Collision detection

Marek Trtik
PA199

Outline

» Broad phase
» Sweep and prune algorithm

» Narrow phase
» Gilbert-Johnson-Keerthi (GJK) algorithm

» Caching collisions

» Computing collision time

Broad phase

Broad phase

» The goalis to quickly find pairs of potentially colliding rigid bodies.
» Used algorithm defines meaning of “potentially colliding”. Examples:

» When AABBs of the bodies are colliding.
» When both bodies are in the same area of space.

» We can use space partitioning data structures we already know:
» Octree, k-D free, BSP
» Rigid bodies change their positions and orientations during simulation.

=> The data structure must be periodically updated.

» Utilize fime coherence of frames (positions of bodies do not change
much between adjacent frames) to get an efficient update algorithm.

Sweep and prune algorithm

L, =1[xy4 xc, x4, x5, x¢, xB, v, x"]

Ly =1yc ya. " v, yg. y4 y5. 0"]
® 6 6 & ¢ o o o

Wy = {{A,C}{B,C}}
Wy = {{A, C},{A, "},{A, B}, {B, '} }
W =W, nW, = {{A,C})

Use InsertSort <

Sweep and prune algorithm

» The presented version is easy to understand and implement.
» But it wastes time by recomputing W from scratch each time step.
» In practice, we use an improved version:

» We start with the arrays L,, a € {x,y,z}, and W from the previous frame.
» We incrementally update each L, and W for each relocated object A.

foreach axis a € {x,y, z} do:
Update a4 in L, by the new lower bound of A along the axis «.
while 3aj, right before a, in Ly s.t. ay, > a, do:)
Swap a, with af in L,. _ Moving a,
if X is None then Insert {4,Y} to W. ‘o the left”

Sweep and prune algorithm

Update a4 in L, by the new upper bound of 4 along the axis «a.

\

while 3aj right after a? in L, s.t. a? > a5 do: .)
Swap a? with aj, in L. > “{\A?gmg ah’r”
P |
fY is None then Insert {4, X} fo W.) > ST

while 3af right after @, in Ly s.t. ay > af do: o
S.WCI.p a, With ay In L. > “to the right”
if X Is None then Erase {4,Y} from W.)

while 3aj; right before a4 in L, s.t. a) > a4 do: \ ,)
S A with & in L - Moving a
WOp a“ Wi (04% a- u.l.O .I.he |eﬂ.n
if Y is None then Erase {4, X} from W.)

Sweep and prune algorithm

» Possible memory representation of the lists L, a € {x,y, z}:

struct Link {

Link[O] [*]

AABB

Link *next, *prev;
float coord;

Points fo some

link in the <
previous AABB.

A

char lohi : 1;

[T lohi==0, then
“Ycoord” is ay

Represents
either a, or a?.

Ya Iﬂ Ly

A Iﬂ LZ

and a4 otherwise.

using AABB = Link[2][3];

Link[1]%]

e
y“inlL,

z4in L,

\ 4

Sweep and prune algorithm

» If “p” Is a pointer to a “Link” of the list L, a € {0,1,2} (i.e., {x,y, z}), then
we can convert it to a pointer 1o AABB using the pointer arithmetic:

(AABB*)(p — * sizeof(Link))

» Represent the set W as a dictionary of pairs of object IDs.
» Sort the pair s.t. the lower ID comes first and the other the second.

» Inifialize the data structure to contain a single auxiliary AABB s.t:
» Values in the links are: x4, = y, = z4 = —0 and x4 = y4 = z4 = +oo.
» All 2*3 links are properly interconnected in the lists Ly, Ly, L,.
» This auxiliary AABB avoids the “nullptr’ check in the algorithm (loops).

Sweep and prune algorithm

» Performance of the algorithm is sensitive to alignment of objects
along coordinate axes:

Ay

“Cluster” of bounds
y. and y* in L, due fo
alignment of objects
along the x axis.

» Arelocation of an object leads to a lot of swaps thought the “cluster”
in the array.

10

Narrow phase

11

Narrow phase

» The goalis for each pair of potentially colliding shapes to:
» Decide whether the shapes really collide or not.
» Compute a finite model of the (infinite) set of Stack of two boxes

o - - top view
all collision points. (top view)

D

» Example: Find finite and minimal number of points A\ 7 |c
in H whose convex hull contains H. g

» Requirement: The effect of collision forces computed at points of the
model must be equal to collision forces computed at all points in H.

12

Gilbert-Johnson-Keerthi (GJK) algorithm

» Decides whether two convex shapes have empty intersection or not.

Mo -~

Convex shapes Concave shapes

—

» We can approximate a concave shape by a set of convex shapes.
» For the empty intersection we can obtain a pair of the closest points.

» We must first build a terminology:
» Minkowski sum and difference
» Simplex
» Support function

13

GJK: Minkowskil sum

» Minkowski sum: A+ B ={a+ b;a€ AAD € B}.

» How to draw Minkowski sum?@
» Choose some pointsa € A A b € B.
» Then,Vae A3da' st.a=a+a'.
» Therefore, foreachae AADb e B A
a+b=da+b+a +b i

7
/

4
4

» So, we draw A + B around @ + b:

» Draow B around @ + b.
» Draw A around B's perimeter.

Q)

/
AN
+
Vo)

U
U4

i
'P*
‘4

= ———
I V4
-Iy-'-:l'
/'I U
s =
V4
7'
| |
3

>

-

» A+ Bisthe convex hull.

14

GJK: Minkowski difference

» Minkowski difference: A — B = A + (—B),
where —B = {—b; b € B}

» Lemma: The shortest distance between
A and B is equal to the distance of
A — B to the origin.
Proof: It is a length of the shortest @ — b,
st.aceANbeB.Buta—beA—-B.

» Consequence: Shapes A and B collide
It and only if A — B contains the origin.

15

GJK: Minkowski difference

» Lemma: If shapes A and B are convex, then A — B is also convex.
Proof. For each u,v € A — B there exist a,,a, € A and b, b, € B s.1.
u=a,—b,andv=a,—b,. Then, fort € (0,1), we get
u+t(w — uw) = (a, — by +t((a, — b,) — (a, — b)) =
a,—b, +ta,—tb,—ta, +th, =
a, + t(a, — a,) — (b, +t(b, — by)).
A and B are convex=>a, + t(a, —a,) € A, b, + t(b, — b,) € B=>
a, +t(a, —a,) — (b, +t(b, — b)) € A—B=>A— B is convex.

» Consequence: If the origin lies in the convex hull of points a4, ..., a,, €
A — B, then convex shapes A and B have non-empty intersection.

16

GJK: Simplex

» A simplex is a convex hull of an affinely independent points.

e

point ine triangle tetfrahedron

» GJK searches for a simplex s.t. origin lies inside or prove that no such
simplex exists.

» Note: In 2D case we only need point, line and friangle.

17

GJK: Support function

» Given a shape A and a non-zero
vector d, a support function
S 4 returns a point S 4(d) € A s.1.
Sq(d) -d =max{x-d;x € A}.

18

GJK: Support function

» A shape A can be defined in a local system — body/model space.

.~ Rotation matrix

Translation
vector -

p=Rp +x
p'=R"(p—x)

Z A

X World space

» Therefore, this must be reflected in the computation of S 4(d).
19

GJK: Support function

» When a convex shape A is defined in body space (R, x), then we
denote RA + x the corresponding convex shape in the world space.

» More precisely: RA+x ={Rp' + x;p’ € A}.
» Lemma: S 4.,.(d) = RS4(R"d) + x, for each world-space vectord # 0.
Proof: First, we show that vp' € A the following equality (*) holds true
(Rp"+x)-d=Rp')-d+x-d
=d"(Rp) +x-d
=(d"R)p' +x-d
=R'd)"p +x-d
=p'-(R'd) +x - d.

20

GJK: Support function

Now, Sp 44+.(d) -d =max{p -d;p € RA + x}
= max{(Rp' +x) - d;p’ € A}

= max{p'- (R'd) + x-d;p’' € A} according fo (¥

=max{p' - (R'd);p' € A} +x-d
=S,(R'd)-R'd+x-d
= (RS4(R'd) +x) -d

Therefore, Sp 44.(d) = RS 4(R'd) + x.

according to (*)

GJK: Support function examples

» A is asphere at the origin with the radius r:

d
S,(d) =r—

» A is an axis aligned bounding box (AABB) at the origin with sizes
25y, 28y, 25, along corresponding coordinate axes:

S (d) = (sgn(dy) s, sgn(d,) s, sgn(d,) s,)"

—1 ifa<0

WINENS sgn(e) = { 1 otherwise

22

GJK: Support function examples

» A is acylinder at the

origin with the central axis aligned with the z

coordinate axis, with the radius r and with the top and bottom base
at z-coordinate h and —h, respectively:

((zd zd sgn(d)h)T ifo >0
o Vg YV “

where o = \/d,zc +d2,

» A IS any convex polytope (e.g., point, line, tfriangle, convex polygon,

\ (0,0,sgn(d,) h) " otherwise

and sgn(a) was defined earlier.

tetrahedron, box, ...) with vertices V = {v,, ..., v, }
Sq4d)=v, st v,-d=max{v;-d;v; €V}

23

GJK: Support function

» Lemma: S ,;_5(d) —Sﬂ(d) Sz(—d).

Proof: S ;,_z(d) -d = max{(a—b) -d;a € AANb € B}
=max{a-d;a € A} — {b-d;b € B}
=S4(d)-d {b-(d);b€EB}
=S4(d) -d + Sg(—d) - (—d)
= (Sq(d) — Sp(—=ad)) - d.

» We therefore do not have to construct A — B and S 4_5. We work with
the given shapes A and B and their support functions.

24

GJK: The algorithm — intuition (2D case)

S0, Sp — Closest points from the
previous round (or random)

S ={s0,51,52}

So = So — So

s; = Sq-p(dy) = S,4(dy) — Sp(—dy) =51 — 51
s, -d; = 0 => continue

Sy = Su-_p(dy) = Su(dy) — Sp(—dy) =s; — s
s, -d, = 0 => confinue

s3 = Sq-p(d3) = S4(d3) — Sp(—d3) =s3 —s3
S;-dsy 0=>

25

GJK: The algorithm — intuition (2

D case)

» Since A and B have empty intersection, we can compute a pair of closest

poinfts:

» First, we find the closest point X of the simplex S = {s;,s,} to the origin. That is
X =5, +t(s, —s,) forsome t € (0,1)s.t. |[X — 0]? = |s; + t(s, — s1)|? is minimall.

So, solve the equation:
d

E|S1 +t(s; —s)|*=0
%(51 -8y +t28; - (S, —51) + t%(s; —51)%) =0
2s; - (s; —sy) + 2t(s, —s1)? =0
s; - (s2 —s1)
(s, —51)?

t=—

Also clip t to (0,1).

26

GJK: The algorithm — intuition (2D case)

» Then, find the corresponding points in the shapes A and B.
s; +t(s; —s1) = (51 —s1) + t((sz —sz2) — (51 — 51))
= S$1 i t(Sz — Sl) — (Sl + t(Sz — Sl))
N J N J

(S € B

27

GJK: The algorithm

Choose some p € A — B. // Usudlly, p comes from the previous frame.
S =@ // We start with the empty simplex.
s =S, g(—p) // NOTE: Our direction vector d to the origin is just —p.
while [p|? —p - s > €2 do: // Proving termination condition: see [4].

// p is still far from the closest point of A — B to the origin.

e N Point, line, tri le,
p = closest_to_orlgerconvex_hull(S U {s})l) Og?Te}?ﬁhergﬂgﬁ_e

™~ Can be computed quickly for shapes

G smallest X € S U {s} s.t. p € convex_hull(X) // Reduce the simplex.

s = Syu-p(=p)
refurn|ja € A,b € Bs.t.p =a — b.|// |p| is the closest distance.

28

Caching collisions

29

Caching collisions

» Efficiency of the PGS algorithm for a constraint system depends on
the initial value A°.

» Itis likely that A computed for a collision constraint at current frame
would be “almost valid” for the next frame (if the collision persists).

» Therefore, caching A values for collision (and other types of)
constraints amongst frames can bring considerable speed boost.

» How to match collisions computed in different frames<

30

Caching collisions

» There are several possibilities:
» Distance between collision points in world space:

t + At t ,
Correct mapping:
a—-c,b-d
T Word distance mapping:
é —0 b - c (wrong),a—>?,7-d
d b c a
» Distance between collision points in body space:
t + At t t + At t
Precise in

L — space of —_— in space

the box of ground
- —_ - Oy =9 > J
d b c a d b c a

.......

Caching collisions

» |dentify collisions by geometrical properties of collision shapes:
enum GIYPE { VERTEX, EDGE, FACE };
struct CollisionID {

int body_index_1; // The index of R;: i
GTYPE feature_type_1; // The type of colliding geometry in R;
int feature_index_1; // Index of the colliding geometry in R;
int body_index_2; // The index of R;: j
GTYPE feature_type_2; // The type of colliding geometry in R;
int feature_index_2; // Index of the colliding geometry in R;

|3

Define also comparison and hashing of CollisionID instances.

32

Caching collisions

t + At t : :
We get precise mapping: Recommended
= @) = ke =@~ ¢ approach
- id(b) = id(d) = b - d oF
PY —e
d b c a

» The cache should be a map from CollisionID instance to values A:
using collision_cache = std::unordered_map<Collision|D float>;

» And how to use the cache?¢

33

Caching collisions

» Before solving the constraint system initialize A° s.1.
» For each computed collision ¢ and the corresponding element 4?:
» Build the CollisionID instance id from c.
» If id is present in the cache, then set A7 to the value 1 in the cache.
» Otherwise, set 4} to 0.
» Once new solution 4 iIs computed updated the cache as follows:
» Clear the cache.

» For each collision ¢ and the corresponding computed value A:
» Build the CollisionID instance id from c.
» Insert the mapping id - A o the cache.

34

Computing collision time

35

Tunnelling and peneftration

Tunnelling Penetration

36

Dealing with funnelling and penetfration

» The simplest approach is to subdivide the game time step At of into

several small internal time steps. e
» For broad phase: AN S T
» Approximate collision shapes of bodies % '_"_';._.,:;':’_";;,.;:’,’:
by “moving spheres™: We move all bodies in

Tl each internal time step.

3
.
e
.
.
e
.
0000
‘‘‘‘‘
''''

» Use the adaptive time step:

» For each pair of potentially colliding shapes compute the nearest
collision time.

» Move the bodies only to the minimum of all nearest collision times.

37

Computing collision fime

3
» Binary search for t € (t,t + At) e

(=
(o &

© Start position

» There are 4D collision algorithms — they consider translations and
rotations of tested objects.

38

References

[1] Erin Catfo; lterative Dynamics with Temporal Coherence; Crystal
Dynamics, Menlo Park, California, 2005

[2] E. G. Gilbert, D. W. Johnson and S. S. Keerthi; A fast procedure for
computing the distance between complex objects in three-
dimensional space; Journal on Robotics and Automation, vol. 4, no. 2,
pp. 193-203, April 1988

[3] G. Bergen; A Fast and Robust GJK Implementation for Collision
Detection of Convex Objects; Eindhoven University of Technology. 1999
[4] G.v.d. Bergen; Collision detection in inferactive 3D environments;
ISBN: 1-65860-801-X, Elsevier, 2004.

39

	Slide 1: Collision detection
	Slide 2: Outline
	Slide 3: Broad phase
	Slide 4: Broad phase
	Slide 5: Sweep and prune algorithm
	Slide 6: Sweep and prune algorithm
	Slide 7: Sweep and prune algorithm
	Slide 8: Sweep and prune algorithm
	Slide 9: Sweep and prune algorithm
	Slide 10: Sweep and prune algorithm
	Slide 11: Narrow phase
	Slide 12: Narrow phase
	Slide 13: Gilbert-Johnson-Keerthi (GJK) algorithm
	Slide 14: GJK: Minkowski sum
	Slide 15: GJK: Minkowski difference
	Slide 16: GJK: Minkowski difference
	Slide 17: GJK: Simplex
	Slide 18: GJK: Support function
	Slide 19: GJK: Support function
	Slide 20: GJK: Support function
	Slide 21: GJK: Support function
	Slide 22: GJK: Support function examples
	Slide 23: GJK: Support function examples
	Slide 24: GJK: Support function
	Slide 25: GJK: The algorithm – intuition (2D case)
	Slide 26: GJK: The algorithm – intuition (2D case)
	Slide 27: GJK: The algorithm – intuition (2D case)
	Slide 28: GJK: The algorithm
	Slide 29: Caching collisions
	Slide 30: Caching collisions
	Slide 31: Caching collisions
	Slide 32: Caching collisions
	Slide 33: Caching collisions
	Slide 34: Caching collisions
	Slide 35: Computing collision time
	Slide 36: Tunnelling and penetration
	Slide 37: Dealing with tunnelling and penetration
	Slide 38: Computing collision time
	Slide 39: References

