
Particle system dynamics

Jiří Chmelík, Marek Trtík

PA199

► Motivation

► Motion of a single particle: Equations of motion
► Use of an ODE solver

► Motion of many particles

► Forces
► Gravity, drag, spring, local interaction

► Collision: particle vs. plane
► Detection, response, simple friction

Outline

Motivation

3https://experiments.withgoogle.com/fluid-particles

https://en.wikipedia.org

/wiki/Particle_system

h
ttp

s://g
ith

u
b

.c
o

m
/La

k
sh

ith
a

M
a

d
u

sh
a

n
/U

n
ity

-P
a

rtic
le

-

S
y
ste

m

► Particle = an abstract object with these properties:
► No spatial extent - it is just a point in 3D space

► Velocity

► Respond to forces (e.g., gravity)

► Mass - resistance to changes in motion state

► Particle in math: 𝒫 = (𝒙, 𝒗, 𝑭,𝑚).
► Particle in C++:

struct Particle {

Vector3 position;

Vector3 velocity;

Vector3 force;

float mass;

};

Particle definition

4

►Motion of a particle 𝒫 in space is given by a function of time:
► 𝒫(𝑡)= 𝒙, 𝒗, 𝑭,𝑚 𝑡 = (𝒙 𝑡 , 𝒗 𝑡 , 𝑭,𝑚)
► 𝑚 is constant (not dependent on time).

► 𝑭 is total external force (not updated by the particle system).

► To compute 𝒫(𝑡) we need to know how it changes in time.

=> We need to compute ሶ𝒫 𝑡 = (ሶ𝒙 𝑡 , ሶ𝒗 𝑡).
► Newton’s second law of motion: 𝑭 = 𝑚𝒂

► Important relations: 𝒗 = ሶ𝒙 =
𝑑𝒙

𝑑𝑡
, 𝒂 = ሶ𝒗 =

𝑑𝒗

𝑑𝑡
.

►So, 𝒫(𝑡) is a solution of Newton’s equations of motion:

ሶ𝒙 𝑡 = 𝒗 𝑡 , ሶ𝒗(𝑡) = 𝒂 =
𝑭

𝑚
.

Particle equations of motion

5

► There is 6 ordinary differential equations (ODE) of the 1st order in the

Newton’s equations of a single particle.
► 𝒙 𝑡 and 𝒗 𝑡 are 3D vector functions.

► In general, a system of 𝑛 1st order ODEs has the form:
ሶ𝒚 = 𝑭(𝒚, 𝑡)

where 𝒚(𝒕) = 𝑦0 𝑡 , … , 𝑦𝑛−1 𝑡
⊤

and

𝑭(𝒚, 𝒕) = 𝐹0 𝑦0 𝑡 , … , 𝑦𝑛−1 𝑡 , t , … , 𝐹𝑛−1 𝑦0 𝑡 , … , 𝑦𝑛−1 𝑡 , t
⊤

.

Therefore, we have a system:

ሶ𝑦0 = 𝐹0 𝑦0, … , 𝑦𝑛−1, 𝑡 , … , ሶ𝑦𝑛−1 = 𝐹𝑛−1 𝑦0, … , 𝑦𝑛−1, 𝑡
►At each simulation time 𝑡0 we know 𝒙 𝑡0 = 𝑿0 and 𝒗 𝑡0 = 𝑽0.

► Therefore, we solve the initial value problem of 1st order ODEs:
ሶ𝒚 = 𝑭(𝒚, 𝑡), 𝒚 𝑡0 = 𝒚0

Solving equations of motion

6

►We are given a black-box function ODE solving the initial value
problem of 1st order ODEs ሶ𝒚 = 𝑭(𝒚, 𝑡), 𝒚 𝑡0 = 𝒚0 :

using F_y_t = std::function<float(std::vector<float> const&,float)>;

void ODE(
std::vector<float> const& y0, // 𝑿0, 𝑽0 of particle(s)
std::vector<F_y_t> const& Fyt, // ሶ𝒙, ሶ𝒗 of particle(s), i.e. 𝒗, 𝑭/𝑚
float& t, // current time (to be updated)
float const dt, // time step
std::vector<float>& y // integrated 𝒙, 𝒗 of particle(s)
);

NOTE: Implementation of ODE is the topic of next lecture.

Solving equations of motion

7

void getState(Particle const& p, std::vector<float>& y0) {

y0.push_back(p.position.x);

y0.push_back(p.position.y);

y0.push_back(p.position.z);

y0.push_back(p.velocity.x);

y0.push_back(p.velocity.y);

y0.push_back(p.velocity.z);

}

Building initial state for ODE

8

void getDerivative(Particle const& p, std::vector<F_y_t>& Fyt) {

Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.x; });

Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.y; });

Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.z; });

Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.x/p.mass; });

Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.y/p.mass; });

Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.z/p.mass; });

}

►Observation: Parameters of lambda functions are not used.
►Our functions 𝑭 𝒚, 𝑡 are simple; ODE solver handles general case.

Building derivatives for ODE

9

void doSimulationStep(Particle& p, float& t, float const dt) {

UpdateForce(p,t,dt); // Applies external forces and impulses.

std::vector<float> y0, y;

std::vector<F_y_t> Fyt;

getState(p, y0);

getDerivative(p, Fyt);

ODE(y0, Fyt, t, dt, y); // Computes y and updates t (t += dt).

setState(p, y.begin());

}

Simulation step for single particle

10

void setState(Particle& p, std::vector<float>::const_iterator& it) {

p.position.x = *it; ++it;

p.position.y = *it; ++it;

p.position.z = *it; ++it;

p.velocity.x = *it; ++it;

p.velocity.y = *it; ++it;

p.velocity.z = *it; ++it;

}

Saving ODE results

11

Data flow in simulation step

12

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

𝑓𝑥 𝑓𝑦 𝑓𝑧 𝑓𝑥 𝑓𝑦 𝑓𝑧

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

y0

Fyt

y

ODE

p.position p.velocity

p.position p.velocity

p.force / p.massp.velocity

► It is a system consisting of 𝑛 patricles.

► Particle system in math:

𝒫𝑛 = 𝒫0, 𝒫1, … , 𝒫𝑛−1 =
[𝒙0, 𝒗0, 𝑭0, 𝑚0 , 𝒙1, 𝒗1, 𝑭1, 𝑚1 , … , 𝒙𝑛−1, 𝒗𝑛−1, 𝑭𝑛−1, 𝑚𝑛−1].

► Particle system in C++:

using ParticleSystem = std::vector<Particle>;

Particle system

13

void getState(ParticleSystem const& ps, std::vector<float>& y0) {

for (Particle const& p : ps) getState(p,y0);

}

void getDerivative(ParticleSystem const& ps, std::vector<F_y_t>& Fyt) {

for (Particle const& p : ps) getDerivatives(p, Fyt);

}

void setState(ParticleSystem& ps, std::vector<float>::const_iterator& it) {

for (Particle& p : ps) setState(p, it);

}

ODE helper functions

14

void doSimulationStep(ParticleSystem& ps, float& t, float const dt) {

UpdateForce(ps,t,dt); // Applies external forces and impulses.

std::vector<float> y0, y;

std::vector<F_y_t> Fyt;

getState(ps, y0);

getDerivative(ps, Fyt);

ODE(y0, Fyt, t, dt, y); // Computes y and updates t (t += dt).

setState(ps, y.begin());

}

Simulation step for whole system

15

Data flow in simulation step

16
NOTE: For 𝒫𝑛 we have a system of 6𝑛 equations.

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

𝑓𝑥 𝑓𝑦 𝑓𝑧 𝑓𝑥 𝑓𝑦 𝑓𝑧

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

y0

Fyt

y

ODE

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

𝑓𝑥 𝑓𝑦 𝑓𝑧 𝑓𝑥 𝑓𝑦 𝑓𝑧

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

𝑓𝑥 𝑓𝑦 𝑓𝑧 𝑓𝑥 𝑓𝑦 𝑓𝑧

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

ps[0] ps[1] ps[2]

…

void UpdateForce(ParticleSystem& ps, float const t, float const dt) {

clearForce(ps);

applyForce(ps,t,dt); // Add all forces and impulses to all particles.

}

void clearForce(ParticleSystem& ps) {

for (Particle& p : ps) p.force = Vector3(0,0,0);

}

►Next we discuss what forces we can add to particles inside the

function applyForce().

Forces

17

► Homogenous field:
► For each particle we add the force vector 𝑭 = 𝑚𝒈 where
► 𝑚 is the mass of the particle.

► 𝒈 is a constant vector, e.g., 𝒈 = Vector3(0,0, −10).

► Radial field:
► There is a center of gravity 𝑺 of mass 𝑀 (it can be one of the particles).

► For each particle we add the force vector

𝑭 = 𝐺
𝑀𝑚

𝑺−𝒙 2

𝑺−𝒙

𝑺−𝒙
= 𝐺

𝑀𝑚

𝑺−𝒙 3 (𝑺 − 𝒙), where

► 𝐺 is the gravitational constant.

► 𝑚 is the mass of the particle.

► 𝒙 is the position of the particle.

►We can handle cases when 𝑺 − 𝒙 is small by not applying the force.

Gravity

18

► A force of the environment making a particle decrease its velocity

relative to the environment.

► A drag force can also enhance numerical stability of simulation.

► For each particle we add the force vector 𝑭 = 𝑘𝑑(𝑽 − 𝒗), where
► 𝑘𝑑 is the coefficient of drag.

► 𝑽 is the velocity of the environment (often 𝑽 = 𝟎).

► 𝒗 is the velocity of the particle.

Viscous Drag

19

► It is a force between two particles 𝒫𝑖 and 𝒫𝑗 given by Hook’s law:

𝑭𝑖 = − 𝑘𝑠 𝒅 − 𝑑0 + 𝑘𝑑 ሶ𝒅 ⋅
𝒅

𝒅

𝒅

𝒅

𝑭𝑗 = −𝑭𝑖 (3rd Newton’s law – action and reaction)

where
►𝑘𝑠 is the spring constant.

►𝑘𝑑 is the damping constant.
►𝒅 = 𝒙𝑖 − 𝒙𝑗 is the distance vector between the particles.

►𝑑0 is the rest length between the particles.

► ሶ𝒅 = 𝒗𝑖 − 𝒗𝑗 is the relative velocity between the particles.

Spring

20

► Particles start to interact when they come close.

► Particles stop to interact when they move apart.

► Example: Particle-based fluid simulation.

► Computationally expensive task:
► 𝒪(𝑛2) – all pairs of particles are checked.

► Space partitioning methods (e.g., octree)

are essential for performance.

Local interaction

21

https://experiments.withgoogle.com/fluid-particles

►We often want particles to collide with the ground or a wall. These

boundaries can be approximated by planes.

► The process consists of two parts:
► Detection of a collision.

► Response to the collision.

Collision: particle vs. plane

22

https://github.com/LakshithaMadushan/Unity-

Particle-System

► Let us consider a particle 𝒫 = (𝒙, 𝒗, 𝑭,𝑚).

► The plane is represented by the equation 𝑵 ⋅ 𝑿 − 𝑷 = 0, where
► 𝑵 is the unit normal vector pointing “outside” (above the ground).

► 𝑷 is some point in the plane.

► 𝑿 is a tested point.

► The particle collides with the plane only if 𝑵 ⋅ 𝒙 − 𝑷 ≤ 0.
► Only in that case we proceed to the collision response.

Collision detection

23

► If the particle increases the penetration with the plane, i.e., when 𝑵 ⋅
𝒗 < 0, then we change the component of 𝒗 orthogonal to the plane:
► The component of 𝒗 orthogonal to the plane is 𝒗⊥ = 𝑵 ⋅ 𝒗 𝑵.

► The velocity change is then is Δ𝒗 = − 1 + 𝑟 𝒗⊥ = − 1 + 𝑟 𝑵 ⋅ 𝒗 𝑵, where
► 𝑟 ∈ 0,1 is the coefficient of restitution.

►We update 𝒗 to be 𝒗 + Δ𝒗.
► NOTE: Formally, we apply an impulse 𝑰 = 𝑚Δ𝒗 to the particle.

► If 𝑵 ⋅ 𝑭 < 0, then we cancel the component of 𝑭 orthogonal to the

plane:
►We compute Δ𝑭 = −𝑭⊥, where 𝑭⊥ = 𝑵 ⋅ 𝑭 𝑵.

►We update 𝑭 to be 𝑭 + Δ𝑭.

► NOTE: This step should be applied after all external forces (gravity, etc.)

were added to the 𝑭 field of the particle.

Collision response

24

►We build a simplified friction model for particle system:
►We do not distinguish static and dynamic friction.

►We ignore variable changes caused by interactions with other particles.

► If 𝑵 ⋅ 𝑭 < 0, then a friction force 𝑭𝑓 is acting on the particle:

► |𝑭𝑓| is proportional to |𝑭⊥|, where 𝑭⊥ = 𝑵 ⋅ 𝑭 𝑵.

► The direction of 𝑭𝑓 is opposite to the component 𝒗∥ of 𝒗 parallel with the

plane, where 𝒗∥ =
𝑵×𝒗×𝑵

𝑵×𝒗×𝑵
.

► Therefore, we define the friction force as 𝑭𝑓 = 𝑘𝑓 𝑵 ⋅ 𝑭 𝒗∥, where

► 𝑘𝑓 is a friction coefficient.

► Note: We should apply the friction before the collision response.

Simple friction

25

►We defined particle and particle system.

►We learned Newton’s equations of motion for a particle, i.e., a system

of 1st order ODEs.

►We learned how to use ODE solver for the simulation.

►We learned several kinds of forces which we can apply to particles.

►We know how to compute and respond to collision of a particle with a

plane, including application of a friction force.

Summary

26

► [1] Andrew Witkin; Physically Based Modeling: Principles and Practice

Particle System Dynamics; Robotics Institute, Carnegie Mellon

University, 1997.

References

27

	Slide 1: Particle system dynamics
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: Particle definition
	Slide 5: Particle equations of motion
	Slide 6: Solving equations of motion
	Slide 7: Solving equations of motion
	Slide 8: Building initial state for ODE
	Slide 9: Building derivatives for ODE
	Slide 10: Simulation step for single particle
	Slide 11: Saving ODE results
	Slide 12: Data flow in simulation step
	Slide 13: Particle system
	Slide 14: ODE helper functions
	Slide 15: Simulation step for whole system
	Slide 16: Data flow in simulation step
	Slide 17: Forces
	Slide 18: Gravity
	Slide 19: Viscous Drag
	Slide 20: Spring
	Slide 21: Local interaction
	Slide 22: Collision: particle vs. plane
	Slide 23: Collision detection
	Slide 24: Collision response
	Slide 25: Simple friction
	Slide 26: Summary
	Slide 27: References

