
PA199 – Game Engine Architecture
Jiří Chmelík

Semester: Autumn 2024

Ten or twenty years ago it was all fun and games.
Now it’s blood, sweat, and code.

--Jonathan Blow, 2004

► Introduction – What is game Engine?

► Game Engine Architecture

► Game Engine Modules

▪ Low-level Engine systems

▪ Graphics and Physics

▪ Gameplay systems

Outline

► Introduction – What is game Engine?

► Game Engine Architecture

► Game Engine Modules

▪ Low-level Engine systems

▪ Graphics and Physics

▪ Gameplay systems

Outline

What is Game Engine?

“The term “game engine” arose in the mid-1990s in reference to first-person
shooter (FPS) games like the insanely popular Doom by id Software. Doom
was architected with a reasonably well-defined separation between its core
software components (such as the three-dimensional graphics rendering
system, the collision detection system, or the audio system) and the art
assets, game worlds, and rules of play that comprised the player’s gaming
experience.”

[Greg2009]

What is Game Engine?

► A game engine is an open, extendable software system that can be used
as the foundation for more different games, without major modification.

► A game engine is free from any function, parameter, variable, class or
data structure that could be considered as part of an actual game.

► Generic infrastructure for game creation:

▪ Enables reuse of code

▪ Often facilitates porting code to various hardware platforms

▪ Glue together all sub-systems, middleware, libraries, etc.

Existing Game Engines

► History milestones

▪ Quake

▪ 1996, Id Software, John Carmack et al.

▪ Source codes now available

▪ Unreal

▪ 1998, Epic

▪ Designed for FPS games, later extended to
general usage.

▪ Source

▪ 2004, Valve

▪ Half-life, Portal, …

▪ Unity

▪ 2005, Unity Technologies

▪ many

► Proprietary, in-house Engines

► Sage (EA)

► RTS games

► Glacier (IOI)

► Decima (Guerrilla Games)

► Northlight Engine (Remedy Ent.)

► Enforce, Real Virtuality, Enfusion (BI),

► LS3D (2K),

► https://en.wikipedia.org/wiki/List_of_game_engines

https://en.wikipedia.org/wiki/List_of_Unity_games
https://en.wikipedia.org/wiki/List_of_game_engines

Existing Game Engines

Quake Engine family, wikipedia

Game Engine Reusability Gamut

[Greg2009]

Unity

Game Engine Architecture

Two basic parts:

► Runtime components

► Tools and assets pipeline

▪ Digital Content Creation Tools (DCC, assets)

▪ Asset Conditioning Pipeline

▪ Tools – World editor

Architecture…

[Blow2004]

Architecture…

[Blow2004]

Architecture…

[Blow2004]

A…

[Blow2004]

Architecture…

► Ideal scenario – reality is elsewhere

► Each node = a lot of code

[Greg2009]

Architecture - Game Engine Modules

► Core

► Graphics

► Animation

► Physics

► Sound

► Scripting

► Artificial Intelligence

► Networking

► User Interface

► Many more

► Low-level Engine systems

▪ Core / Engine Support Systems

▪ Resources and File Systems

▪ Game Loops and Times

▪ Human Interface Devices

▪ Tools for Debugging and Development

► Graphics and Physics systems

► Gameplay systems

► Middleware

Outline

► Introduction – What is game Engine?

► Game Engine Architecture

► Game Engine Modules

▪ Low-level Engine systems

▪ Graphics and Physics

▪ Gameplay systems

Outline

► Introduction – What is game Engine?

► Game Engine Architecture

► Game Engine Modules

▪ Low-level Engine systems

• Core / Engine Support Systems

• Resources and File Systems

• Game Loops and Times

• Human Interface Devices

• Tools for Debugging and Development

Core / Engine Support Systems

► Starting up, shuting down subsystems

▪ In defined order

▪ Could be solved e.g. by Singleton pattern

• Ogre (Rendering engine):

OgreRoot.h

class _OgreExport Root : public Singleton<Root>

// Singletons

LogManager* mLogManager;

SceneManager* mCurrentSceneManager;

MaterialManager* mMaterialManager;

MeshManager* mMeshManager;

SkeletonManager* mSkeletonManager;

…

Core / Engine Support Systems

► Memory Management

▪ RAM (along CPU, GPU times) are main resources in “runtime budget”

▪ Efficient data storage

▪ Standard vs. custom made data structures

• Continuous LOD, UE5 Nanite

► Localization system

▪ Not just strings

► Engine configuration

▪ Usually config files. Ogre example:

• plugins.cfg – list of optional engine plug-ins are enabled and where to find them on disk.

• resources.cfg – paths to game assets folders.

• ogre.cfg - options specifying renderer (DirectX or OpenGL), preferred video mode, screen size, etc.

▪ How to load them, activate them (in-game console).

Resources and File Systems

► Wide variety of assets in use:

▪ texture (various formats),

▪ 3D meshes for graphics, for collisions,

▪ animation clips, audio clips,

▪ level design, etc.

► Each particular asset should be loaded in memory just once

▪ If five meshes share the same texture…

► Offline Asset manager (recourse manager, media manager)

Resources and File Systems

► File system

▪ Wraps OS native file system API → multiplatform support

▪ Filenames and paths

▪ Synchronous (loading screen), asynchronous I/O operations (streaming)

• „Genshin Impact“ example

► Cross-platform MO (not „massive“)

► Auto-updater, DLCs

► Huge and detailed world – cannot fit into memory

► Teleport mechanics – synchronous loading

► Exploring mechanics – streaming – visible LOD poping effect

► Different sizes on different platform

► Unity

Resources and File Systems

► Asset Manager

▪ Off-line (non run-time) part

• Example – 2D artist PoW vs. level designer PoW.

• Version control system for source assets (PSD, blender files), e.g. Perforce

• Tools to transform assets to engine-ready form

• Packing assets

• Resource database tool

▪ Runtime asset managment

• Lifetime – data loading / unloading

• Redundancy – single copy

• Memory managment

Outline

► Introduction – What is game Engine?

► Game Engine Architecture

► Game Engine Modules

▪ Low-level Engine systems

• Core / Engine Support Systems

• Resources and File Systems

• Game Loops and Time

• Human Interface Devices

• Tools for Debugging and Development

Game Loop

While (true)

{

processInput();

update();

render ();

}

“program spends 90% of its time in 10% of the code”

Rendering Loop

While (!quit)

{

updateCamera();

updateScene();

renderScene();

SwapBuffers();

}

► Target – at least 60 FPS (about 16 milliseconds per frame).

Game Loop
► Composition of all subsystems

▪ Rendering loop

▪ Simulation loop

▪ I/O handling

▪ Audio

▪ Networking

▪ AI

▪ Etc.

► Various subsystems uses various frequency

▪ Graphics – 60Hz

▪ Physics simulations – 50Hz at Unity, 1000Hz for haptics

▪ AI – few Hz

▪ OS messages, callbacks – not fix frequency

► Some have to be in sync, some not

Time in Game

► Real time

► Game time, time scale, pause, …

► Animation timeline

► CPU time budget

► GPU time budget

► Update Δ-time, FixedUpdate time

► Network time (hit/miss problem)

► display’s refresh rate, multithreading,

► etc.

► Time precision vs. Magnitude

▪ Example: Time since game was started

• in seconds, stored as float value

• MMORPG, server running for days, weeks, …

Outline

► Introduction – What is game Engine?

► Game Engine Architecture

► Game Engine Modules

▪ Low-level Engine systems

• Core / Engine Support Systems

• Resources and File Systems

• Game Loops and Time

• Human Interface Devices

• Tools for Debugging and Development

Human Interface Devices (HID)

► Pleathora of devices; input, output taxonomy …

► Key term “mapping”

▪ Translates raw input (state of device, analog signals) into events (button down, button up)

▪ Cross-platform support

▪ Gestures (repeated tapping) recognition, combos (sequences), chords

▪ Translates input events into game actions (On higher level of game engine)

► Chords

▪ Multiple keys / buttons pressed in “the same” time

▪ Detection (human imperfection, few frames buffer)

• Collision with single-button actions

► Wait before performing action

► Start action, cancel it if chord is detected

Outline

► Introduction – What is game Engine?

► Game Engine Architecture

► Game Engine Modules

▪ Low-level Engine systems

• Core / Engine Support Systems

• Resources and File Systems

• Game Loops and Time

• Human Interface Devices

• Tools for Debugging and Development

Logging and Tracing

► Old-school print…() functions

▪ PC – console application

▪ On game consoles, mobile platform – through engine – console window

► Verbosity level

▪ void VerboseDebugPrint(int verbosity, string message, ...)

► Channnels, filters

▪ Log, warning, error

▪ Rendering, simulation, animation, file system, ...

▪ Output to file

► Crash report

▪ Via exception handler

▪ Current level, World-space location of the player

▪ Animation/action state of the player

▪ Current state of other subsystems

Debug Drawing Facilities

► Debug ray, debug 2D, 3D shapes

▪ Simple to use in code, do not have to be super-fast

▪ Not included in released version

► “One might say that a picture is worth 1,000 minutes of debugging.” [Greg2009]

► Usually provide a simple way for taking screenshots

Debug Drawing Facilities

► Uncharted: Drake’s Fortune, Naughty Dog [Greg2009]

Menus, console

► In-game Menus

▪ Turning on/off, configuring engine subsystems – in runtime

▪ Should not be accessible in released games

▪ Video: Uncharted 4: Debug Menu

▪ Video: Unreal Engine 5 tech demo

• Optimized for console controls

► In-game Console

▪ Video: Counter-strike with steering wheel

https://youtu.be/cbIZ1vD3h6Q
https://youtu.be/qC5KtatMcUw?t=135
https://youtu.be/Fl35QCbMi-c

In-Game Profiling

► Simple overlay – in game, in editor

▪ Performance in editor ≠ performance in build game

Unreal EngineUnity

In-Game Profiling

► Profiler tool

▪ Timeline, recording

▪ Hierarchy

► 3rd Party Tools

▪ NVIDIA Nsight Graphics

▪ RenderDoc

▪ Xcode tools

Middleware

► 3rd party software „layer“ providing functionality of some engine sub-system

▪ Graphical subsystem

• trueSky - Cloud, Atmosphere and Weather Tool Kit

• Ogre3D – Graphical engine itself, could be used as middleware

• Enlighten – used in previous versions of Unity for Global Illumination

▪ Physics, Animation

• Havok – 3D physics Engine,

• Euphoria – motion synthesis, „inteligent ragdoll“

Middleware

► Sound

▪ Wwise - audio engine and authoring tools

• Cyberpunk, Hitman III, …

▪ FMOD

• Creaks, Tomb Raider, KCD, Witcher 2, …

▪ OpenAL

• Similar to OpenGL

References

► Game Programming Patterns – Robert Nystrom, 2009-2014, available online.

► [Greg2009] – Jason Gregory: Game Engine Architecture, 2009

► BinSubaih et al. - A Survey of ‘Game’ Portability, 2007, available online.

► [Blow2004] - Game Development: Harder Than You Think: Ten or twenty years ago it
was all fun and games. Now it’s blood, sweat, and code, 2004, available online.

https://gameprogrammingpatterns.com/
http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0705.pdf
https://dl.acm.org/doi/10.1145/971564.971590

	Snímek 1: PA199 – Game Engine Architecture
	Snímek 3: Outline
	Snímek 4: Outline
	Snímek 5: What is Game Engine?
	Snímek 6: What is Game Engine?
	Snímek 7: Existing Game Engines
	Snímek 8: Existing Game Engines
	Snímek 9: Game Engine Reusability Gamut
	Snímek 10: Game Engine Architecture
	Snímek 11: Architecture…
	Snímek 12: Architecture…
	Snímek 13: Architecture…
	Snímek 14: A…
	Snímek 15: Architecture…
	Snímek 16: Architecture - Game Engine Modules
	Snímek 17: Outline
	Snímek 18: Outline
	Snímek 19: Core / Engine Support Systems
	Snímek 20: Core / Engine Support Systems
	Snímek 21: Resources and File Systems
	Snímek 22: Resources and File Systems
	Snímek 23: Resources and File Systems
	Snímek 24: Outline
	Snímek 25: Game Loop
	Snímek 26: Rendering Loop
	Snímek 27: Game Loop
	Snímek 28: Time in Game
	Snímek 29: Outline
	Snímek 30: Human Interface Devices (HID)
	Snímek 31: Outline
	Snímek 32: Logging and Tracing
	Snímek 33: Debug Drawing Facilities
	Snímek 34: Debug Drawing Facilities
	Snímek 35: Menus, console
	Snímek 36: In-Game Profiling
	Snímek 37: In-Game Profiling
	Snímek 38: Middleware
	Snímek 39: Middleware
	Snímek 40: References

