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Rotation matrix

» Well know topic from computer graphics courses.
=> We only discuss relation between basis vectors and rotation matrix.
» Let i, j', k' be orthonormal basis vectors of a coordinate system inside
the world coordinate system.
» Then, the orientation of the coordinate system is
represented by the rotation matrix:
i Jx ki :
R=(8 Jji K
i j, kK
» R fransforms vectors “to world space”.
» R~ = RT transforms vectors “from world space”.




Euler angles

» Three rotations are always sufficient to fransform a source frame xyz
to a target one XY 7:
» a € (0,2m)
» B € (0,m)
» y €(0,2m)

» Actual rotations:
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. XY-plane

“Line of nodes”

When planes xy and XY
are equal, then the
statement is clearly true.



Euler angles

» Three rotations are always sufficient to fransform a source frame xyz
to a target one XY 7:
» o €(0,21) Zo=2
» B € (0,m)
» y €(0,2m)

» Actual rotations: Nm A
» Start with frame X,Y,Z, = xyz.
» Rotate X,Y,Z, about Z, by «a.
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Euler angles

» Three rotations are always sufficient to fransform a source frame xyz
to a target one XY 7:
» o €(0,21) L=z
» B € (0,m)
» y €(0,2m) 7

» Actual rofations: P i Yy
» Start with frame X,Y,Z, = xyz. : TN
» Rotate X,Y,Z, about Z, by «a. ;
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Euler angles

» Three rotations are always sufficient to fransform a source frame xyz
to a target one XY 7:

» a € (0,2m) Z
) N Y Y
> j €(0,m) 2 XY-plane
> y €(0,2m) Z, =7
» Actfual rotafions: NG A S
» Start with frame X,Y,Z, = xyz.
xy-plane : —
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» Rotate X,Y,Z, about Z, by y. " “Line of nodes”

When planes xy and XY
are equal, then the
statement is clearly true.



Euler angles

» Three rotations are always sufficient to fransform a source frame xyz
to a target one XY 7:
» a € (0,2m)
» B € (0,m)
» y €(0,2m) Z,
» Actual rotations:
» Start with frame X,Y,Z, = xyz.
» Rotate X,Y,Z, about Z, by «a.
» Rotate X,Y,Z; about X; by . : ;
» Rotate X,Y,Z, about Z, by v. P o ol
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When planes xy and XY
are equal, then the
statement is clearly true.



Euler angles

» Let R(p,a) denotes a rotation matrix about an axis a by an angle ¢.
» So, our rotations can be expressed by mafrices:

» R(a,Z,)

> R(ﬁ'Xl)

> R(]/,Zz)
» We compose them by the matrix mulfiplication:

R(y,Z;)R(B, X1)R(a, Zy)

» Here we work with Z-X-Z convention. But there are 5 more:
» X-Y-X, X-Z-X,Y-X-Y, Y-Z-Y, and Z-Y-Z.
» We can choose any of the conventions we want.
» Observation: 15t and 39 rotation axes are the same.



Euler angles

» The rotations R(a, Z,), R(B, X.), R(y, Z,) about the axes of the rotated
(target) frame XYZ are called intrinsic.

» A practical disadvantage of infrinsic rotations is that some of

rotations are about arbitrary oriented axis.

» In CG courses we only learned how to build rotation matrices for fixed
Qxes x, y, Z.

» But axes X,,Z, may be arbitrary (the axis Z, is OK, since Z, = z).

» Forfunately, we can also transform a source frame xyz to a target
one XYZ using extrinsic rotations R(a, z), R(B,x), R(y, z).
» Let us figure out how to do that...
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Euler angles

» Start with the XYZ aligned with xyz.
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Euler angles

» Start with the XYZ aligned with xyz.
» Apply R(a, x) to rotate the tip of Z to

the plane p.
» pis parallel with xy plane and
contains the tip of Z.
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Euler angles

» Start with the XYZ aligned with xyz.
» Apply R(a, x) to rotate the tip of Z to

the plane p.
» pis parallel with xy plane and
contains the fip of Z.

the fip of Z.
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Euler angles

» Start with the XYZ aligned with xyz.
» Apply R(a, x) to rotate the tip of Z to

the plane p.
» pis parallel with xy plane and
contains the tip of Z.

the fip of Z.
» Apply the “twist” rotation R(y, Z) to
align X with X and Y with Y.

» Buft, this is not extrinsic rotation!

» We can fix it by applying the twist I
R(y,7) as the first rotation. More intuition Is in video: [5]

» The value of y will be different since the
other two rotations affect the twist too.
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Euler angles: gimbal lock

» Planes xy and XY are parallel => 1 degree of freedom is lost = gimbal lock.

/ =Z cass @ =0
A B,y: ambiguous
B + y:.unique
__________________________________ Y
/< 3
R A X

» The special value of a “locks” the other two rotations
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intfo the same plane (although they can rotate freely in that plane).
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Euler angles representation

» We can use 3 angles to express any orientation of an object in 3D
space:
public class Orientation {
float alpha;
float beta;
float gamma;
%
» Pros:
» Low memory footprint.
» Easy to understand.
» Cons:
» Suffers from the gimbal lock.
» Slow conversion to matrix representation (sin and cos for each angle).
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Tait-Bryan angles

» Same as Euler angles, except that all three axes are different.

» There are 6 possible conventions:
» X-Y-Z, X-Z-Y,Y-X-Z,Y-Z-X, Z-X-Y, and Z-Y-X.

» The line of nodes is different: It is an intersection of the xy-plane and
the plane orthogonal to the 3@ rotation axis of the convention.

» The angles a, B, y are often called yaw, pitch, roll, respectively.
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AXis-angle rotation

» Euler’s rotation theorem (one of the versions): Any reconfiguration of
an object in 3D space with one of its points fixed is equivalent o ifs
single rotation about an axis passing through the fixed point.

» Proof:

» We look for a rotation axis passing though S.

» We “paint” a great circle (green) on the sphere
in the inifial position.

» We rotate the sphere => We get the rotated
green circle, which is depicted as red circle.

P |f the circles coincide, then the axis clearly exists.
Otherwise, the circles intersect - two points A4, Z.

» A is onred circle => its pre-image B Is on green one.

A is on green circle => its post-image C is on red one.
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AXis-angle rotation

» Construct a great circle (blue) passing through A4, Z and bisecting the
angle BAC.

» Find a point 0 on the blue circle s.t. the length of arcs A0 and BO is the
same.

» The length of the arc A0 must be equal to the length
of the arc €0, because lengths of arcs AB and AC
are the same and the blue circle in the bisector

of the angle CAB.

— Triangles CAO0 and ABO on the sphere must be
the same.
Actually, ABO becomes CAO after the rotation.

— The point 0 lies on the searched rotation axis,
because it does not move when rotating the
triangles.

—> S0 is the rotation axis and the arc length AB is the angle.
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AXis-angle rotation

» Rodrigues' rotation formula: A vector v € R3 rotated about a unit axis
a € R3 by an angle 6 € (0,2r) is the vector:

v=cosOv+(1—-cosB)(a-v)a+sinba X v.
» Proof:

v, = (a-v)a,

=v—v,=v—(a-v)a,

=aX =aX@@—-v,)=axv. e
Note: |v.| =] |. '
v, =cosf  +sinf .. h
vV=v,+ UV,

=v,+cosf  +sinb

=(a-v)a+cosf (v—(a-v)a)+sinfaxv
=cosO@v+(1—cosB)(a-v)a+sinfa X v.
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AXis-Angle to rotation Matrix

» Vector triple product: u x (v xw) = (u-w)v— (u-v)w
»flal =1, thenax(axv)=(a-v)a—(a-a)v=(a-v)a—v
» Matrix representafion of the cross product:

0
uxv=|u,
|~ Uy

» Matrix representation of the axis-angle:

1%

cosO v+ (1—cosB)
cosO v+ (1—cosB)

—U, Uy

U, 0

4+ sinfa Xv
+sinfaXv

v+ (1—cosB)ax(axv)+sinfaxv
v+ (1 — cos 8)[a]?v + sin 8 [[a]v
(I + (1 — cos 0)[a]? + sin 8 [a])v

=R(6,a)v



Linear inferpolation (lerp)

» Given two axis-angle rotations R(e,a) and Ry, b), the linearly

Inferpolated rotation is then R <(1 —t)p + t, ﬁ:gii;) t € (0,1).

» Technical issues related 1o |(1 — t)a + tb]|:
» Slow — we must compute the square roof.
» The result is not defined when =0.

» Problem: The velocity is not constant (increases and decreases) .
— Visible visual artefact — we prefer uniform blending between rotations.

» Can we do bettere
» Yes, use spherical linear interpolation.
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Spherical linear inferpolation (slerp)

» Given two linearly independent unit vectors u, v and a parametert €
(0,1), find a unit vectorw = au + fv s.t. a, f > 0 and angle between

u,w is td, where 0 is the angle between u, v. v
N v—cos fu v—cos Ou v—cos 0u P R 1)
> v = = = _ . (7
J(w—cos Ou)(v—cos Bu)  V1-cos2 6 sin 0 pUL
: v—cos Ou i
» w =costlu+sintld — 0
sin 6 \t@ ]
sin t@ cos 6 sin t6@ )
_(COStH_ sin 6 )u+ Singv i w=costlu+sintb v} ;|
_ cos tO sin 8—sin tf cos 6 U+ sin t6 . v, =v—cosfu |
sin 6 sin 6 . vi=v, /v |
sin(1-t)0 sin t6 S L
sin 6 sin 6

» Given two axis- ongle rotations R(¢,a) and R(y, b), the m’rerpola’red
rotation is then R ((1 — ) + t, 22LD0 , y Snto b).

sin @ sin @
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AXxis-angle representation

» We can use axis-angle to express any orientation of object in 3D

space.
public class Orientation {
float angle;
Vector3 unitAxis;
%
» Pros:
» Fast conversion to matrix representation (sine and cosine for one angle).
» We can use lerp and slerp.
» Easy to understand.
» Low memory footprint.

» Cons:
» Complicated composition of rotations (often solved via other rep.).
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Quaternions

» Let a, b are real numbers and i? = —1 be an imaginary unit. Then
a + bi

Is a complex number (constructed by the pairing process).
» Let a + bi,c + di are complex numbers and j? = —1 be an imaginary

unit, i = j. Then

(a + bi) + (c + di)j =
a+ bi+cj+dij =
a+ bi+cj+ dk

where k = ij, is a quaternion.
» k? = —1 is another unique imaginary unit, i.e., k # i,k = j.
» Relations between imaginary units:

l] =k ]lf =1 : I_“ =7 . How to remember these<¢ Think of the cross
ji=—-k, kj=-i, ik=—j. product of basis vectors i,j, k, €.9., i X j = k.
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Quaternions

» A quaternion q = s + u,i + u,j + uk can be written in a scalar-vector

notation as a pair g = (s,u), where the vector u = (uy,uy,1u,) .

» Let g = (s,u),p = (t,v) be quaternions and ¢ a real number. Then
> g+tp=0Gw+tv)=studtujtuk+t+vi+vj+v,k=_(s+tu+v).

» cq = (cs,cu). (—1)g = —q = (—s,—u).
» gp = - (use distributive law) - = (st —u - v, sv + tu + u X v). c(gp) = (cq)p.
» Conjugation q* = s — u,i — u,j — uk = (s, —u). cq* = (cq)*.
» Length lql =/qq* = Vs +u-u. f |g] = |p| = 1, then |gp| = 1.
» Additive unit quaternion (0,0), multiplicative unit quaternion (1,0).

> g l= lq%q*. If || = 1, then g~ = g*.

» (g+p)=q +p"

» (qp)" =pq".

» Dot product: q-p = st +u-v.

» Addition and multiplication are associative. Only addition is commutative. 26



Rotation via quaternion

» Let g = (s,u) be a quaternion s.t. |g| = 1. Then there exists an angle
a € (0,2m) s.t. g = (cosa,sinav), wherev=01f |s| =1, else v = u/sin a.
Proof:

If |s|] =1 = a = 0. Otherwise,
gl=1 = |s|<1 = a=cos 's (choose as.t.sina > 0),

12=|gl* =s?4+u-u=cos?a+|ul* = |lul*=1—-cos?a =sin*a = |u|=|sina].
» Let g = (s,u),p = (0,v) be quaternions s.t. |g| = 1. Then we define
R,(p) =qrq ' =qpq* == (0,(s* —u-wv + 2(u - v)u + 2s(u X v)).
»Let us compare the Rodrigues’ rotatfion formula with R, (p):
cos@v+ (1 —cosB)(a-v)a+sinfa X . & rotation formula
(s? —u-wv+ 2(u-vV)u+ 2suxXv < vector of R, (p)

» Question: Is the vector part of R, (p) equal to Rodrigues’ formula@
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Rotation via quaternion

» g = (s,u) can be expressed as g = (cosa,sinaa),s = cosa,u = sina a.

» Therefore, the vector part of R, (p)is:
(s?—u-wWv+2(u-v)u+2suxv=
(cos? a@ —sin® a)v + 2sin“a (a-v)a + 2cosasinaa X v.
So, the angle a must satisfy these three equalities (relevant
trigonometry identities are on the right):

cos 8 = cos? a — sin® « // cos 2a = cos? a — sin® «
1 —cosf@ = 2sin*«a // cos2a =1 — 2sin‘*«
sinf = 2cosasina // sin 2a = 2 cosa sin «
A solution exists: . SO,
» Observations, for quaternions q,q’,p s.t. |q| = |q'| = 1:
»q"'R,(p)q = q"(qrq™)q = p. => g*is the inverse rotation to q.

»R_,(p) =(—pr(—q)" = qpq* = R,(p). => —qisthe same rotation as q.
> Rq, (Rq(P)) = Ry/(apq™) = q'(arq*)q"” = (@' Dp@'D)* = Ryq(@).

28



Quaternions and other representations

» Conversion axis-angle to quaternion: A vector v € R? rotated about a
unit axis a € R3 by an angle 8 € (0,2m) can be computed using
guaternions as R, (p) = qpq*, where p = (0,v),q = (cos8/2,sin8/2 a).

» Conversion quaternion to axis-angle: Let g be a quaternion s.t. |g| = 1
expressed in the form g = (cos a,sina a), |a| = 1. Then g represents
rotation about the axis vector a by the angle 2a.

» Conversion quaternion to rotation matrix: Let g = (s,u) be a
quaternion s.t. [q| = 1. Then the vector part of R, ((0,v)) is:

(s?—u-wv+2Ww-vI)u+2suxv=
(s =1 =sNDv+2ux (uxv) +(1—-s)v) +2su X v =

/

gl? =12 =s?+u-u

v+ 2[ul?v + 2s[u]v =
(I + 2[u]? + 2s[u])v

uXuxv)=wWw-v)u—(u-uwv
=(u-v)u—1-s?)v

29




Linear inferpolation (lerp)

» Given quaternions q,p s.t. |g| = |p| = 1 we can linearly interpolate
between them by t € (0,1):

0(t) = (1-t)g+tp

(1 —1t)q + tp|

» Technical issues related to |(1 — t)qg + tp|:
» Slow — we must compute the square root.
» The result is not defined when =0.

» Problem: The velocity is not constant (increases and decreases) .
— Visible visual artefact — we prefer uniform blending between rotation:s.

» Can we do bettere
» Yes, use spherical linear interpolation.
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Spherical linear inferpolation (slerp)

» Let us first compute a quaternion Aqg representing a rotation from a

quaternion q, = (s,u) to g; = (h,v). We assume |Aq| = |qo| = |g4| = 1.

= Aqq0 = 1
Aq =qq5" = q195 = (sh+u-v,sv —hu+uXxXv)=(cosa,sinaa).
where,

a=cos Y(sh+u-v),a=(sv—hu+uxv)/sina (a=0fora=0,mn).
» Fort € (0,1) we define Aq(t) = (costa,sintaa). SO, we get:

slerp(qo, q1,t) = Aq(t)qy = (costa,sinta a)q,.



Quaternion derivative

» Let q(t) = s(t) + u, (®)i +u, (t)j + u,()k = (s(t),u(t)), be a quaternion
where s(t), u,(t), u,, (t), u,(t) are functions of t € R. Then we define
dq(t)

. e q(t+At)—q(t)
dt qt) = Al%r_r)lo At B

— lim s(t+At)—s(t)+i1im Uy (t+AL)—u,(t) +j1im Uy (E+AL)—uy (t)
At—0 At At—0 At At—0 JAYA
k lim U, (t+At)—u,(t) _
At—0 At )
ds(t) , du,(t) . Uy(t) . . duy(t)

=2 T it St k=

_ (ds(t) du(t))

-\ dt ’ dt /J°

» Note: [ q(6)dt = [ s(®)dt + if u,(O)dt + jJ u,(t)dt + kJ u,(t)dt.
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Quaternion derivative

» Example: Let’'s compute a derivative of the

orientation of a frame of reference (orange) 7
rotating a constant angular speed |w| about \%
the unit axis vector @ = w/|w|.
» Solution: ) ez,
» Let q(t) be an orientation (rotation) of the x/
e X

orange frame in the green one (world).
» We express the rotation about &:

Aq(At) = (COS |(‘);M,sin |wlAt &3)

y)
: _q: qt+At) - q(®) 4. Aq(A)q(t) — q) _ (... Aq(At) — (1,0)
> () = Jim FELEID = Jim SEEELEEAE = (lim SRS D) (1)

y
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Quaternion derivative

|lw|At . |w|At
_ cos—— —1 sin ——__
= < lim , lim w) q(t)

At—0 At "At—0 At

2 |w|At |w|At
—2sin? sin —— R
lim 2, lim 2 w) q(t)

// cos 2¢p = 1 — 2sin? @

<At—>0 "At—>0 At
= ( (—2sin? "‘"6(0) —(sin "“'t)(O)w) q(t)
= ((—21%Lcos 121 25in "‘"t)(O) “leos 25 0)@) (1)
(0 lo] A) q(t) // Observe: (0, |w|®) represents w.
1
2
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Quaternion representation

» We can use quaternions 1o express any orientation of object in 3D

space.
public class Orientation { // Equals to a quaternion g=(s,u), |g|=1.
float s; // the scalar part
Vector3 u; // the vector part
1
» Pros:

» Low memory footprint.

» Fast conversion to rotation matrix (ho need to compute cosine & sine).
» Fast composition of rotations (just multiply the quaternions).

» We can use lerp and slerp.

» Cons:
» Less human readable.
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What representation 1o use?¢

» There is no single winner — each representation has pros and cons.

» Examples:

» When specitying a rotation along a coordinate axis (e.g., world Z), then
Euler angles are a good choice.

» When specifying a rotation along non-coordinate axis, then axis-angle
representation is a good choice.

» When composing rotations of some joint of a skeleton, then quaternions
can do it quickly.

» When rotations must be composed with other transformations, then use
matrix representation.

» Game engine should provide all representations and conversions

between them. 34



References

>

>

2]

i
University of Maryland, 201 6.

D.M.Mount; Lecture notes CMSC 425 Game Programming;

E.B.Dam,M.Koch,M.Lillholm; Quaternions, Interpolation and

Animation; TechnicalReport DIKU-TR-928/5, University of Copenhagen,
1998.

» [3] M.C.Nechybaq; Lecture notes EEL6667: Kinematics, Dynamics and
Control of Robot Manipulators - Infroduction to quaternions; 2003,
https://mil.ufl.,edu/nechyba/www/__eel6667.12003/course_materials.
html.

» [4] Y.-B. Jia; Lecture notes (Com S 477/577 Notes) Quaternions; 2018.
» [5] Euler angles: https:.//www.youtube.com/watchev=Abli8t19WXNn8



	Slide 1: Rotations and quaternions
	Slide 2: Outline
	Slide 3: Rotation matrix
	Slide 4: Euler angles
	Slide 5: Euler angles
	Slide 6: Euler angles
	Slide 7: Euler angles
	Slide 8: Euler angles
	Slide 9: Euler angles
	Slide 10: Euler angles
	Slide 11: Euler angles
	Slide 12: Euler angles
	Slide 13: Euler angles
	Slide 14: Euler angles
	Slide 15: Euler angles: gimbal lock
	Slide 16: Euler angles representation
	Slide 17: Tait-Bryan angles
	Slide 18: Axis-angle rotation
	Slide 19: Axis-angle rotation
	Slide 20: Axis-angle rotation
	Slide 21: Axis-Angle to rotation Matrix
	Slide 22: Linear interpolation (lerp)
	Slide 23: Spherical linear interpolation (slerp)
	Slide 24: Axis-angle representation
	Slide 25: Quaternions
	Slide 26: Quaternions
	Slide 27: Rotation via quaternion
	Slide 28: Rotation via quaternion
	Slide 29: Quaternions and other representations
	Slide 30: Linear interpolation (lerp)
	Slide 31: Spherical linear interpolation (slerp)
	Slide 32: Quaternion derivative
	Slide 33: Quaternion derivative
	Slide 34: Quaternion derivative
	Slide 35: Quaternion representation
	Slide 36: What representation to use?
	Slide 37: References

