Collision detection

Marek Trtík PA199

Outline

Broad phase Sweep and prune algorithm

Narrow phase Gilbert-Johnson-Keerthi (GJK) algorithm

Caching collisions

Computing collision time

Broad phase

Broad phase

The goal is to quickly find **pairs** of **potentially colliding** rigid bodies.

- ▶ Used algorithm defines meaning of "potentially colliding". Examples:
	- When AABBs of the bodies are colliding.
	- When both bodies are in the same area of space.
- ▶ We can use space partitioning data structures we already know:
	- ▶ Octree, k-D tree, BSP
- Rigid bodies change their positions and orientations during simulation. => The data structure must be periodically updated.
	- Utilize time coherence of frames (positions of bodies do not change much between adjacent frames) to get an efficient update algorithm.

$$
V_{D} \n\begin{bmatrix}\ny^D \\
y^D \\
y^A \\
y^A \\
y^C\n\end{bmatrix}
$$
\nUse InsertSort\n
$$
\begin{bmatrix}\nL_x = [x_A, x_C, x^A, x_B, x^C, x^B, x_D, x^D] \\
L_y = [y_C, y_A, y^C, y_D, y_B, y^A, y^B, y^D] \\
V_x = \{(A, C), \{A, D\}, \{A, B\}, \{B, D\}\} \\
W_y = \{(A, C), \{A, D\}, \{A, B\}, \{B, D\}\} \\
W = W_x \cap W_y = \{\{A, C\}\}\n\end{bmatrix}
$$
\n
$$
W = W_x \cap W_y = \{\{A, C\}\}
$$

 $\bm{\cup}$

- The presented version is easy to understand and implement.
- But it **wastes time by recomputing from scratch** each time step.
- In practice, we use an improved version:
	- \blacktriangleright We start with the arrays L_{α} , $\alpha \in \{x, y, z\}$, and W from the **previous frame**.
	- \blacktriangleright We **incrementally update** each L_{α} and W for each **relocated** object A.

```
foreach axis \alpha \in \{x, y, z\} do:
    Update \alpha_A in L_\alpha by the new lower bound of A along the axis \alpha.
     while \exists \alpha_X^Y right before \alpha_A in L_\alpha s.t. \alpha_X^Y > \alpha_A do:
         Swap \alpha_A with \alpha_X^Y in L_\alpha.
          if X is None then lnsert \{A, Y\} to W.
                                                                                Moving \alpha_A"to the left"
```
Update α^A in L_α by the new upper bound of A along the axis α . while $\exists \alpha^Y_X$ right after α^A in L_α s.t. $\alpha^A > \alpha^Y_X$ do: Swap α^A with α^Y_X in L_α . if Y is None then lnsert $\{A, X\}$ to W . while $\exists \alpha_X^Y$ right after α_A in L_α s.t. $\alpha_A > \alpha_X^Y$ do: Swap α_A with α_X^Y in L_α . if X is None then **Erase** $\{A, Y\}$ from W . while $\exists \alpha_X^Y$ right before α^A in L_α s.t. $\alpha_X^Y > \alpha^A$ do: Swap α^A with α^Y_X in L_α . if Y is None then **Erase** $\{A, X\}$ from W . Moving α^A "to the right" Moving α_A "to the right" Moving α^A "to the left"

Possible memory representation of the lists L_{α} , $\alpha \in \{x, y, z\}$:

If "p" is a pointer to a "Link" of the list L_{α} , $\alpha \in \{0,1,2\}$ (i.e., $\{x, y, z\}$), then we can convert it to a pointer to AABB using the pointer arithmetic: $(AABB^*)(p - (\alpha + 3 * (int)p.lohi) * sizeof(link))$

Represent the set W as a dictionary of pairs of object IDs. Sort the pair s.t. the lower ID comes first and the other the second.

 Initialize the data structure to contain a single auxiliary AABB s.t: ▶ Values in the links are: $x_A = y_A = z_A = -\infty$ and $x^A = y^A = z^A = +\infty$. All 2*3 links are properly interconnected in the lists L_x, L_y, L_z . \blacktriangleright This auxiliary AABB avoids the "nullptr" check in the algorithm (loops).

Performance of the algorithm is sensitive to alignment of objects along coordinate axes:

 A relocation of an object leads to a lot of swaps thought the "cluster" in the array.

Narrow phase

-
-
-
- - -
		-
-
-
- - - -

Narrow phase

 \blacktriangleright The goal is for each pair of potentially colliding shapes to: **Decide** whether the shapes **really collide or not**. **Compute a finite model** of the (infinite) set of **all collision points**.

Stack of two boxes (top view)

 Example: Find finite and minimal number of points in H whose convex hull contains H .

 Requirement: The effect of collision forces computed at points of the model must be equal to collision forces computed at all points in H .

Gilbert-Johnson-Keerthi (GJK) algorithm

Decides whether two **convex** shapes have **empty intersection** or not.

 We can approximate a concave shape by a **set** of convex shapes. For the empty intersection we can obtain a pair of the **closest points**.

- We must first build a terminology:
	- Minkowski sum and difference
	- **Simplex**
	- Support function

GJK: Minkowski sum

Minkowski sum: $A + B = \{a + b; a \in A \land b \in B\}.$ How to draw Minkowski sum? Choose some points $\hat{a} \in \mathcal{A} \wedge \hat{b} \in \mathcal{B}$. Then, $\forall a \in \mathcal{A} \exists a' \text{ s.t. } a = \hat{a} + a'.$ Therefore, for each $a \in \mathcal{A} \wedge b \in \mathcal{B}$ $a + b = \widehat{a} + \widehat{b} + a' + b'$ So, we draw $A + B$ around $\widehat{a} + \widehat{b}$: \triangleright Draw B around $\widehat{a} + \widehat{b}$. \blacktriangleright Draw A around B 's perimeter. $A + B$ is the convex hull. \mathcal{A} \boldsymbol{a} a'

GJK: Minkowski difference

Minkowski difference: $A - B = A + (-B)$, where $-B = \{-b; b \in \mathcal{B}\}\$

 Lemma: The shortest distance between A and B is equal to the distance of $\mathcal{A}-\mathcal{B}$ to the origin. **Proof:** It is a length of the shortest $\widehat{\boldsymbol{a}} - \widehat{\boldsymbol{b}}$, s.t. $\widehat{a} \in \mathcal{A} \wedge \widehat{b} \in \mathcal{B}$. But $\widehat{a} - \widehat{b} \in \mathcal{A} - \mathcal{B}$.

Consequence: Shapes *A* and *B* collide if and only if $A - B$ contains the origin.

GJK: Minkowski difference

- **Lemma**: If shapes A and B are convex, then $A B$ is also convex. **Proof:** For each $u, v \in \mathcal{A} - \mathcal{B}$ there exist $a_u, a_v \in \mathcal{A}$ and $b_u, b_v \in \mathcal{B}$ s.t. $u = a_{\nu} - b_{\nu}$ and $v = a_{\nu} - b_{\nu}$. Then, for $t \in (0,1)$, we get $u + t(v - u) = (a_u - b_u) + t((a_v - b_v) - (a_u - b_u)) =$ $a_{11} - b_{11} + t a_{12} - t b_{12} - t a_{11} + t b_{11} =$ $a_{11} + t(a_{12} - a_{11}) - (b_{11} + t(b_{12} - b_{11})).$ A and B are convex => a_{ij} + $t(a_{ij} - a_{ij}) \in A$, b_{ij} + $t(b_{ij} - b_{ij}) \in B$ =>
	- $a_u + t(a_v a_u) (b_u + t(b_v b_u)) \in \mathcal{A} \mathcal{B} \Rightarrow \mathcal{A} \mathcal{B}$ is convex.
- **Consequence**: If the origin lies in the convex hull of points $a_1, ..., a_n$ \in $A - B$, then convex shapes A and B have non-empty intersection.

GJK: Simplex

A **simplex** is a convex hull of an affinely independent points.

GJK searches for a simplex s.t. origin lies inside or prove that no such simplex exists.

Note: In 2D case we only need point, line and triangle.

Given a shape A and a non-zero vector d , a support function $S_{\mathcal{A}}$ returns a point $S_{\mathcal{A}}(d) \in \mathcal{A}$ s.t. $S_{\mathcal{A}}(\boldsymbol{d}) \cdot \boldsymbol{d} = \max\{\boldsymbol{x} \cdot \boldsymbol{d}; \boldsymbol{x} \in \mathcal{A}\}.$

A shape A can be defined in a local system – **body/model space**.

Therefore, this must be reflected in the computation of $S_{\mathcal{A}}(d)$.

- \blacktriangleright When a convex shape A is defined in body space (R, x) , then we denote $R-A + x$ the corresponding convex shape in the world space. \blacktriangleright More precisely: $R\mathcal{A} + x = \{Rp' + x : p' \in \mathcal{A}\}.$
- **Lemma**: $S_{R,A+x}(d) = RS_{A}(R^{T}d) + x$, for each world-space vector $d \neq 0$. **Proof:** First, we show that $\forall p' \in \mathcal{A}$ the following equality (*) holds true $Rp' + x) \cdot d = (Rp') \cdot d + x \cdot d$ $= d^{\top}(Rp') + x \cdot d$ $\mathbf{u} = (\mathbf{d}^\top R)\mathbf{p}' + \mathbf{x}\cdot\mathbf{d}$ $\mathbf{r} = (R^{\mathsf{T}}\boldsymbol{d})^{\mathsf{T}}\boldsymbol{p}' + \boldsymbol{x}\cdot\boldsymbol{d}$ $= p' \cdot (R^{\top}d) + x \cdot d.$

Now, $S_{R,A+x}(d) \cdot d = \max\{p \cdot d; p \in R\mathcal{A} + x\}$ $\mathcal{L} = \max\{(Rp'+x)\cdot d; p'\in\mathcal{A}\}$ $= max\{p' \cdot (R^{\top}d) + x \cdot d; p' \in \mathcal{A}\}$ according to $(*)$ $\boldsymbol{p} = \max \{ \boldsymbol{p}' \cdot (R^\top \boldsymbol{d}) \; ; \boldsymbol{p}' \in \mathcal{A} \} + \boldsymbol{x} \cdot \boldsymbol{d} \}$ $S_{\mathcal{A}}(R^{\mathsf{T}}\boldsymbol{d})\cdot R^{\mathsf{T}}\boldsymbol{d} + \boldsymbol{x}\cdot \boldsymbol{d}$ $= (RS_{\mathcal{A}}(R^{\mathsf{T}}d) + x) \cdot d$ α according to $(*)$ Therefore, $S_{R,A+x}(\boldsymbol{d}) = RS_{\mathcal{A}}(R^{\top}\boldsymbol{d}) + x$.

GJK: Support function examples

 \blacktriangleright $\mathcal A$ is a **sphere** at the origin with the radius r : $S_{\mathcal{A}}(\boldsymbol{d})=r$ \boldsymbol{d} \boldsymbol{d}

 is an **axis aligned bounding box** (AABB) at the origin with sizes $2s_x$, $2s_y$, $2s_z$ along corresponding coordinate axes: $S_{\mathcal{A}}(\boldsymbol{d})= \big(\text{sgn}(\boldsymbol{d}_\chi)\, s_\chi, \text{sgn}(\boldsymbol{d}_\chi)\, s_\chi, \text{sgn}(\boldsymbol{d}_\chi)\, s_\chi$ ⊤ where sgn(a) = $\{$ -1 if $a < 0$ 1 otherwise

GJK: Support function examples

▶ *A* is a **cylinder** at the origin with the central axis aligned with the z coordinate axis, with the radius r and with the top and bottom base at z-coordinate h and -h, respectively:

$$
S_{\mathcal{A}}(\boldsymbol{d}) = \begin{cases} \left(\frac{r}{\sigma} \boldsymbol{d}_{x}, \frac{r}{\sigma} \boldsymbol{d}_{y}, \text{sgn}(\boldsymbol{d}_{z}) h\right)^{\top} & \text{if } \sigma > 0\\ (0, 0, \text{sgn}(\boldsymbol{d}_{z}) h)^{\top} & \text{otherwise} \end{cases}
$$

where $\sigma = \sqrt{\boldsymbol{d}_\mathcal{X}^2 + \boldsymbol{d}_\mathcal{Y}^2}$, and sgn(a) was defined earlier.

▶ *A* is any convex **polytope** (e.g., point, line, triangle, convex polygon, tetrahedron, box, ...) with vertices $V = \{v_1, ..., v_n\}$: $S_{\mathcal{A}}(\boldsymbol{d}) = \boldsymbol{v}_k$ s.t. $\boldsymbol{v}_k \cdot \boldsymbol{d} = \max\{\boldsymbol{v}_i \cdot \boldsymbol{d} : \boldsymbol{v}_i \in V\}$

Lemma:
$$
S_{A-B}(d) = S_{A}(d) - S_{B}(-d)
$$
.
\n**Proof**: $S_{A-B}(d) \cdot d = \max\{(a-b) \cdot d; a \in A \land b \in B\}$
\n
$$
= \max\{a \cdot d; a \in A\} - \min\{b \cdot d; b \in B\}
$$
\n
$$
= S_{A}(d) \cdot d + \max\{b \cdot (-d); b \in B\}
$$
\n
$$
= S_{A}(d) \cdot d + S_{B}(-d) \cdot (-d)
$$
\n
$$
= (S_{A}(d) - S_{B}(-d)) \cdot d.
$$

 \triangleright We therefore do **not** have to construct $A - B$ and S_{A-B} . We work with the given shapes A and B and their support functions.

GJK: The algorithm – intuition (2D case)

 $\mathcal{S=}\{\mathbf{s}_0,\mathbf{s}_1,\mathbf{s}_2\}$ $\mathbf{s}_1 = \mathbf{S}_{A-B}(\mathbf{d}_1) = \mathbf{S}_{A}(\mathbf{d}_1) - \mathbf{S}_{B}(-\mathbf{d}_1) = \mathbf{s}_1 - \mathbf{s}_1$ s_0 , s_0 – closest points from the previous round (or random) $s_2 = S_{A-B}(d_2) = S_A(d_2) - S_B(-d_2) = s_2 - s_2$ $s_0 = s_0 - s_0$ $\mathbf{s}_1 \cdot \mathbf{d}_1 \geq 0 \Rightarrow$ continue $s_3 = S_{A-B}(d_3) = S_A(d_3) - S_B(-d_3) = s_3 - s_3$ $s_2 \cdot d_2 \geq 0 \Rightarrow$ continue $s_3 \cdot d_3 < 0 \Rightarrow$ NO INTERSECTION!

GJK: The algorithm – intuition (2D case)

- Since A and B have empty intersection, we can compute a pair of closest points:
	- First, we find the closest point X of the simplex $S = \{s_1, s_2\}$ to the origin. That is $X = s_1 + t(s_2 - s_1)$ for some $t \in (0,1)$ s.t. $|X - 0|^2 = |s_1 + t(s_2 - s_1)|^2$ is minimal. So, solve the equation: \boldsymbol{d} $2=0$

$$
\frac{\partial}{\partial t} |\mathbf{s}_1 + t(\mathbf{s}_2 - \mathbf{s}_1)|^2 = 0
$$
\n
$$
\frac{d}{dt} (\mathbf{s}_1 \cdot \mathbf{s}_1 + t2\mathbf{s}_1 \cdot (\mathbf{s}_2 - \mathbf{s}_1) + t^2(\mathbf{s}_2 - \mathbf{s}_1)^2) = 0
$$
\n
$$
2\mathbf{s}_1 \cdot (\mathbf{s}_2 - \mathbf{s}_1) + 2t(\mathbf{s}_2 - \mathbf{s}_1)^2 = 0
$$
\n
$$
t = -\frac{\mathbf{s}_1 \cdot (\mathbf{s}_2 - \mathbf{s}_1)}{(\mathbf{s}_2 - \mathbf{s}_1)^2}
$$
\nAlso clip t to (0,1).

GJK: The algorithm – intuition (2D case)

 \blacktriangleright Then, find the corresponding points in the shapes A and B.

$$
s_{1} + t(s_{2} - s_{1}) = (s_{1} - s_{1}) + t((s_{2} - s_{2}) - (s_{1} - s_{1}))
$$

= $s_{1} + t(s_{2} - s_{1}) - (s_{1} + t(s_{2} - s_{1}))$
 $\in \mathcal{A}$

GJK: The algorithm

Choose some $p \in A - B$. // Usually, p comes from the previous frame. $S = \emptyset$ // We start with the empty simplex. $s = S_{A-R}(-p)$ // NOTE: Our direction vector **d** to the origin is just $-p$. while $|\boldsymbol{p}|^2 - \boldsymbol{p} \cdot \boldsymbol{s} > \epsilon^2$ do: // Proving termination condition: see [4]. // p is still far from the closest point of $A - B$ to the origin. $\boldsymbol{p} =$ closest_to_origin (convex_hull($S \cup \{s\}$)) $S =$ smallest $X \subseteq S \cup \{s\}$ s.t. $p \in$ convex_hull(X) // Reduce the simplex. $\mathbf{s} = S_{\mathcal{A} - \mathcal{B}}(-\mathbf{p})$ return $a \in \mathcal{A}, b \in \mathcal{B}$ s.t. $p = a - b$. $|/|p|$ is the closest distance. Point, line, triangle, or tetrahedron. Can be computed quickly for shapes

Efficiency of the PGS algorithm for a constraint system depends on the initial value λ^0 .

It is likely that λ computed for a collision constraint at current frame would be "almost valid" for the next frame (if the collision persists).

 \blacktriangleright Therefore, caching λ values for collision (and other types of) constraints amongst frames can bring considerable speed boost.

How to **match** collisions computed in **different frames**?

Inere are several possibilities:

Distance between collision points in **world space**:

Correct mapping: $a \rightarrow c, b \rightarrow d$ Word distance mapping: $b \rightarrow c$ (wrong), $a \rightarrow ?$, $? \rightarrow d$

Distance between collision points in **body space**:

 Identify collisions by **geometrical properties** of collision shapes: **enum** GTYPE { VERTEX, EDGE, FACE };

struct CollisionID {

};

int body_index_1; $\hspace{0.5cm}$ // The index of \mathcal{R}_i : *i* GTYPE feature_type_1; // The type of colliding geometry in R_i **int** feature_index_1; \qquad // Index of the colliding geometry in \mathcal{R}_i **int** body_index_2; // The index of \mathcal{R}_i : j GTYPE feature_type_2; // The type of colliding geometry in $\mathcal{R}_{i,j}$ **int** feature_index_2; \blacksquare // Index of the colliding geometry in \mathcal{R}_i

Define also **comparison** and **hashing** of CollisionID instances.

We get precise mapping: $id(a) = id(c) \Rightarrow a \rightarrow c$ $id(b) = id(d) \Rightarrow b \rightarrow d$

Recommended approach

 \blacktriangleright The cache should be a map from CollisionID instance to values λ : **using** collision_cache = std::unordered_map<CollisionID,**float**>;

And how to use the cache?

Before solving the constraint system initialize λ^0 s.t.

- \blacktriangleright For each computed collision c and the corresponding element $\pmb{\lambda}^0_i$:
	- \blacktriangleright Build the CollisionID instance id from c .
	- If id is present in the cache, then set λ_i^0 to the value λ in the cache.
	- \blacktriangleright Otherwise, set λ_i^0 to 0.
- \triangleright Once new solution λ is computed updated the cache as follows:
	- Clear the cache.
	- For each collision c and the corresponding computed value λ :
		- \blacktriangleright Build the CollisionID instance id from c .
		- Insert the mapping $id \rightarrow \lambda$ to the cache.

Computing collision time

Tunnelling and penetration

Dealing with tunnelling and penetration

- \triangleright The simplest approach is to **subdivide** the **game time step** Δt of into several small **internal time steps**.
- For broad phase:
	- ▶ Approximate collision shapes of bodies by "moving spheres":

We move all bodies in $\overrightarrow{\Delta t v}$ = each internal time step.

- Use the **adaptive time step**:
	- For each pair of potentially colliding shapes compute the nearest collision time.
	- Move the bodies only to the minimum of all nearest collision times.

Computing collision time

▶ There are 4D collision algorithms – they consider translations and rotations of tested objects.

References

[1] *Erin Catto;* Iterative Dynamics with Temporal Coherence; Crystal Dynamics, Menlo Park, California, 2005 **[2]** E. G. Gilbert, D. W. Johnson and S. S. Keerthi; A fast procedure for computing the distance between complex objects in threedimensional space; Journal on Robotics and Automation, vol. 4, no. 2, pp. 193-203, April 1988 **[3]** *G. Bergen*; A Fast and Robust GJK Implementation for Collision Detection of Convex Objects; Eindhoven University of Technology. 1999 **[4]** G.v.d. Bergen; Collision detection in interactive 3D environments; ISBN: 1-55860-801-X, Elsevier, 2004.