \blacktriangleright Three rotations are always sufficient to transform a source frame xyz to a target one XYZ :

 $\blacktriangleright \alpha \in (0,2\pi)$ \blacktriangleright $\beta \in \langle 0, \pi \rangle$ $\blacktriangleright \gamma \in (0, 2\pi)$ ► Actual rotations: Start with frame $X_0Y_0Z_0 = xyz$. \blacktriangleright Rotate $X_0Y_0Z_0$ about Z_0 by α . Rotate $X_1Y_1Z_1$ about X_1 by β . xy -plane

 \blacktriangleright Three rotations are always sufficient to transform a source frame xyz to a target one XYZ :

- $\blacktriangleright \alpha \in (0,2\pi)$
- \blacktriangleright $\beta \in \langle 0, \pi \rangle$
- $\blacktriangleright \gamma \in (0, 2\pi)$
- ► Actual rotations:
	- Start with frame $X_0Y_0Z_0 = xyz$.
	- Rotate $X_0 Y_0 Z_0$ about Z_0 by α .
	- \blacktriangleright Rotate $X_1Y_1Z_1$ about X_1 by β .
	- Rotate $X_2Y_2Z_2$ about Z_2 by γ .

 \blacktriangleright Three rotations are always sufficient to transform a source frame xyz to a target one XYZ :

- $\blacktriangleright \alpha \in (0,2\pi)$ \blacktriangleright $\beta \in \langle 0, \pi \rangle$
- $\blacktriangleright \gamma \in (0, 2\pi)$
- ► Actual rotations:
	- Start with frame $X_0Y_0Z_0 = xyz$.
	- Rotate $X_0 Y_0 Z_0$ about Z_0 by α .
	- \blacktriangleright Rotate $X_1Y_1Z_1$ about X_1 by β .
	- Rotate $X_2Y_2Z_2$ about Z_2 by γ .

 \blacktriangleright Let $R(\varphi, a)$ denotes a rotation matrix about an axis a by an angle φ .

- ► So, our rotations can be expressed by matrices:
	- $\blacktriangleright R(\alpha, Z_0)$
	- $\blacktriangleright R(\beta, X_1)$
	- $\blacktriangleright R(\gamma, Z_2)$
- ► We compose them by the matrix multiplication: $R(\gamma, Z_2)R(\beta, X_1)R(\alpha, Z_0)$

► Here we work with Z - X - Z convention. But there are 5 more:

- \blacktriangleright X-Y-X, X-Z-X, Y-X-Y, Y-Z-Y, and Z-Y-Z.
- ► We can choose any of the conventions we want.
- Observation: 1st and 3rd rotation axes are the same.

 \blacktriangleright The rotations $\overline{R}(\alpha, Z_0)$, $\overline{R}(\beta, X_1)$, $\overline{R}(\gamma, Z_2)$ about the axes of the **rotated** (target) frame *XYZ* are called *intrinsic*.

► A **practical disadvantage** of intrinsic rotations is that some of rotations are about **arbitrary oriented axis**.

- ► In CG courses we only learned how to build rotation matrices for fixed axes x, y, z .
- But axes X_1, Z_2 may be arbitrary (the axis Z_0 is OK, since $Z_0 = z$).

 \blacktriangleright Fortunately, we can also transform a source frame xyz to a target one XYZ using **extrinsic** rotations $R(\alpha, z)$, $R(\beta, x)$, $R(\gamma, z)$. ► Let us figure out how to do that...

 \blacktriangleright Start with the XYZ aligned with xyz .

 \blacktriangleright Start with the XYZ aligned with xyz . \blacktriangleright Apply $R(\alpha, x)$ to rotate the tip of Z to the plane ρ .

 \blacktriangleright ρ is parallel with xy plane and contains the tip of Z .

 \blacktriangleright Start with the XYZ aligned with xyz . \blacktriangleright Apply $R(\alpha, x)$ to rotate the tip of Z to the plane ρ .

- \blacktriangleright ρ is parallel with xy plane and contains the tip of Z .
- \blacktriangleright Apply $R(\beta, z)$ to rotate the tip of Z to the tip of Z .

- \blacktriangleright Start with the XYZ aligned with xyz .
- \blacktriangleright Apply $R(\alpha, x)$ to rotate the tip of Z to the plane ρ .
	- \blacktriangleright ρ is parallel with xy plane and contains the tip of Z .
- \blacktriangleright Apply $R(\beta, z)$ to rotate the tip of Z to the tip of Z .
- Apply the "twist" rotation $R(\gamma, Z)$ to align X with X and Y with Y .
	- ► But, this is not extrinsic rotation!
	- ► We can fix it by applying the twist $R(\gamma, z)$ as the first rotation.
	- The value of γ will be different since the other two rotations affect the twist too.

More intuition is in video: [5]

Euler angles: gimbal lock

 \blacktriangleright Planes xy and XY are parallel => 1 degree of freedom is lost = **gimbal lock**.

Euler angles representation

► We can use 3 angles to express any orientation of an object in 3D space:

 public class Orientation { float alpha; float beta; float gamma;

};

►Pros:

►Low memory footprint.

► Easy to understand.

►Cons:

▶ Suffers from the gimbal lock.

► Slow conversion to matrix representation (sin and cos for each angle).

Tait-Bryan angles

► Same as Euler angles, except that **all three axes are different**.

► There are 6 possible **conventions**: \blacktriangleright X-Y-Z, X-Z-Y, Y-X-Z, Y-Z-X, Z-X-Y, and Z-Y-X.

► The line of nodes is different: It is an intersection of the xy-plane and the plane orthogonal to the 3rd rotation axis of the convention.

 \blacktriangleright The angles α , β , γ are often called yaw, pitch, roll, respectively.

Axis-angle rotation

► **Euler's rotation theorem** (one of the versions): Any reconfiguration of an object in 3D space with one of its points fixed is equivalent to its single rotation about an axis passing through the fixed point.

► Proof:

- \blacktriangleright We look for a rotation axis passing though S.
- ► We "paint" a great circle (green) on the sphere in the initial position.
- ►We rotate the sphere => We get the rotated green circle, which is depicted as red circle.
- ► If the circles coincide, then the axis clearly exists. Otherwise, the circles intersect - two points A, Z .
- \blacktriangleright A is on red circle => its pre-image B is on green one. A is on green circle => its post-image C is on red one.

Axis-angle rotation

- \blacktriangleright Construct a great circle (blue) passing through A, Z and bisecting the angle *BAC*.
- \blacktriangleright Find a point 0 on the blue circle s.t. the length of arcs AO and BO is the same.
- \blacktriangleright The length of the arc AO must be equal to the length of the arc CO , because lengths of arcs AB and AC are the same and the blue circle in the bisector of the angle CAB .
	- \Rightarrow Triangles *CAO* and *ABO* on the sphere must be the same.
		- Actually, ABO becomes CAO after the rotation.
	- \Rightarrow The point O lies on the searched rotation axis, because it does not move when rotating the triangles.

 \Rightarrow s0 is the rotation axis and the arc length AB is the angle.

Axis-angle rotation

 \blacktriangleright **Rodrigues' rotation formula**: A vector $v \in R^3$ rotated about a **unit** axis $a \in R^3$ by an angle $\theta \in (0, 2\pi)$ is the vector:

 $\bar{v} = \cos \theta \, v + (1 - \cos \theta)(a \cdot v)a + \sin \theta \, a \times v.$

►Proof: $v_a = (a \cdot v)a,$ $v_{\perp} = v - v_{\alpha} = v - (a \cdot v) a$ $v_x = a \times v_1 = a \times (v - v_a) = a \times v.$ Note: $|v_{\times}| = |v_{\perp}|$. $\bar{v}_1 = \cos \theta \, v_1 + \sin \theta \, v_{\times}$. $\bar{v} = v_a + \bar{v}_1$ $= v_a + \cos \theta \, v_1 + \sin \theta \, v_{\times}$ $= (a \cdot v)a + \cos \theta (v - (a \cdot v)a) + \sin \theta a \times v'$ $=$ cos $\theta v + (1 - \cos \theta)(a \cdot v)a + \sin \theta a \times v.$

Axis-Angle to rotation Matrix

 \blacktriangleright Vector triple product: $u \times (v \times w) = (u \cdot w)v - (u \cdot v)w$ If $|a| = 1$, then $a \times (a \times v) = (a \cdot v)a - (a \cdot a)v = (a \cdot v)a - v$ ► Matrix representation of the cross product:

$$
u \times v = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix} v = [\! [u] \!] v.
$$

►Matrix representation of the axis-angle:

- $\bar{v} = \cos \theta \, v + (1 \cos \theta) (a \cdot v) a + \sin \theta \, a \times v$
	- $=$ cos $\theta v + (1 \cos \theta)(a \times (a \times v) + v) + \sin \theta a \times v$
	- $= v + (1 \cos \theta) a \times (a \times v) + \sin \theta a \times v$
- $v = v + (1 \cos \theta) ||a||^2 v + \sin \theta ||a||v$
- $= (I + (1 \cos \theta) \llbracket a \rrbracket^2 + \sin \theta \llbracket a \rrbracket) v$
	- $= R(\theta, a)v$

Linear interpolation (lerp)

 \blacktriangleright Given two axis-angle rotations $R(\varphi, a)$ and $R(\bar\psi, b)$, the linearly interpolated rotation is then $R\Big((1-t)\varphi + t\psi, \frac{(1-t)a+tb}{\Gamma(1-t)a+tb} \Big)$ $|(1-t)a+tb|$, $t \in \langle 0,1 \rangle$.

► Technical issues related to $|(1-t)a + tb|$: ►Slow – we must compute the square root. \triangleright The result is not defined when =0.

►**Problem**: The velocity is not constant (increases and decreases). Visible visual artefact – we prefer **uniform** blending between rotations. ► Can we do better? ►Yes, use **spherical** linear interpolation.

Spherical linear interpolation (slerp)

 \blacktriangleright Given two **linearly independent unit** vectors u, v and a parameter $t \in$ $(0,1)$, find a **unit** vector $w = \alpha u + \beta v$ s.t. $\alpha, \beta > 0$ and angle between u, w is $t\theta$, where θ is the angle between u, v . $\blacktriangleright v_\perp^* =$ v−cos θu $(\nu$ –cos $\theta u)(\nu$ –cos $\theta u)$ = v−cos θu $1 - \cos^2 \theta$ = v−cos θu sin θ $\blacktriangleright w = \cos t\theta u + \sin t\theta \frac{v - \cos \theta u}{\sin \theta}$ $\sin \theta$ $= \left(\cos t\theta - \frac{\sin t\theta \cos \theta}{\sin \theta}\right)$ sin θ $u +$ $\sin t\theta$ sin θ $\boldsymbol{\mathcal{V}}$ $=\frac{\cos t\theta \sin \theta - \sin t\theta \cos \theta}{\sin \theta}$ sin θ $u +$ $\sin t\theta$ $\sin \theta$ $\boldsymbol{\mathcal{V}}$ $=\frac{\sin(1-t)\theta}{\sin\theta}$ sin θ $u +$ $\sin t\theta$ sin θ $\overline{\nu}$. \blacktriangleright Given two axis-angle rotations $R(\varphi, a)$ and $R(\psi, b)$, the interpolated rotation is then $R\left((1-t)\varphi+t\psi,\ \frac{\sin(1-t)\theta}{\sin\theta}\right)$ $\sin \theta$ $a +$ $\sin t\theta$ $\sin \theta$ b). 23 $\overline{\mathcal{U}}$ \mathcal{V} $\overline{\mathsf{W}}$ θ $t\theta$ v_1 $v_{\perp} = v - \cos \theta u$ $v_{\perp}^* = v_{\perp}/|v_{\perp}|$ v_\perp^* $w = \cos t\theta u + \sin t\theta v_{\perp}^*$

Axis-angle representation

►We can use axis-angle to express any orientation of object in 3D space.

 public class Orientation { float angle;

```
 Vector3 unitAxis;
```

```
};
```
►Pros:

►Fast conversion to matrix representation (sine and cosine for one angle).

- ► We can use lerp and slerp.
- ► Easy to understand.
- ► Low memory footprint.
- ►Cons:

Complicated composition of rotations (often solved via other rep.).

Quaternions

 \blacktriangleright Let a, b are real numbers and $i^2 = -1$ be an **imaginary unit**. Then $a+bi$ is a **complex** number (constructed by the pairing process).

 \blacktriangleright Let $a + bi$, $c + di$ are **complex** numbers and $j^2 = -1$ be an **imaginary unit,** $i \neq j$. Then

> $(a + bi) + (c + di)j =$ $a + bi + cj + dij =$ $a + bi + cj + dk$

where $k = i j$, is a **quaternion**.

 $\blacktriangleright k^2 = -1$ is another unique **imaginary unit**, i.e., $k \neq i$, $k \neq j$.

▶ Relations between imaginary units:

$$
ij = k, \quad jk = i, \quad ki = j, \quad \text{How to remember these? Think of the cross } j\mathbf{i} = -k, \quad kj = -i, \quad ik = -j.
$$

25

Quaternions

Rotation via quaternion

 \blacktriangleright Let $q = (s, u)$ be a quaternion s.t. $|q| = 1$. Then there exists an angle $\alpha \in (0, 2\pi)$ s.t. $q = (\cos \alpha, \sin \alpha \nu)$, where $\nu = 0$ if $|s| = 1$, else $\nu = u/\sin \alpha$. Proof:

If $|s| = 1 \Rightarrow \alpha = 0$. Otherwise,

 $|q| = 1 \Rightarrow |s| < 1 \Rightarrow \alpha = \cos^{-1} s$ (choose α s.t. $\sin \alpha > 0$), $1^2 = |q|^2 = s^2 + u \cdot u = \cos^2 \alpha + |u|^2 \Rightarrow |u|^2 = 1 - \cos^2 \alpha = \sin^2 \alpha \Rightarrow |u| = |\sin \alpha|.$ $\begin{aligned} \nabla A \mathbf{D} \mathbf{V} &\rightarrow \mathbf{1}^2 = |q|^2 = s^2 + u \cdot u = \cos^2 \alpha + |u|^2 \implies |u|^2 = 1 - \cos^2 \alpha = \sin^2 \alpha \implies |u| = |s| \leq s \end{aligned}$ $R_q(p) = qpq^{-1} = qpq^* = \dots = (0, (s^2 - u \cdot u)v + 2(u \cdot v)u + 2s(u \times v)).$ \blacktriangleright Let us compare the Rodrigues' rotation formula with $R_q(p)$: $\cos \theta \, v + (1 - \cos \theta)(a \cdot v)a + \sin \theta \, a \times v$. \leftarrow rotation formula $s^2 - u \cdot u$) $v + 2(u \cdot v)u + 2s u \times v$ \leftarrow vector of $R_q(p)$ \blacktriangleright Question: Is the vector part of $R_q(p)$ equal to Rodrigues' formula?

Rotation via quaternion

 \blacktriangleright $q = (s, u)$ can be expressed as $q = (\cos \alpha, \sin \alpha a)$, $s = \cos \alpha$, $u = \sin \alpha a$. \blacktriangleright Therefore, the vector part of $R_q(p)$ is:

 $s^2 - u \cdot u$) $v + 2(u \cdot v)u + 2s u \times v =$

 $(\cos^2 \alpha - \sin^2 \alpha)v + 2 \sin^2 \alpha (a \cdot v)a + 2 \cos \alpha \sin \alpha a \times v$. So, the angle α must satisfy these three equalities (relevant trigonometry identities are on the right):

 $\cos \theta = \cos^2 \alpha - \sin^2 \alpha$ // $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
 $1 - \cos \theta = 2 \sin^2 \alpha$ // $\cos 2\alpha = 1 - 2 \sin^2 \alpha$ $1 / \cos 2\alpha = 1 - 2 \sin^2 \alpha$ $\sin \theta = 2 \cos \alpha \sin \alpha$ // $\sin 2\alpha = 2 \cos \alpha \sin \alpha$ A solution exists: $\theta = 2\alpha$. So, $R_{q}(p)$ rotates p about axis a by 2α . \blacktriangleright Observations, for quaternions q, q', p s.t. $|q| = |q'| = 1$: $\blacktriangleright q^* R_q(p) q = q^* (qpq^*) q = p.$ \Longrightarrow q^* is the **inverse** rotation to q. $\blacktriangleright R_{-q}(p) = (-q)p(-q)^* = qpq^* = R_q(p). \implies -q$ is the **same** rotation as q. $R_{q'}(R_q(p)) = R_{q'}(qpq^*) = q'(qpq^*)q'^* = (q'q)p(q'q)^* = R_{q'q}(p).$

Quaternions and other representations

- **► Conversion axis-angle to quaternion**: A vector $v \in R^3$ rotated about a unit axis $a \in \mathbb{R}^3$ by an angle $\theta \in (0, 2\pi)$ can be computed using quaternions as $R_q(p) = qpq^*$, where $p = (0, v)$, $q = (\cos \theta/2)$, sin $\theta/2a$).
- **Conversion quaternion to axis-angle**: Let q be a quaternion s.t. $|q| = 1$ expressed in the form $q = (\cos \alpha, \sin \alpha a)$, $|a| = 1$. Then q represents rotation about the axis vector \overline{a} by the angle 2α .
- \blacktriangleright **Conversion quaternion to rotation matrix**: Let $q = (s, u)$ be a quaternion s.t. $|q| = 1$. Then the vector part of $R_q((0, v))$ is:

$$
(s2 - u \cdot u)v + 2(u \cdot v)u + 2s u \times v =
$$

\n
$$
(s2 - (1 - s2))v + 2(u \times (u \times v) + (1 - s2)v) + 2s u \times v =
$$

\n
$$
v + 2[[u]]2v + 2s[[u]]v = u \times (u \times v) = (u \cdot v)u - (u \cdot u)v
$$

\n
$$
q|2 = 12 = s2 + u \cdot u
$$

\n
$$
(I + 2[[u]]2 + 2s[[u]])v = (u \cdot v)u - (1 - s2)v
$$

Linear interpolation (lerp)

 \blacktriangleright Given quaternions q, p s.t. $|q| = |p| = 1$ we can linearly interpolate between them by $t \in (0,1)$:

$$
Q(t) = \frac{(1-t)q + tp}{\left|(1-t)q + tp\right|}.
$$

► Technical issues related to $|(1-t)q + tp|$: ►Slow – we must compute the square root. \blacktriangleright The result is not defined when =0.

►**Problem**: The velocity is not constant (increases and decreases). Visible visual artefact – we prefer **uniform** blending between rotations. ►Can we do better? ►Yes, use **spherical** linear interpolation.

Spherical linear interpolation (slerp)

 \blacktriangleright Let us first compute a quaternion Δq representing a rotation from a quaternion $q_0 = (s, u)$ to $q_1 = (h, v)$. We assume $|\Delta q| = |q_0| = |q_1| = 1$.

 \Rightarrow $\Delta qq_0 = q_1$ $\Delta q = q_1 q_0^{-1} = q_1 q_0^* = (sh + u \cdot v, sv - hu + u \times v) = (\cos \alpha \sin \alpha a).$ where,

 $\alpha = \cos^{-1}(sh + u \cdot v)$, $a = (sv - hu + u \times v) / \sin \alpha$ $(a = 0 \text{ for } \alpha = 0, \pi)$.

 \triangleright For $t \in (0,1)$ we define $\Delta q(t) = (\cos t\alpha, \sin t\alpha\,a)$. So, we get:

 $slerp(q_0, q_1, t) = \Delta q(t) q_0 = (\cos t\alpha, \sin t\alpha a) q_0.$

Quaternion derivative

 \blacktriangleright Let $q(t) = s(t) + u_x(t)i + u_y(t)j + u_z(t)k = (s(t), u(t))$, be a quaternion where $s(t)$, $u_x(t)$, $u_y(t)$, $u_z(t)$ are functions of $t \in R.$ Then we define $dq(t)$ $\mathrm{d}t$ $=\dot{q}(t) = \lim_{h \to 0}$ $\Delta t\rightarrow 0$ $q(t+\Delta t)-q(t)$ Δt = $=$ lim $\Delta t\rightarrow 0$ $s(t+\Delta t)-s(t)$ Δt $+ i \lim$ Δt \rightarrow 0 $u_x(t+\Delta t)-u_x(t)$ Δt $+ j$ lim Δt \rightarrow 0 $u_y(t+\Delta t) - u_y(t)$ Δt $+$ \mathbf{k} lim $\Delta t\rightarrow 0$ $u_z(t+\Delta t)-u_z(t)$ Δt = $=\frac{ds(t)}{dt}$ $\mathrm{d}t$ $+$ $du_x(t)$ dt \bm{i} + $du_y(t)$ $\mathrm{d}t$ $j+$ $du_z(t)$ $\mathrm{d}t$ \bm{k} = $=\left(\frac{\mathrm{d}s(t)}{\mathrm{d}t}\right)$ $\mathrm{d}t$, $du(t$ $\mathrm{d}t$.

Note: $\int q(t)dt = \int s(t)dt + i \int u_x(t)dt + j \int u_y(t)dt + k \int u_z(t)dt$.

Quaternion derivative

► **Example**: Let's compute a derivative of the orientation of a frame of reference (orange) rotating a constant angular speed $|\omega|$ about the unit axis vector $\widehat{\omega} = \omega/|\omega|$.

►**Solution**:

 \blacktriangleright Let $q(t)$ be an orientation (rotation) of the orange frame in the green one (world).

 \blacktriangleright We express the rotation about $\widehat{\omega}$:

$$
\Delta q(\Delta t) = \left(\cos \frac{|\omega|\Delta t}{2}, \sin \frac{|\omega|\Delta t}{2} \widehat{\omega}\right).
$$

\n
$$
\dot{q}(t) = \lim_{\Delta t \to 0} \frac{q(t + \Delta t) - q(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta q(\Delta t)q(t) - q(t)}{\Delta t} = \left(\lim_{\Delta t \to 0} \frac{\Delta q(\Delta t) - (1, 0)}{\Delta t}\right) q(t)
$$

Quaternion derivative

$$
\begin{split}\n&= \left(\lim_{\Delta t \to 0} \frac{\cos\frac{|\omega|\Delta t}{2} - 1}{\Delta t}, \lim_{\Delta t \to 0} \frac{\sin\frac{|\omega|\Delta t}{2}}{\Delta t} \hat{\omega}\right) q(t) \qquad // \cos 2\varphi = 1 - 2\sin^2 \varphi \\
&= \left(\lim_{\Delta t \to 0} \frac{-2\sin^2\frac{|\omega|\Delta t}{4}}{\Delta t}, \lim_{\Delta t \to 0} \frac{\sin\frac{|\omega|\Delta t}{2}}{\Delta t} \hat{\omega}\right) q(t) \\
&= \left(\frac{d}{dt} \left(-2\sin^2\frac{|\omega|t}{4}\right)(0), \frac{d}{dt} \left(\sin\frac{|\omega|t}{2}\right)(0)\hat{\omega}\right) q(t) \\
&= \left((-2\frac{|\omega|}{4}\cos\frac{|\omega|t}{4}2\sin\frac{|\omega|t}{4})(0), (\frac{|\omega|}{2}\cos\frac{|\omega|t}{2})(0)\hat{\omega}\right) q(t) \\
&= \left(0, \frac{|\omega|}{2}\hat{\omega}\right) q(t) \qquad // \text{Observe: } (0, |\omega|\hat{\omega}) \text{ represents } \omega. \\
&= \frac{1}{2}\omega q(t).\n\end{split}
$$

Quaternion representation

►We can use quaternions to express any orientation of object in 3D space.

public class Orientation { // Equals to a quaternion $q=(s,u)$, $|q|=1$. float s; $\frac{1}{1}$ the scalar part Vector3 u; $\frac{1}{1}$ the vector part };

- ►Pros:
	- ► Low memory footprint.

►Fast conversion to rotation matrix (no need to compute cosine & sine).

- ►Fast composition of rotations (just multiply the quaternions).
- ►We can use lerp and slerp.
- ►Cons:

►Less human readable.

What representation to use?

► There is no single winner – each representation has pros and cons.

- Examples:
	- ► When specifying a rotation along a **coordinate** axis (e.g., world Z), then Euler angles are a good choice.
	- ► When specifying a rotation along **non-coordinate** axis, then axis-angle representation is a good choice.
	- ► When composing rotations of some joint of a skeleton, then quaternions can do it quickly.
	- ► When rotations must be composed with other transformations, then use matrix representation.
- Game engine should provide **all** representations and conversions between them.

References

- ► [1] D.M.Mount; Lecture notes CMSC 425 Game Programming; University of Maryland, 2016.
- ► [2] E.B.Dam,M.Koch,M.Lillholm; Quaternions, Interpolation and Animation; TechnicalReport DIKU-TR-98/5, University of Copenhagen, 1998.
- ► [3] M.C.Nechyba; Lecture notes EEL6667: Kinematics, Dynamics and Control of Robot Manipulators - Introduction to quaternions; 2003, https://mil.ufl.edu/nechyba/www/__eel6667.f2003/course_materials. html.
- ► [4] Y.-B. Jia; Lecture notes (Com S 477/577 Notes) Quaternions; 2018.
- ► [5] Euler angles: https://www.youtube.com/watch?v=A6lf8t9WXn8