Solving differential equations

Marek Trtík PA199

Outline

- ▶ Initial value problem for ordinary differential equations.
- Forward Euler's method.
- Backward Euler's method.
- Midpoint method.
- Runge-Kutta methods.

Initial value problem

Initial value problem

Initial value problem (IVP) for the 1st order ordinary differential equations (ODE)s:

$$\dot{\boldsymbol{y}} = \boldsymbol{F}(\boldsymbol{y},t), \qquad \boldsymbol{y}(t_0) = \boldsymbol{y}_0$$

- $y(t) = (y_1(t), ..., y_n(t))^{\mathsf{T}}$ is a vector of **unknown** functions $y_i : \mathbb{R} \to \mathbb{R}$.
- $F(y,t) = (f_1(y(t),t),...,f_n(y(t),t))^T$ is a vector of **known** fns $f_i: \mathbb{R}^{n+1} \to \mathbb{R}$.
- The initial value condition:
 - \blacktriangleright t_0 given time point.
 - $\mathbf{y}_0 = (y_1(t_0), \dots, y_n(t_0))^{\mathsf{T}}$ is a vector of **known** values of functions y_i at t_0 .
- Solution: Any vector of functions $\hat{y}(t) = (\hat{y}_1(t), ..., \hat{y}_n(t))$ s.t.:

$$\hat{\boldsymbol{y}} = \boldsymbol{F}(\hat{\boldsymbol{y}},t), \qquad \hat{\boldsymbol{y}}(t_0) = \boldsymbol{y}_0$$

- NOTE: We can extend to higher orders, e.g., $\ddot{y} = F(y, \dot{y}, t)$, $y(t_0) = y_0$.
 - We can also have initial condition for derivatives, e.g., $\dot{y}(t_0) = \dot{y}_0$.

Initial value problem

- **Example**: Check that $y(t) = \frac{3}{4} + \frac{c}{t^2}$, $c \in \mathbb{R}$ is a general solution to $\dot{y} = \frac{3-4y}{2t}$. Find c for which initial condition y(1) = -4 is satisfied.
- Solution:

$$\frac{3-4(\frac{3}{4}+\frac{c}{t^2})}{2t} = -\frac{4c}{t^2} \cdot \frac{1}{2t} = -\frac{2c}{t^3}$$

$$\frac{3}{4} + \frac{c}{12} = -4 \implies c = -\frac{19}{4}$$

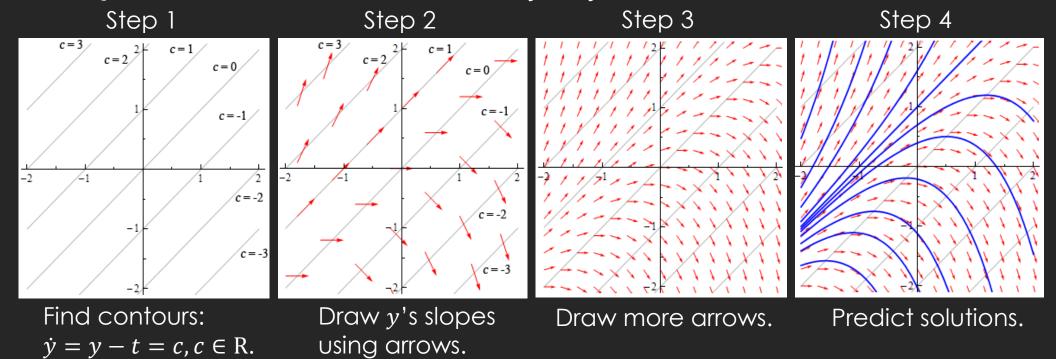
- In physics simulations:
 - Initial conditions define current state of the system.

Pictures source: [3]

Direction field

- ▶ Plot of a function F(y,t) for some values of y,t.
 - \blacktriangleright Goal: Get visual impression about derivatives y.

Example: Show direction field for $\dot{y} = y - t$. [axes: t horizontal, y vertical]



Numerical solution

- ▶ The goal is find $y(t_1)$, where $t_1 > t_0$, for a given IVP $\dot{y} = F(y,t)$, $y(t_0) = y_0$:
 - ▶ Start at the initial time t_0 and the initial value y_0 .
 - ► Compute a sequence of values $y(t_0 + \Delta t), y(t_0 + 2\Delta t), ..., y(t_0 + n\Delta t)$, where $t_1 = t_0 + n\Delta t$.
- There are two kinds of methods:
 - **Explicit** methods:
 - ▶ Compute $y(t_0 + \Delta t)$ by a function $\mathcal{F}(F, y_0, t_0, \Delta t)$ of **current** state of the system.
 - ▶ **Implicit** methods:
 - ▶ Compute $y(t_0 + \Delta t)$ by a solution of an equation $\mathcal{F}(F, y_0, t_0, \Delta t, y(t_0 + \Delta t)) = 0$ over the **current and future** state of the system.

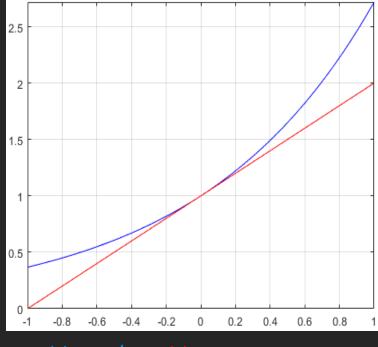
Taylor theorem

- For a k-times differentiable function $y: \mathbb{R} \to \mathbb{R}$ at a point $t_0 \in D(y)$ there exists a polynomial $P_k: \mathbb{R} \to \mathbb{R}$ and a functions $R: \mathbb{R} \to \mathbb{R}$ s.t.

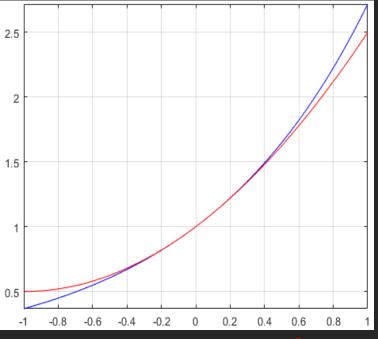
 - $P_k(t_0 + \Delta t) = y(t_0) + \Delta t \dot{y}(t_0) + \frac{\Delta t^2}{2!} \ddot{y}(t_0) + \dots + \frac{\Delta t^k}{k!} y^{(k)}(t_0)$

Numerical solution

Examples (Taylor approximation):



$$y(t) = e^t$$
, $P_1(t) = 1 + t$, $t_0 = 0$.



$$y(t) = e^t$$
, $P_2(t) = 1 + t + \frac{t^2}{2}$, $t_0 = 0$.

"O" error notation

 \triangleright What is the error from the approximation using P_k :

$$y(t_0 + \Delta t) \approx P_k(t_0 + \Delta t)$$

▶ For small Δt the error is proportional to the term Δt^{k+1} . Therefore,

$$y(t_0 + \Delta t) = P_k(t_0 + \Delta t) + \mathcal{O}(\Delta t^{k+1})$$

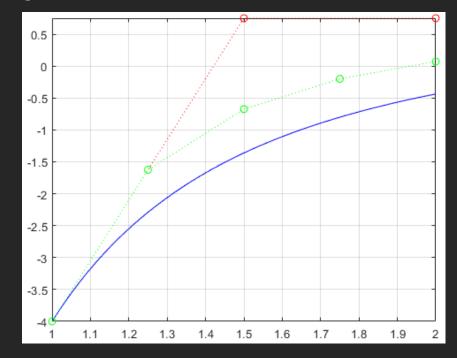
▶ We get forward Euler's method, when we approximate y by P_1 at t_0 :

$$y(t_0 + \Delta t) \approx y(t_0) + \Delta t \dot{y}(t_0)$$
$$= y(t_0) + \Delta t F(y(t_0), t_0)$$

We see that forward Euler's method is an explicit method.

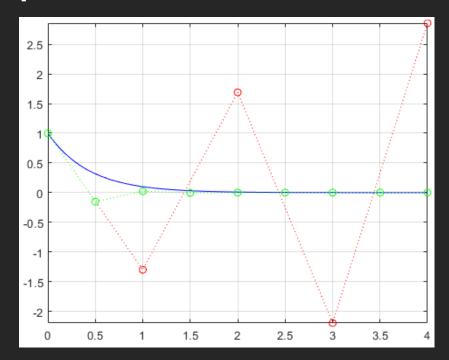
- **Example**: Let IPV be $\dot{y} = \frac{3-4y}{2t}$, y(1) = -4. Compute y(2) by forward Euler's method. [Note: Exact solution is $y(t) = \frac{3}{4} \frac{19}{4t^2}$]
- Solution:
 - Let's choose a time step $\Delta t = \frac{1}{2}$ => We must apply the method 2 times.
 - ▶ y(1) = -4 ← from the initial condition.
 - $y\left(\frac{3}{2}\right) = y\left(1 + \frac{1}{2}\right) \approx y(1) + \frac{1}{2}F(y(1), 1) = -4 + \frac{1}{2} \cdot \frac{3 4(-4)}{2 \cdot 1} = \frac{3}{4}$
 - $y(2) = \frac{3}{4} + \frac{1}{2} \cdot \frac{3-4 \cdot \frac{3}{4}}{2 \cdot \frac{3}{2}} = \frac{3}{4}$ \leftarrow 2nd iteration
- ▶ We see the method is **simple** and **fast**.

- ► Low accuracy issue:
 - $\triangleright \mathcal{O}(\Delta t^2)$ error in each iteration.
- **Example:**



IVP:
$$\dot{y} = \frac{3-4y}{2t}$$
, $y(1) = -4$.
Euler's method: $\Delta t = \frac{1}{2}$, $\Delta t = \frac{1}{4}$.
Exact solution: $y(t) = \frac{3}{4} - \frac{19}{4t^2}$

- ► Instability issue:
 - ▶ The iteration process may diverge.
- **Example:**



IVP: $\dot{y} = -2.3y$, y(0) = 1.

Euler's method: $\Delta t = 1$, $\Delta t = \frac{1}{2}$.

Exact solution: $y(t) = e^{-2.3t}$.

- ▶ What can we do with the issues?
 - ▶ Use smaller time step Δt to reduce the error and/or avoid the instability.
 - ▶ But we then need more iterations => slower simulation.
 - Choose more accurate/stable solver.
- Suggestion for seminar: Implement method "ODE_Euler_forward".

```
void ODE _Euler_forward(
    std::vector<float> const& y0,
    std::vector<F_y_t> const& Fyt,
    float& t,
    float const dt,
    std::vector<float>& y)

{ TODO }

// x, v of particle(s), i.e. v, F/m
// current time (to be updated)
// time step
// integrated x, v of particle(s)
```

- **Example**: Let's consider a particle $\mathcal{P}(t) = (x, v, F, m)$, where m = 0.1kg, in a homogenous gravity field with $\mathbf{g} = (0,0,-10)^{\mathrm{T}} \mathrm{m} \cdot \mathrm{s}^{-2}$. At time t = 1s we have $\mathbf{x} = (1,-1,5)^{\mathrm{T}} \mathrm{m}$, $\mathbf{v} = (1,0,0)^{\mathrm{T}} \mathrm{m} \cdot \mathrm{s}^{-1}$. Using forward Euler's method with $\Delta t = 0.5$ s compute $\mathcal{P}(2)$.
- Solution: Particle moves by Newton's equations of motion:

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{v}(t), \qquad \dot{\boldsymbol{v}}(t) = \frac{\boldsymbol{F}}{m}$$

Therefore:
$$x(1.5) = \begin{pmatrix} 1+0.5 \cdot 1 \\ -1+0.5 \cdot 0 \\ 5+0.5 \cdot 0 \end{pmatrix} = \begin{pmatrix} 1.5 \\ -1 \\ 5 \end{pmatrix}, v(1.5) = \begin{pmatrix} 1+0.5 \frac{0.1 \cdot 0}{0.1} \\ 0+0.5 \frac{0.1 \cdot 0}{0.1} \\ 0+0.5 \frac{0.1 \cdot -10}{0.1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix}.$$

$$\mathbf{x}(2) = (2, -1, 0)^{\mathsf{T}}, \ \mathbf{v}(2) = (1, 0, -10)^{\mathsf{T}}.$$

From the fundamental theorem of the calculus:

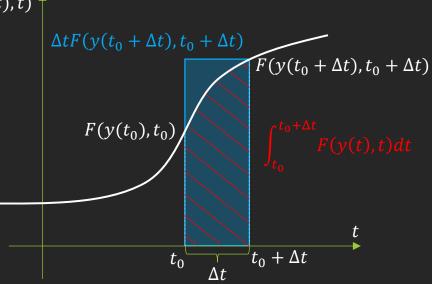
$$\int_{t_0}^{t_0 + \Delta t} \dot{y}(t)dt = y(t_0 + \Delta t) - y(t_0).$$
 F(y(t),t)

Therefore,

$$y(t_0 + \Delta t) = y(t_0) + \int_{t_0}^{t_0 + \Delta t} F(y(t), t) dt$$

We can approximate the integral by "right-hand" rectangle:

$$\int_{t_0}^{t_0+\Delta t} F(y(t),t)dt \approx \Delta t F(y(t_0+\Delta t),t_0+\Delta t).$$



Backward Euler's method leads to this equation:

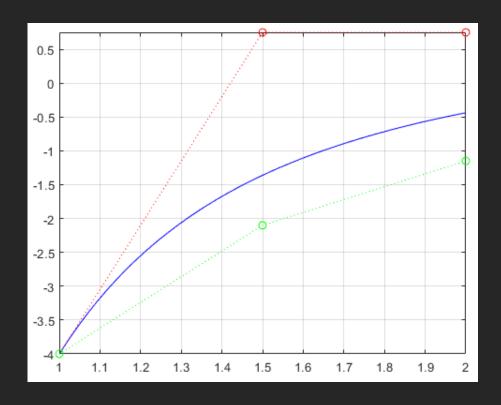
$$y(t_0 + \Delta t) \approx y(t_0) + \Delta t F(y(t_0 + \Delta t), t_0 + \Delta t)$$

- Backward Euler's method is an implicit method.
- We must solve this equation to obtain the unknown $y(t_0 + \Delta t)$: $y(t_0 + \Delta t) y(t_0) \Delta t F(y(t_0 + \Delta t), t_0 + \Delta t) = 0$
 - ▶ Use any available method for solving the equation, e.g., Newton's method $(y^{[k+1]} = y^{[k]} \mathcal{F}(y^{[k]})/\dot{\mathcal{F}}(y^{[k]}))$.
- ▶ Note: If we have system of ODEs, then we get system of equations.

- **Example**: Let IVP be $\dot{y} = \frac{3-4y}{2t}$, y(1) = -4. Compute y(2) by backward Euler's method. [Note: Exact solution is $y(t) = \frac{3}{4} \frac{19}{4t^2}$]
- ▶ Solution:
 - Let's choose a time step $\Delta t = \frac{1}{2}$ => We must apply the method 2 times.
 - y(1) = -4 \leftarrow from the initial condition.

$$y\left(\frac{3}{2}\right) = y\left(1 + \frac{1}{2}\right) = y(1) + \frac{1}{2}F\left(y\left(\frac{3}{2}\right), \frac{3}{2}\right) = -4 + \frac{1}{2} \cdot \frac{3 - 4y\left(\frac{3}{2}\right)}{2 \cdot \frac{3}{2}} = -\frac{7}{2} - \frac{2}{3}y\left(\frac{3}{2}\right)$$

We can plot out result and compare it with forward Euler's method:



IVP:
$$\dot{y} = \frac{3-4y}{2t}$$
, $y(1) = -4$.
Backward Euler: $\Delta t = \frac{1}{2}$.

Backward Euler:
$$\Delta t = \frac{1}{2}$$

Forward Euler:
$$\Delta t = \frac{1}{2}$$
.

Exact solution:
$$y(t) = \frac{3}{4} - \frac{19}{4t^2}$$

- **Example 2**: Let IPV be $\dot{y} = -2.3y$, y(0) = 1. Compute y(4) by backward Euler's method.
- ▶ Solution:
 - ▶ Let's choose a time step $\Delta t = 1$ => We must apply the method 4 times.
 - y(0) = 1 \leftarrow from the initial condition.
 - $y(1) = 1 + 1 \cdot -2.3y(1) \implies y(1) = \frac{1}{1+2.3} = \frac{10}{33}$

← 1st iteration

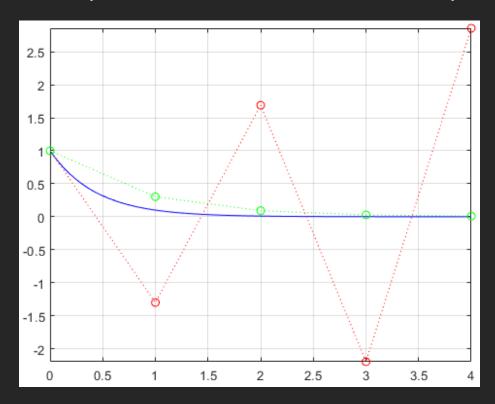
 $y(2) = \frac{10}{33} + 1 \cdot -2.3y(2) \implies y(2) = \frac{10}{33} \cdot \frac{10}{33} = \left(\frac{10}{33}\right)^2$

- ← 2nd iteration
- $y(3) = \left(\frac{10}{33}\right)^2 2.3y(3) \implies y(3) = \left(\frac{10}{33}\right)^2 \cdot \frac{10}{33} = \left(\frac{10}{33}\right)^3$
- ← 3rd iteration

 $y(4) = \left(\frac{10}{33}\right)^3 - 2.3y(4) \implies y(4) = \left(\frac{10}{33}\right)^4$

- ← 4th iteration
- Note: Observe the geometric progression $y_{k+1} = qy_k$, $q = \frac{10}{33} \implies y_k = q^k y_0$.

We can plot out result and compare it with forward Euler's method:



IVP: $\dot{y} = -2.3y$, $y(0) = \overline{1}$.

Backward Euler: $\Delta t = 1$.

Forward Euler: $\Delta t = 1$.

Exact solution: $y(t) = e^{-2.3t}$

- Properties of backward Euler's method
 - ▶ Hard to implement.
 - Requires solving an equation or a system of equations.
 - $\triangleright \mathcal{O}(\Delta t^2)$ error in each iteration.
 - \blacktriangleright Stable for large time step Δt .
- Choice between forward/backward Euler's method depends on a problem. "Rule of thumb":
 - Prefer forward method for "stable" problems.
 - Prefer backward method for "stiff" problems.

▶ Let's try to approximate y by P_2 at t_0 :

$$y(t_0 + \Delta t) = y(t_0) + \Delta t \dot{y}(t_0) + \frac{\Delta t^2}{2!} \ddot{y}(t_0) + \mathcal{O}(\Delta t^3)$$

$$= y(t_0) + \Delta t F(y(t_0), t_0) + \frac{\Delta t^2}{2} \dot{F}(y(t_0), t_0) + \mathcal{O}(\Delta t^3)$$
moute \dot{F} ?

- \blacktriangleright How to compute \dot{F} ?
 - Using the chain rule, we get: $\dot{F} = \frac{\partial F}{\partial t} + \frac{\partial F}{\partial y}\dot{y} = \frac{\partial F}{\partial t} + \frac{\partial F}{\partial y}F$
 - Not much better, because we still do not know $\frac{\partial F}{\partial t}$, $\frac{\partial F}{\partial y}$.
- ▶ So, let's try to approximate F using P_1 ...
 - ▶ Note: We must use a 2-variables version of Taylor's theorem.

$$F(y(t_0) + \Delta y, t_0 + \Delta t) = F(y(t_0), t_0) + \Delta y \frac{\partial F}{\partial y}(y(t_0), t_0) + \Delta t \frac{\partial F}{\partial t}(y(t_0), t_0) + \mathcal{O}(\Delta y^2 + \Delta t^2)$$

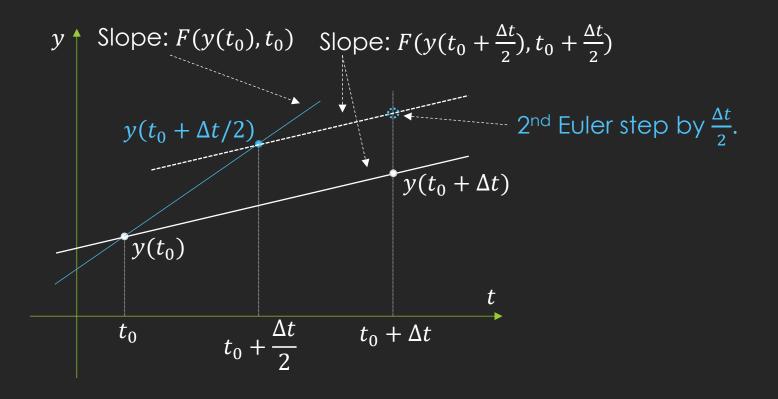
Let's substitute: $\Delta y \rightarrow \frac{\Delta t}{2} F(y(t_0), t_0), \Delta t \rightarrow \frac{\Delta t}{2}$ $F\left(y(t_0) + \frac{\Delta t}{2}F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) = F(y(t_0), t_0) + \frac{\Delta t}{2}F(y(t_0), t_0) \frac{\partial F}{\partial y}(y(t_0), t_0) + \frac{\Delta t}{2}\frac{\partial F}{\partial t}(y(t_0), t_0)$ $\frac{\Delta t}{2} \dot{F}(y(t_0), t_0)$ $F\left(y(t_0) + \frac{\Delta t}{2}F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) = F(y(t_0), t_0) + \frac{\Delta t}{2}\dot{F}(y(t_0), t_0) + \mathcal{O}(\Delta t^2)$ $\frac{\Delta t}{2}\dot{F}(y(t_0), t_0) + \mathcal{O}(\Delta t^2) = F\left(y(t_0) + \frac{\Delta t}{2}F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) - F(y(t_0), t_0)$ $\frac{\Delta t^2}{2} \dot{F}(y(t_0), t_0) + \mathcal{O}(\Delta t^3) = \Delta t F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) - \Delta t F(y(t_0), t_0)$

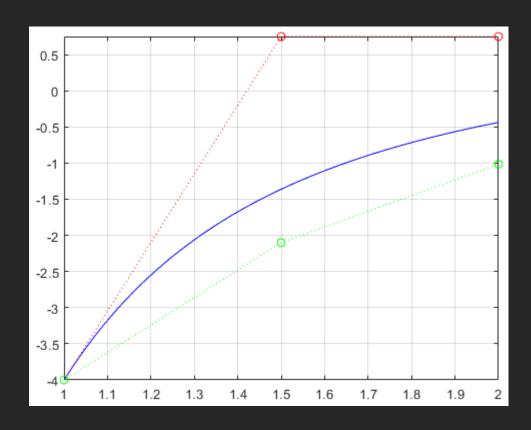
$$y(t_0 + \Delta t) = y(t_0) + \Delta t F(y(t_0), t_0) + \Delta t F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) - \Delta t F(y(t_0), t_0)$$

$$y(t_0 + \Delta t) = y(t_0) + \Delta t F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right)$$

- This is an explicit method.
- ▶ This method is more accurate than Euler's method:
 - ▶ Euler: $\mathcal{O}(\Delta t^2)$
 - \blacktriangleright Midpoint: $\mathcal{O}(\Delta t^3)$

$$y(t_0 + \Delta t) = y(t_0) + \Delta t F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right)$$



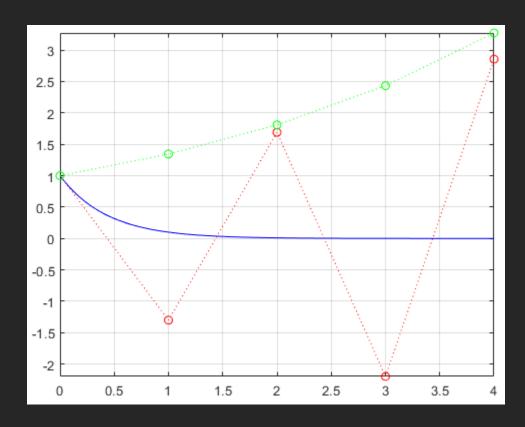


IVP:
$$\dot{y} = \frac{3-4y}{2t}$$
, $y(1) = -4$.
Midpoint method: $\Delta t = \frac{1}{2}$.

Midpoint method:
$$\Delta t = \frac{1}{2}$$
.

Forward Euler:
$$\Delta t = \frac{1}{2}$$
.

Exact solution:
$$y(t) = \frac{3}{4} - \frac{19}{4t^2}$$



IVP: $\dot{y} = -2.3y$, y(0) = 1.

Midpoint method: $\Delta t = 1$.

Forward Euler: $\Delta t = 1$.

Exact solution: $y(t) = e^{-2.3t}$

- ▶ There is also **implicit** version of the midpoint method.
- From the fundamental theorem of the calculus:

$$y(t_0 + \Delta t) = y(t_0) + \int_{t_0}^{t_0 + \Delta t} F(y(t), t) dt$$

We can approximate the integral by "midpoint" rectangle:

$$\int_{t_0}^{t_0 + \Delta t} F(y(t), t) dt \approx \Delta t F\left(\frac{y(t_0) + y(t_0 + \Delta t)}{2}, \frac{t_0 + (t_0 + \Delta t)}{2}\right)$$

Therefore, we get

$$y(t_0 + \Delta t) = y(t_0) + \Delta t F\left(\frac{y(t_0) + y(t_0 + \Delta t)}{2}, t_0 + \frac{\Delta t}{2}\right)$$

In general, we can approximate the integral as follows:

$$\int_{t_0}^{t_0+\Delta t} F(y(t),t)dt \approx \Delta t \sum_{i=1}^n b_i F(y(t_0+c_i\Delta t),t_0+c_i\Delta t)$$

- ▶ The problem is that values $y(t_0 + c_i \Delta t)$ are **unknown!**
- Runge-Kutta methods solve the issue by this substitution:

$$k_{1} = F(y(t_{0}), t_{0})$$

$$k_{i} = F\left(y(t_{0}) + \Delta t \sum_{j=1}^{i-1} a_{i,j} k_{j}, t_{0} + c_{i} \Delta t\right), \quad \text{s.t.} \sum_{j=1}^{i-1} a_{i,j} = c_{i}$$

$$\int_{t_{0}}^{t_{0} + \Delta t} F(y(t), t) dt \approx \Delta t \sum_{i=1}^{n} b_{i} k_{i}$$

 \blacktriangleright Therefore, Runge-Kutta of order n is defined as:

$$y(t_0 + \Delta t) = y(t_0) + \Delta t \sum_{i=1}^{n} b_i k_i$$
,

where terms k_i were defined on the previous slide.

Nowever, we must **compute** the numbers $a_{i,j}$, b_i , c_i so that resulting expression yields an approximation by **Taylor's polynomial** P_n .

Example: Runge-Kutta method of order 1 (i.e. n = 1):

$$k_1=F(y(t_0),t_0)$$

$$y(t_0+\Delta t)=y(t_0)+\Delta t b_1 k_1=y(t_0)+\Delta t b_1 F(y(t_0),t_0)$$
 What value we should choose for b_1 ? We compare $y(t_0+\Delta t)$ with P_1 .
$$P_1(t_0+\Delta t)=y(t_0)+\Delta t \dot{y}(t_0)=y(t_0)+\Delta t F(y(t_0),t_0)$$
 Therefore, b_1 must be 1.

Observation: Euler's method is Runge-Kutta method of order 1.

Example: Runge-Kutta method of order 2 (i.e. n = 2):

$$k_1 = F(y(t_0), t_0)$$

$$k_2 = F(y(t_0) + \Delta t a_{2,1} k_1, t_0 + c_2 \Delta t)$$

$$y(t_0 + \Delta t) = y(t_0) + \Delta t b_1 k_1 + \Delta t b_2 k_2$$
Example $a_1 = b_1 b_2$ by comparison of $y(t_1 + \Delta t)$ with B_1

We compute $a_{2,1}$, b_1 , b_2 by comparison of $y(t_0 + \Delta t)$ with P_2 .

$$P_{2}(t_{0} + \Delta t) = y(t_{0}) + \Delta t \dot{y}(t_{0}) + \frac{\Delta t^{2}}{2!} \ddot{y}(t_{0})$$

$$= y(t_{0}) + \Delta t F(y(t_{0}), t_{0}) + \frac{\Delta t^{2}}{2} \dot{F}(y(t_{0}), t_{0})$$

$$= y(t_{0}) + \Delta t F(y(t_{0}), t_{0}) + \frac{\Delta t^{2}}{2} \left(\frac{\partial F}{\partial t} + \frac{\partial F}{\partial y} F\right) (y(t_{0}), t_{0})$$

For the comparison let's approximate k_2 by P_1 :

$$k_{2} = F(y(t_{0}) + \Delta t a_{2,1} k_{1}, t_{0} + c_{2} \Delta t)$$

$$\approx F(y(t_{0}), t_{0}) + \Delta t (c_{2} \frac{\partial F}{\partial t} + a_{2,1} k_{1} \frac{\partial F}{\partial y}) (y(t_{0}), t_{0})$$

$$= F(y(t_{0}), t_{0}) + \Delta t (c_{2} \frac{\partial F}{\partial t} + a_{2,1} F \frac{\partial F}{\partial y}) (y(t_{0}), t_{0})$$

When we substitute the approximated k_2 we get:

$$\begin{split} y(t_{0} + \Delta t) &= y(t_{0}) + \Delta t b_{1} F(y(t_{0}), t_{0}) \\ &+ \Delta t b_{2} (F(y(t_{0}), t_{0}) + \Delta t (c_{2} \frac{\partial F}{\partial t} + a_{2,1} F \frac{\partial F}{\partial y}) (y(t_{0}), t_{0})) \\ &= y(t_{0}) + \Delta t (b_{1} + b_{2}) F(y(t_{0}), t_{0}) \\ &+ \Delta t^{2} b_{2} \left(c_{2} \frac{\partial F}{\partial t} + a_{2,1} \frac{\partial F}{\partial y} F \right) (y(t_{0}), t_{0}) \end{split}$$

So, we must solve this system of equations:

$$b_1 + b_2 = 1$$
, $b_2 c_2 = \frac{1}{2}$, $b_2 a_{2,1} = \frac{1}{2}$.

One possible solution is: $b_1 = 0$, $b_2 = 1$, $c_2 = \frac{1}{2}$, $a_{2,1} = \frac{1}{2}$.

(Note: Another solution is: $b_1 = \frac{1}{2}$, $b_2 = \frac{1}{2}$, $c_2 = 1$, $a_{2,1} = 1$)

We get the result:

$$k_{1} = F(y(t_{0}), t_{0})$$

$$k_{2} = F\left(y(t_{0}) + \frac{\Delta t}{2}k_{1}, t_{0} + \frac{\Delta t}{2}\right)$$

$$y(t_{0} + \Delta t) = y(t_{0}) + \Delta t k_{2} = y(t_{0}) + \Delta t F\left(y(t_{0}) + \frac{\Delta t}{2}F(y(t_{0}), t_{0}), t_{0} + \frac{\Delta t}{2}\right).$$

Observation: Midpoint method is Runge-Kutta method of order 2.

Example: Runge-Kutta method of order 4:

$$k_{1} = F(y(t_{0}), t_{0})$$

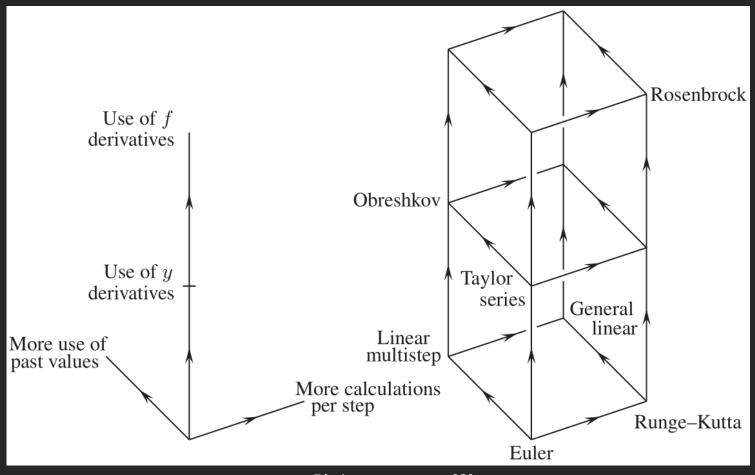
$$k_{2} = F\left(y(t_{0}) + \frac{k_{1}}{2}, t_{0} + \frac{\Delta t}{2}\right)$$

$$k_{3} = F\left(y(t_{0}) + \frac{k_{2}}{2}, t_{0} + \frac{\Delta t}{2}\right)$$

$$k_{4} = F(y(t_{0}) + k_{3}, t_{0} + \Delta t)$$

$$y(t_{0} + \Delta t) = y(t_{0}) + \Delta t \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right)$$

Schema of numerical methods



References

- [1] A. Witkin, D. Baraff; Differential Equation Basics; Physically Based Modeling: Principles and Practice, 1997
- [2] J.C.Butcher; Numerical methods for ordinary differential equations; 3rd edition, Wiley, 2016.
- [3] https://tutorial.math.lamar.edu/Classes/DE/DE.aspx