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 Broad phase 
 Sweep and prune algorithm 

 

 Narrow phase 
 Gilbert-Johnson-Keerthi (GJK) algorithm 

 

 Caching collisions 

 

 Computing collision time 

Outline 
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Broad phase 
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 The goal is to quickly find pairs of potentially colliding rigid bodies. 

 Used algorithm defines meaning of “potentially colliding”. Examples: 

When AABBs of the bodies are colliding. 

When both bodies are in the same area of space. 

 We can use space partitioning data structures we already know: 

 Octree, k-D tree, BSP 

 Rigid bodies change their positions and orientations during simulation. 

 => The data structure must be periodically updated. 

 Utilize time coherence of frames (positions of bodies do not change 

much between adjacent frames) to get an efficient update algorithm. 

Broad phase 
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Use InsertSort 

Sweep and prune algorithm 
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Sweep and prune algorithm 
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Sweep and prune algorithm 
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Sweep and prune algorithm 

next 

prev 

Link[0][*] 
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Points to some 

“red” link in the 

previous AABB. 
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Sweep and prune algorithm 
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 Performance of the algorithm is sensitive to alignment of objects 

along coordinate axes: 

 

 

 

 

 

 

 A relocation of an object leads to a lot of swaps thought the “cluster” 

in the array. 

 

Sweep and prune algorithm 
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Narrow phase 
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Narrow phase 

Stack of two boxes 

(top view) 
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 Decides whether two convex shapes have empty intersection or not. 
 
 
 
 
    Convex shapes             Concave shapes 
 
We can approximate a concave shape by a set of convex shapes. 
 For the empty intersection we can obtain a pair of the closest points. 

 
We must first build a terminology: 
Minkowski sum and difference 
 Simplex 
 Support function 

Gilbert-Johnson-Keerthi (GJK) algorithm 
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GJK: Minkowski sum 
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GJK: Minkowski difference 
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GJK: Minkowski difference 
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 A simplex is a convex hull of an affinely independent points. 
 

 

 

 

  point             line                   triangle                  tetrahedron 

 

GJK searches for a simplex s.t. origin lies inside or prove that no such 

simplex exists. 

 

 Note: In 2D case we only need point, line and triangle. 

GJK: Simplex 
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GJK: Support function 
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GJK: Support function 

Body space 

World space 

Rotation matrix 

Translation 

vector 
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GJK: Support function 
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GJK: Support function 
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GJK: Support function examples 
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GJK: Support function examples 
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GJK: Support function 
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GJK: The algorithm – intuition (2D case) 
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GJK: The algorithm – intuition (2D case) 
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GJK: The algorithm – intuition (2D case) 
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GJK: The algorithm 

Point, line, triangle, 

or tetrahedron. 

Can be computed quickly for shapes 
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Caching collisions 
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Caching collisions 
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 There are several possibilities: 

 Distance between collision points in world space: 

 

 

 

 

 Distance between collision points in body space: 

 

Caching collisions 

Imprecise. 

Precise in 

space of 

the box 

Imprecise 

in space 

of ground 
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Caching collisions 
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Caching collisions 

Recommended 

approach 
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Caching collisions 
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Computing collision time  
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Tunnelling and penetration 

Penetration Tunnelling 
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Dealing with tunnelling and penetration 

We move all bodies in 

each internal time step. 
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Computing collision time 

(2) Start position  (3) (1)(1)  
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