Particle system dynamics

Jiří Chmelík, Marek Trtík PA199

Outline

► Motivation

► Motion of a single particle: Equations of motion ► Use of an ODE solver

► Motion of many particles

► Forces

► Gravity, drag, spring, local interaction

► Collision: particle vs. plane ► Detection, response, simple friction

Motivation

Particle definition

► Particle = an abstract object with these properties:

- ► No spatial extent it is just a point in 3D space
- ► Velocity
- ▶ Respond to forces (e.g., gravity)
- ► Mass resistance to changes in motion state
- \blacktriangleright Particle in math: $P = (x, v, F, m)$.
- ► Particle in C++:
	- struct Particle { Vector3 position; Vector3 velocity; Vector3 force; float mass;
	- };

Particle equations of motion

 \blacktriangleright Motion of a particle $\mathcal P$ in space is given by a function of time:

- $\blacktriangleright \mathcal{P}(t) = (x, v, F, m)(t) = (x(t), v(t), F, m)$
	- \blacktriangleright m is constant (not dependent on time).
	- \blacktriangleright **F** is total **external** force (not updated by the particle system).

 \blacktriangleright To compute $P(t)$ we need to know how it **changes in time**. **=>** We need to compute $\dot{\mathcal{P}}(t) = (\dot{x}(t), \dot{v}(t)).$ Newton's second law of motion: $F = ma$

• Important relations:
$$
v = \dot{x} = \frac{dx}{dt}
$$
, $a = \dot{v} = \frac{dv}{dt}$

 \blacktriangleright So, $\mathcal{P}(t)$ is a solution of **Newton's equations of motion**:

$$
\dot{x}(t) = v(t), \qquad \dot{v}(t) = a = \frac{F}{m}.
$$

Solving equations of motion

► There is 6 **ordinary differential equations** (ODE) of the 1st order in the Newton's equations of a single particle.

 \blacktriangleright $x(t)$ and $v(t)$ are 3D vector functions.

 \blacktriangleright In general, a system of n 1st order ODEs has the form:

 $\dot{\mathbf{y}} = \mathbf{F}(\mathbf{y},t)$ where $\mathbf{y}(\mathbf{t}) = (y_0(t), ..., y_{n-1}(t))$ ⊤ and $\bm{F}(\bm{y}, \bm{t}) = (F_0(y_0(t), ..., y_{n-1}(t), t), ..., F_{n-1}(y_0(t), ..., y_{n-1}(t), t))$ ⊤ Therefore, we have a system:

 $\dot{y}_0 = F_0(y_0, ..., y_{n-1}, t), \quad ..., \quad \dot{y}_{n-1} = F_{n-1}(y_0, ..., y_{n-1}, t)$ At each simulation time t_0 we know $x(t_0) = X_0$ and $v(t_0) = V_0$. ►Therefore, we solve the **initial value problem** of 1st order ODEs: $\dot{\mathbf{y}} = \mathbf{F}(\mathbf{y}, t)$, $\mathbf{y}(t_0) = \mathbf{y}_0$

Solving equations of motion

► We are given a black-box function ODE solving the initial value problem of 1st order ODEs $\dot{\mathbf{y}} = \mathbf{F}(\mathbf{y},t)$, $\mathbf{y}(t_0) = \mathbf{y}_0$:

```
using F_y_t = std::function<float(std::vector<float> const&,float)>;
```

```
void ODE(
          std::vector<float> const& y0, \mathcal{N} = \mathcal{N} \times \mathcal{N} \mathcal{N} \times \mathcal{N} of particle(s)
          std::vector<F_y_t> const& Fyt, \left| \frac{\partial f}{\partial x} \right|, \left| \frac{\partial f}{\partial y} \right| of particle(s), i.e. \left| \frac{\partial f}{\partial y} \right|float& t, the state of the current time (to be updated)
          float const dt, \frac{1}{2} // time step
          std::vector<float>& y \frac{1}{\sqrt{2}} integrated x, v of particle(s)
           );
```
NOTE: Implementation of ODE is the topic of next lecture.

Building initial state for ODE

void getState(Particle const& p, std::vector<float>& y0) { y0.push_back(p.position.x); y0.push_back(p.position.y); y0.push_back(p.position.z);

> y0.push_back(p.velocity.x); y0.push_back(p.velocity.y); y0.push_back(p.velocity.z);

}

Building derivatives for ODE

}

void getDerivative(Particle const& p, std::vector<F_y_t>& Fyt) { Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.x; }); Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.y; }); Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.z; });

Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.x/p.mass; }); Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.y/p.mass; }); Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.z/p.mass; });

►Observation: Parameters of lambda functions are not used. Our functions $F(y, t)$ are simple; ODE solver handles general case.

Simulation step for single particle

void doSimulationStep(Particle& p, float& t, float const dt) { UpdateForce(p,t,dt); // Applies external forces and impulses.

std::vector<float> y0, y; std::vector<F_y_t> Fyt; getState(p, y0); getDerivative(p, Fyt); setState(p, y.begin());

}

ODE(y0, Fyt, t, dt, y); $\frac{1}{2}$ Computes y and updates t (t += dt).

Saving ODE results

void setState(Particle& p, std::vector<float>::const_iterator& it) { $p.$ position. $x =$ *it; ++it; $p.$ position. $y =$ *it; ++it; $p.$ position. $z =$ *it; ++it;

 $p.$ velocity. $x =$ *it; ++it; $p.$ velocity. $y =$ *it; ++it; $p.$ velocity. $z =$ *it; ++it;

}

Particle system

 \blacktriangleright It is a system consisting of n patricles.

► Particle system in math: $\mathcal{P}^n = [\mathcal{P}_0, \mathcal{P}_1, \dots, \mathcal{P}_{n-1}] =$ $[(x_0, v_0, F_0, m_0), (x_1, v_1, F_1, m_1), ..., (x_{n-1}, v_{n-1}, F_{n-1}, m_{n-1})].$

► Particle system in C++: using ParticleSystem = std::vector<Particle>;

ODE helper functions

}

}

void getState(ParticleSystem const& ps, std::vector<float>& y0) { for (Particle const& p : ps) getState(p,y0);

void getDerivative(ParticleSystem const& ps, std::vector<F_y_t>& Fyt) { for (Particle const& p : ps) getDerivatives(p, Fyt);

void setState(ParticleSystem& ps, std::vector<float>::const_iterator& it) { for (Particle& p : ps) setState(p, it); }

Simulation step for whole system

void doSimulationStep(ParticleSystem& ps, float& t, float const dt) { UpdateForce(ps,t,dt); // Applies external forces and impulses.

std::vector<float> y0, y; std::vector<F_y_t> Fyt; getState(ps, y0); getDerivative(ps, Fyt); setState(ps, y.begin());

}

ODE(y0, Fyt, t, dt, y); $\frac{1}{2}$ Computes y and updates t (t += dt).

Data flow in simulation step

NOTE: For \mathcal{P}^n we have a system of 6n equations.


```
void UpdateForce(ParticleSystem& ps, float const t, float const dt) {
     clearForce(ps);
     applyForce(ps,t,dt); // Add all forces and impulses to all particles.
}
```

```
void clearForce(ParticleSystem& ps) {
     for (Particle& p : ps) p.force = Vector3(0,0,0);
}
```
►Next we discuss what forces we can add to particles inside the function applyForce().

Gravity

► Homogenous field:

- \blacktriangleright For each particle we add the force vector $\bm{F} = m\bm{g}$ where
	- \blacktriangleright m is the mass of the particle.
	- \blacktriangleright g is a **constant** vector, e.g., $g = \text{Vector3}(0,0,-10)$.

► Radial field:

 \blacktriangleright There is a center of gravity S of mass M (it can be one of the particles).

For each particle we add the force vector

$$
F = G \frac{Mm}{|S-x|^2} \frac{S-x}{|S-x|} = G \frac{Mm}{|S-x|^3} (S-x), \text{ where}
$$

- \blacktriangleright G is the gravitational constant.
- \blacktriangleright m is the mass of the particle.
- \blacktriangleright x is the position of the particle.
- \triangleright We can handle cases when $|S-x|$ is small by not applying the force.

Viscous Drag

► A force of the environment making a particle decrease its velocity relative to the environment.

► A drag force can also enhance numerical stability of simulation.

► For each particle we add the force vector $\mathbf{F} = k_d(\mathbf{V} - \boldsymbol{v})$, where \blacktriangleright k_d is the coefficient of drag. \blacktriangleright **V** is the velocity of the environment (often $V = 0$).

 \blacktriangleright \boldsymbol{v} is the velocity of the particle.

Spring

 \blacktriangleright It is a force between two particles \mathcal{P}_i and \mathcal{P}_j given by Hook's law:

$$
\boldsymbol{F}_i = -\left(k_s(|\boldsymbol{d}| - d_0) + k_d \dot{\boldsymbol{d}} \cdot \frac{\boldsymbol{d}}{|\boldsymbol{d}|}\right) \frac{\boldsymbol{d}}{|\boldsymbol{d}|}
$$

$$
\boldsymbol{F}_j = -\boldsymbol{F}_i \quad \text{(3rd Newton's law – action and reaction)}
$$

where

 $\blacktriangleright k_s$ is the spring constant.

 $\blacktriangleright k_d$ is the damping constant.

 $\blacktriangleright d = x_i - x_j$ is the distance vector between the particles.

 $\blacktriangleright d_0$ is the rest length between the particles.

 \blacktriangleright $\dot{d} = v_i - v_j$ is the relative velocity between the particles.

Local interaction

► Particles start to interact when they come close. ► Particles stop to interact when they move apart.

Example: Particle-based fluid simulation.

Computationally expensive task: \triangleright $\mathcal{O}(n^2)$ – all pairs of particles are checked. ▶ Space partitioning methods (e.g., octree) are essential for performance.

https://experiments.withgoogle.com/fluid-particles

Collision: particle vs. plane

► We often want particles to collide with the ground or a wall. These boundaries can be approximated by planes.

https://github.com/LakshithaMadushan/Unity-Particle-System

► The process consists of two parts:

- ► Detection of a collision.
- Response to the collision.

Collision detection

- \blacktriangleright Let us consider a particle $\mathcal{P} = (x, v, F, m)$.
- \blacktriangleright The plane is represented by the equation $N \cdot (X P) = 0$, where \blacktriangleright N is the unit normal vector pointing "outside" (above the ground). \blacktriangleright **P** is some point in the plane. \blacktriangleright X is a tested point.
- \blacktriangleright The particle collides with the plane only if $N \cdot (x P) \leq 0$. ► Only in that case we proceed to the collision response.

Collision response

 \blacktriangleright If the particle increases the penetration with the plane, i.e., when $N \cdot$ $v < 0$, then we change the component of v orthogonal to the plane:

- \blacktriangleright The component of v orthogonal to the plane is $v^{\perp} = (N \cdot v)N$.
- The velocity change is then is $\Delta v = -(1+r)v^{\perp} = -(1+r)(N \cdot v)N$, where \blacktriangleright $r \in (0,1)$ is the coefficient of restitution.
- \blacktriangleright We update v to be $v + \Delta v$.
	- \blacktriangleright NOTE: Formally, we apply an impulse $I = m \Delta v$ to the particle.
- \blacktriangleright If $N \cdot F < 0$, then we cancel the component of F orthogonal to the plane:
	- \blacktriangleright We compute $\Delta F = -F^{\perp}$, where $F^{\perp} = (N \cdot F)N$.
	- \blacktriangleright We update **F** to be $\boldsymbol{F} + \Delta \boldsymbol{F}$.
	- ► NOTE: This step should be applied **after** all external forces (gravity, etc.) were added to the F field of the particle.

Simple friction

► We build a simplified friction model for particle system: ► We do not distinguish static and dynamic friction. ► We ignore variable changes caused by interactions with other particles.

 \blacktriangleright If $N \cdot F < 0$, then a friction force F_f is acting on the particle: \blacktriangleright $|F_f|$ is proportional to $|F^{\perp}|$, where $F^{\perp} = (N \cdot F)N$. \blacktriangleright The direction of \boldsymbol{F}_f is opposite to the component $\boldsymbol{v}^{\parallel}$ of \boldsymbol{v} parallel with the plane, where $v^{\parallel} = \frac{N \times v \times N}{|N| \times w \times N}$ $N \times v \times N$.

▶ Therefore, we define the friction force as $\mathbf{F}_f = k_f(\mathbf{N} \cdot \mathbf{F}) \mathbf{v}^{\parallel}$, where \blacktriangleright k_f is a friction coefficient.

► Note: We should apply the friction before the collision response.

► We defined particle and particle system.

- ► We learned Newton's equations of motion for a particle, i.e., a system of 1st order ODEs.
- ► We learned how to use ODE solver for the simulation.
- We learned several kinds of forces which we can apply to particles.
- ► We know how to compute and respond to collision of a particle with a plane, including application of a friction force.

References

► [1] *Andrew Witkin*; Physically Based Modeling: Principles and Practice Particle System Dynamics; Robotics Institute, Carnegie Mellon University, 1997.