#### **Collision detection**

Marek Trtík PA199

### Outline

Broad phase
 Sweep and prune algorithm

Narrow phase
 Gilbert-Johnson-Keerthi (GJK) algorithm

Caching collisions

Computing collision time

### Broad phase

#### Broad phase

> The goal is to quickly find **pairs** of **potentially colliding** rigid bodies.

- ▶ Used algorithm defines meaning of "potentially colliding". Examples:
  - ▶ When AABBs of the bodies are colliding.
  - ▶ When both bodies are in the same area of space.
- ▶ We can use space partitioning data structures we already know:
  - ▶ Octree, k-D tree, BSP
- Rigid bodies change their positions and orientations during simulation.
  - => The data structure must be periodically updated.
  - Utilize time coherence of frames (positions of bodies do not change much between adjacent frames) to get an efficient update algorithm.

#### Sweep and prune algorithm $x_A x_C x^A x_B x^C x^B x_D x^D$ Use InsertSort $y_C y_A y^C y_D y_B y^A y^B$ **∢** y<sup>D</sup>► $v^D$ В AC BC D AD AB **B D** $\{\mathbf{A} \ \mathbf{C}\}$ A A C Уc $x^D$ $x_A$ $x_B$ $\chi^A$ $x_{\rm D}$ $\chi_{C}$

The presented version is easy to understand and implement.
 But it wastes time by recomputing W from service heach time step.
 In practice, we use an improved version:
 We start with the analys L<sub>0</sub>, a E (c, y, z), and W from the previous fram.

#### foreach do

- Update  $\alpha_A$  in  $L_{\alpha}$  by the new lower bound of A along the axis  $\alpha$ .
- while do
  - if is None then

Moving a<sub>A</sub> "--o--ne e<sup>---</sup>"

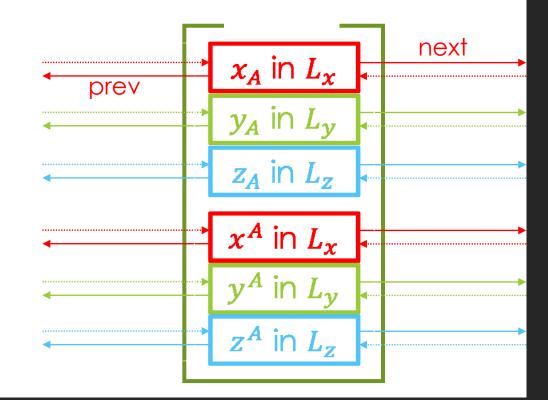
while do if is None then while do is None then if while do is None then if

Possible memory representation of the lists  $L_{\alpha}$ ,  $\alpha \in \{x, y, z\}$ :

struct float "red" char

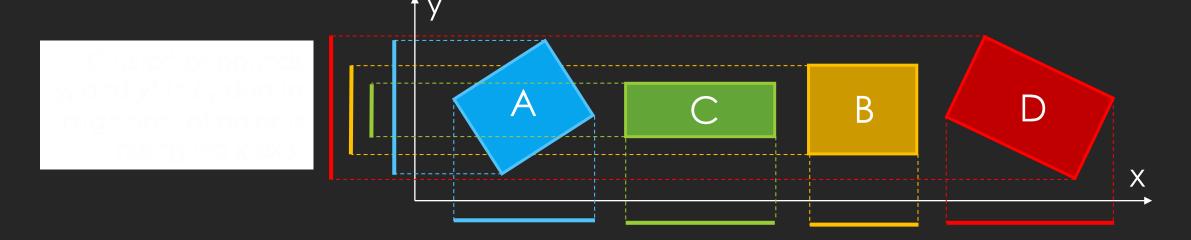
> Represent either  $\alpha_{\lambda}$  on

using AAR - Link 2013



- ( $\alpha$  + 3 \* (int)p.lohi) sizeof
- Represent the set W as a dictionary of pairs of object IDs.
   Sort the pairs to the lower ID comes first and the other the second.
- Initialize the data structure to contain a single auxiliary AABB s.t. Values in the links are:  $y_4 = y_4 = z_4 = -\infty$  and  $x^4 = y^4 = z^4 = +\infty$ .
  - $\blacktriangleright$  All 2°3 links are properly interconnected in the lists  $L_{x}, L_{y}, L_{z}$ .
  - This auditory AABB avoids the "nullptr" checkin the algorithm (loops)

Performance of the algorithm is sensitive to alignment of objects along coordinate axes:



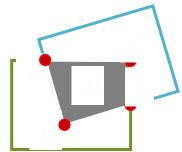
A relocation of an object leads to a lot of swaps thought the "cluster" in the array.

#### Narrow phase

### Narrow phase

The goal is for each pair of potentially colliding shapes to:
Decide whether the shapes really collide or not.
Compute a finite model of the (infinite) set of all collision points.

Example: Find finite and minimal number of points in 32 whose convex hull contains 32.



 Requirement: The effect of collision forces computed at points of the model must be equal to collision forces computed at all points in H.

#### Gilbert-Johnson-Keerthi (GJK) algorithm

Decides whether two convex shapes have empty intersection or not.

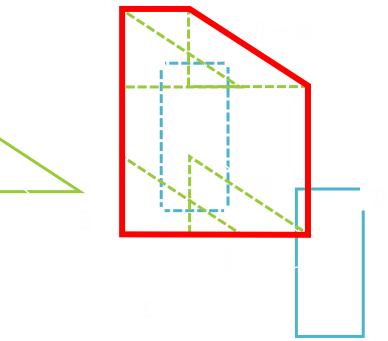


We can approximate a concave shape by a set of convex shapes.
 For the empty intersection we can obtain a pair of the closest points.

- We must first build a terminology:
  - Minkowski sum and difference
  - Simplex
  - Support function

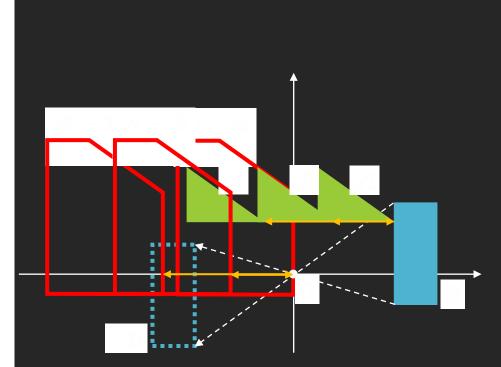
## GJK: Minkowski sum

Militikowski sum over 18 - 18 - 18, a. C. A A A C. B.
Minicowski sum 8
Choose som operints is e. A A B e. 8.
Then, Marie A Baal sch are B - at.
There the a Baal sch are B - at.
There the a Baal sch are B.
There the a Baal sch are B.
There the a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.
There the are B - at a Baal sch are B.



### GJK: Minkowski difference

- Minkowski difference:  $\mathcal{A} \mathcal{B} = \mathcal{A} + (-\mathcal{B})$ , where  $-\mathcal{B} = \{-b; b \in \mathcal{B}\}$
- Lemma: The shortest distance between  $\mathcal{A}$  and  $\mathcal{B}$  is equal to the distance of  $\mathcal{A} \mathcal{B}$  to the origin. Proof: It is a length of the shortest  $\hat{a} - \hat{b}$ , s.t.  $\hat{a} \in \mathcal{A} \wedge \hat{b} \in \mathcal{B}$ . But  $\hat{a} - \hat{b} \in \mathcal{A} - \mathcal{B}$ .
- Consequence: Shapes A and B collide frand only if A – B contains the origin.

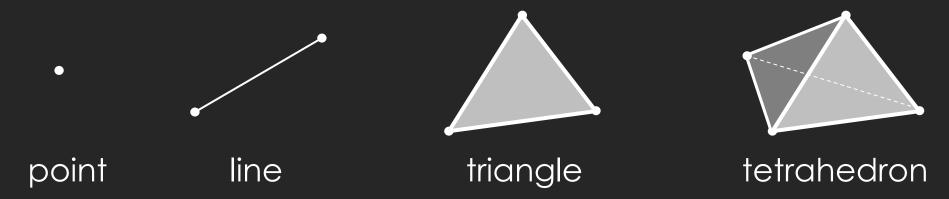


## GJK: Minkowski difference

- Lemma: If shapes 4 and 3 are convex. then A = 3 is also convex. Free: For each  $u_{i}, v_{i} \in A = 3$  there exist  $a_{i}, a_{i} \in A$  and  $b_{i}, b_{i} \in B$  s.t.  $u = a_{i} - b_{i}$  and  $v = a_{i} - b_{i}$ . Then, for  $t \in (0,1)$ , we get  $u_{i} + t(v - u) = (a_{i} - b_{i}) + t((a_{i} - b_{i}) - (a_{i} - b_{i})) =$   $a_{i} - b_{i} + ta_{i} - tb_{i} - ta_{i} + tb_{i} =$   $a_{i} - b_{i} + ta_{i} - tb_{i} - ta_{i} + tb_{i} =$ 
  - **<=** 8.3 (*gd = gd*) tet *gd (bab (gd = gd*)) tet *gd <= xet neoderno 8.5 bino 6. xet neoderno 8.6 bab (gd = bab (gd = gd)) tet <i>gd**gd***) tet** *gd***<b>3** *gd gd (gd = gd = for the gd for the comparent of the set of the s*

## GJK: Simplex

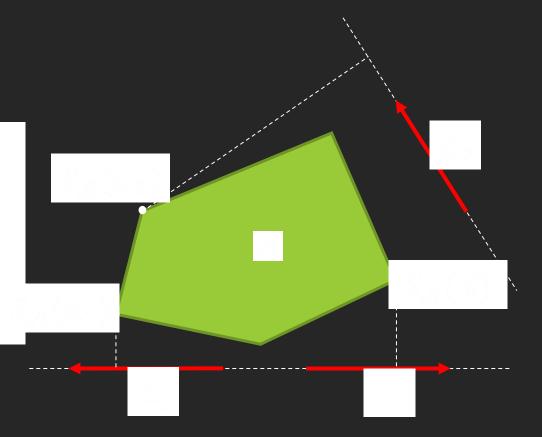
> A **simplex** is a convex hull of an affinely independent points.



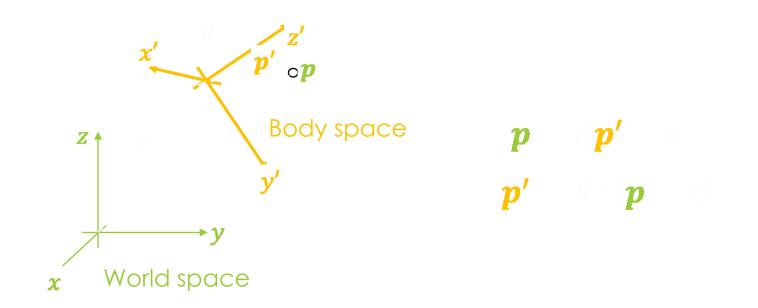
GJK searches for a simplex s.t. origin lies inside or prove that no such simplex exists.

Note: In 2D case we only need point, line and triangle.

Civencisho per 2 ond ononovezero
 vectoriz, o subjobili (unclice)
 Sgreaums o point Sgrad (2) or 2 site
 Sgrad (2) ngl = max (2 ngl) 2 (2) (2) (3)



A shape -4 can be defined in a local system – body/model space.



• Therefore, this must be reflected in the computation of  $S_{\mathcal{A}}(d)$ 

 $= p' \cdot (R^{\top} d) + x \cdot d$ 

Now,  $S_{R,A+x}(d) \cdot d = \max\{p \cdot d; p \in RA + x\}$  $= \max\{(Rp' + x) \cdot d; p' \in A\}$   $= \max\{p' \cdot (R^{\top}d) + x \cdot d; p' \in A\}$   $= \max\{p' \cdot (R^{\top}d); p' \in A\} + x \cdot d$   $= S_{A}(R^{\top}d) \cdot R^{\top}d + x \cdot d$   $= (RS_{A}(R^{\top}d) - x) \cdot d$   $= \operatorname{according to (")}$ Therefore,  $S_{R,A+x}(d) = RS_{A}(R^{\top}d) \cdot x$ 

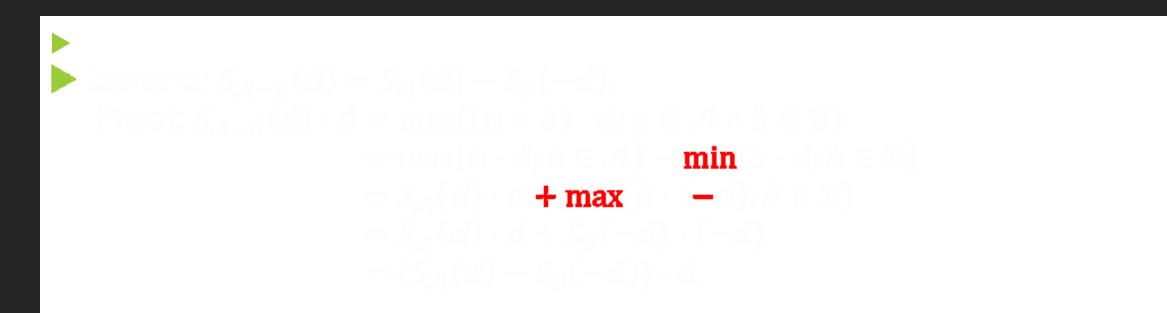
## GJK: Support function examples

 $\frac{1}{2} = (h_1)_{h_1}$ 

• *A* is an axis aligned bounding box (AABB) at the origin with sizes  $2s_{2}, 2s_{2}, 2s_{2}$  along corresponding coordinate exes:  $5_{2}(a) = (sgn(a_{2})s_{2}, sgn(a_{2})s_{2}, sgn(a_{2})s_{2})^{T}$ where  $sgn(a) = \begin{cases} -1 & \text{if } a < 0 \\ 1 & \text{otherwise} \end{cases}$ 

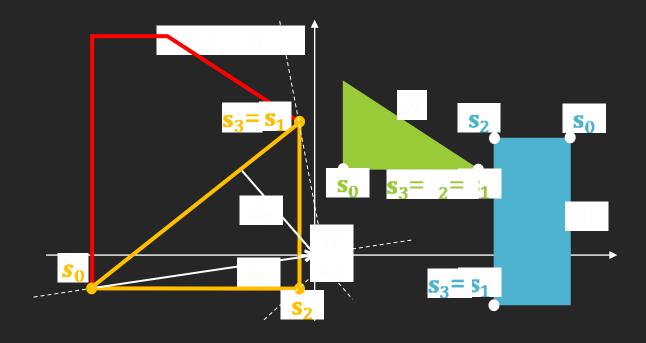
## GJK: Support function examples

- A is a cylinder at the origin with the central axis aligned with the z coordinate axis, with the radius mand with the top and bottom base at z-coordinate h and --h, respectively:
  - $S_{\mathcal{A}}(a) = \left\{ \begin{pmatrix} f_{\sigma} d_{\sigma}, f_{\sigma} d_{\gamma}, \operatorname{sgn}(d_{\sigma}) h \end{pmatrix}^{\mathsf{T}} & \text{if } \sigma > 0 \\ (0, 0, \operatorname{sgn}(d_{\sigma}) h)^{\mathsf{T}} & \text{otherwise} \end{cases} \right\}$
  - where  $\sigma = \sqrt{a\xi} + a\xi$ , and sgn(a) was defined earlier.
- Let  $\mathbf{V}_{i} = \{\mathbf{v}_{i}, \dots, \mathbf{v}_{i}\}$  and  $\mathbf{v}_{i} = \{\mathbf{v}_{i}, \dots, \mathbf{v}_{i}\}$  and  $\mathbf{v}_{i} = \mathbf{v}_{i}$ ,  $\mathbf{v}_{i} \in \mathbf{v}_{i}, \dots, \mathbf{v}_{i}$  is a non-vex polygon.  $\{\mathbf{v}_{i}, \dots, \mathbf{v}_{i}\} = \{\mathbf{v}_{i}, \dots, \mathbf{v}_{i}\} = \{\mathbf{v}_{i}, \dots, \mathbf{v}_{i}\}$



We therefore do not have to construct  $\mathcal{A} = \mathcal{B}$  and  $S_{\mathcal{A}=\mathcal{B}}$ . We work with the given shapes  $\mathcal{A}$  and  $\mathcal{B}$  and their support functions.

### GJK: The algorithm – intuition (2D case)



| s <sub>0</sub> s <sub>0</sub>                       |                          |                         |                                      |                     |            |                       |                       |
|-----------------------------------------------------|--------------------------|-------------------------|--------------------------------------|---------------------|------------|-----------------------|-----------------------|
| $S = \{\mathbf{s}_0 \ \mathbf{s}_1, \mathbf{s}_2\}$ |                          |                         |                                      |                     |            |                       |                       |
| <b>S</b> 0                                          | s <sub>0</sub>           | s <sub>0</sub>          |                                      |                     |            |                       |                       |
| <b>s</b> <sub>1</sub>                               | - Sл                     | $_{\mathcal{B}}(d_1)$ = | - S <sub>A</sub> (dy)                | - S <sub>29</sub> ( | dy) -      | <b>s</b> <sub>1</sub> | <b>s</b> <sub>1</sub> |
|                                                     | <mark>s</mark> 1         | $d_1 \ge 0$             | > confr                              | 10 ê                |            |                       |                       |
| <b>s</b> <sub>2</sub>                               | S <sub>e</sub> a         | $_{23}(a_{2})$ :        | $S_{\mathcal{A}}(d_{\mathcal{B}})$ : | S <sub>99</sub> (*  | $d_{2})$ : | s <sub>2</sub>        | s <sub>2</sub>        |
|                                                     | <mark>\$</mark> 2        | $d_2 \ge 0$             | => cocli                             | ~UO                 |            |                       |                       |
| <b>S</b> 3                                          | S <sub>A</sub>           | $_{\mathcal{B}}(d_{3})$ | $S_{\mathcal{A}}(d_3)$               | S <sub>23</sub> (-  | $d_3)$     | s <sub>3</sub>        | s <sub>3</sub>        |
|                                                     | $s_3 < NO INTERSECTION!$ |                         |                                      |                     |            |                       |                       |

## GJK: The algorithm – intuition (2D case)

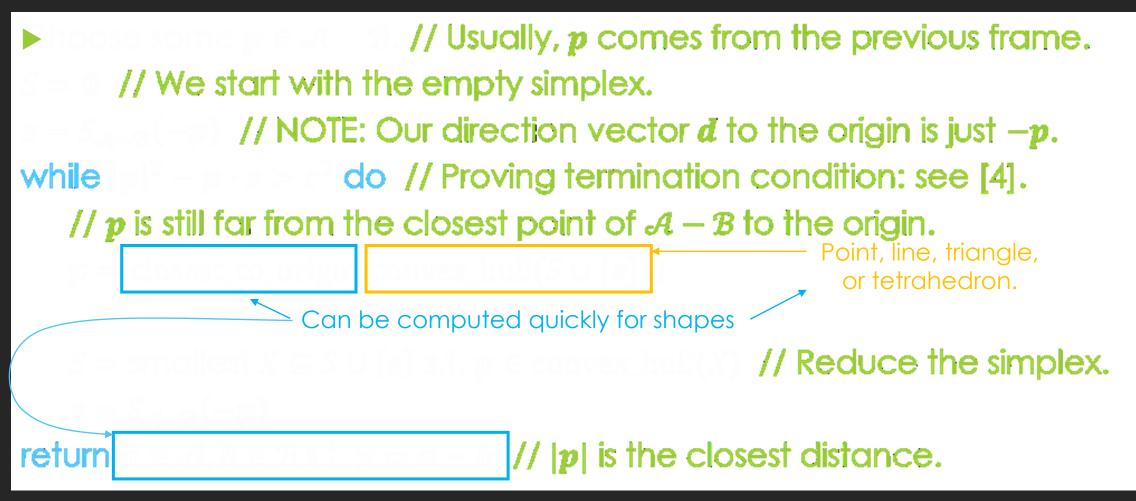
- Since 4 and 8 have empty intersection, we can compute a pair of closest points:
  - $X S = \{s_1, s_2\}$  $X s_1 s_2 s_1 X s_1 s_2 s_1$

#### GJK: The algorithm – intuition (2D case)

Then, find the corresponding points in the shapes 4 and 8.

**S**1  $\mathbf{S}_2 \quad \mathbf{S}_1 \quad \mathbf{S}_1 \quad \mathbf{S}_1 \quad \mathbf{S}_2 \quad \mathbf{S}_2$ – S<sub>1</sub> **S**1  $s_1 \quad s_2 \quad s_1 \quad s_1 \quad s_2$ S<sub>1</sub>

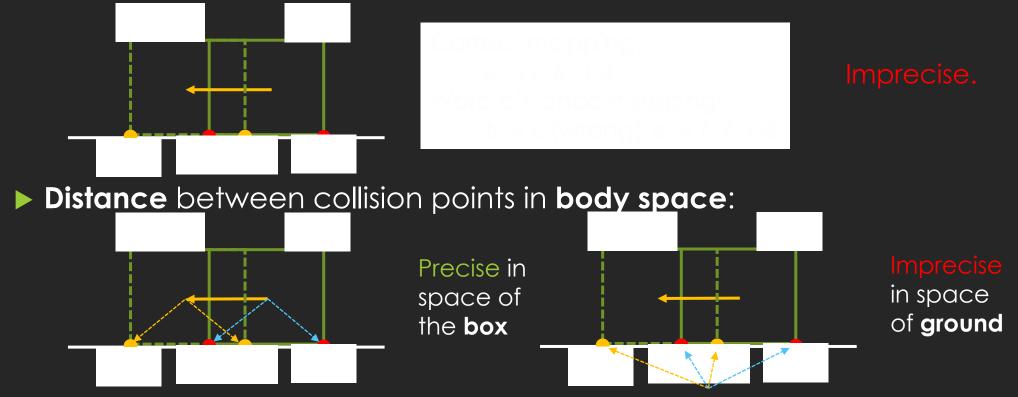
## GJK: The algorithm



- Efficiency of the PGS algorithm for a constraint system depends on the initial value 3<sup>e</sup>.
- It is likely that 2 computed for a collision constraint at current frame would be "almost valid" for the next frame (if the collision persists).
- Therefore, caching 2 values for collision (and other types of) constraints amongst frames can bring considerable speed boost.
- How to match collisions computed in different traines?

► There are several possibilities:

**Distance** between collision points in **world space**:



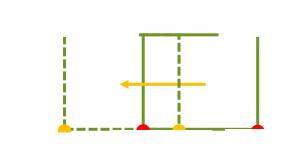
Identify collisions by geometrical properties of collision shapes: enum GTYPE { VERTEX, EDGE, EACE };

wet CollisionID {
 int body\_index\_1;
 GTYPE feature\_type\_1
 int feature\_index\_1;
 int body\_index\_2;
 GTYPE feature\_type\_2
 int feature\_index\_2;

// The index of  $\mathcal{R}_i$ : *i* // The type of colliding geometry in  $\mathcal{R}_i$ // Index of the colliding geometry in  $\mathcal{R}_i$ // The index of  $\mathcal{R}_j$ : *j* // The type of colliding geometry in  $\mathcal{R}_i$ // Index of the colliding geometry in  $\mathcal{R}_i$ 

Define also comparison and hashing of CollisionID instances





precise

Recommended approach

: & seulev of ecnetari ClinoislloC mort gem a ed bluode edce </br/>

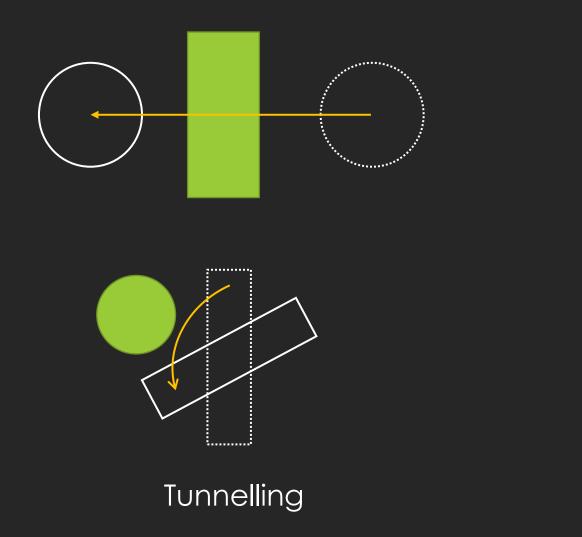


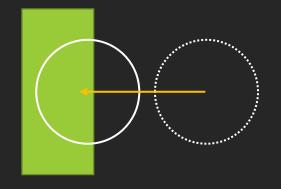


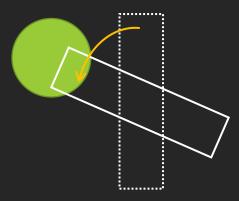
- Before solving the constraint system initialize 2° s.t.
  - For each computed collision c and the corresponding element 3<sup>2</sup>:
    - Build the CollisionID Instance id from c.
    - $\blacktriangleright$  if *id* is present in the cache, then set  $\lambda_i^2$  to the value  $\lambda$  in the cache.
    - Otherwise, set 2<sup>1</sup> to 0.
- Once new solution 2 is computed updated the cache as follows:
  - Clear the cache.
  - For each collision c and the corresponding computed value 2:
    - Build the Collision(D instance to from c.
    - $\blacktriangleright$  insert the mapping  $td \rightarrow \lambda$  to the cache.

# Computing collision time

### Tunnelling and penetration



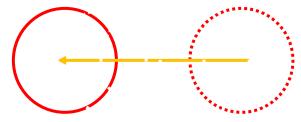




#### Penetration

# Dealing with tunnelling and penetration

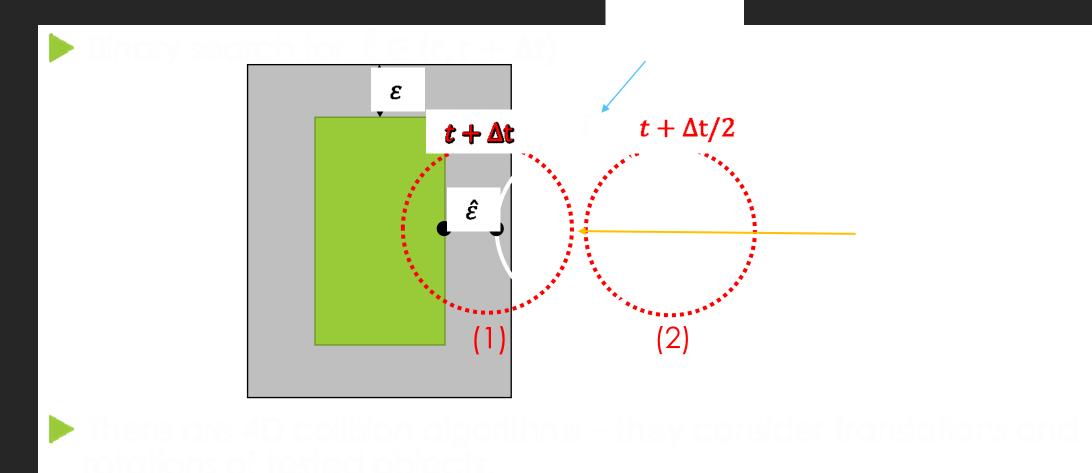
- The simplest approach is to subdivide the game time step At of into several small internal time steps.
- For broad phase:
  - Approximate collision shapes of bodies by "moving spheres":





- Use the adaptive fine step:
  - For each pair of potentially colliding shapes compute the nearest collision time.
  - Move the bodies only to the minimum of all nearest collision times.

## Computing collision time





### References

[1] Erin Catto; Iterative Dynamics with Temporal Coherence; Crystal Dynamics, Menlo Park, California, 2005 [2] E. G. Gilbert, D. W. Johnson and S. S. Keerthi; A fast procedure for computing the distance between complex objects in threedimensional space; Journal on Robotics and Automation, vol. 4, no. 2, pp. 193-203, April 1988 [3] G. Bergen; A Fast and Robust GJK Implementation for Collision Detection of Convex Objects; Eindhoven University of Technology. 1999 [4] G.v.d. Bergen; Collision detection in interactive 3D environments; ISBN: 1-55860-801-X, Elsevier, 2004.