
Collision detection

Marek Trtík

PA199

2

 Broad phase
 Sweep and prune algorithm

 Narrow phase
 Gilbert-Johnson-Keerthi (GJK) algorithm

 Caching collisions

 Computing collision time

Outline

3

Broad phase

4

 The goal is to quickly find pairs of potentially colliding rigid bodies.

 Used algorithm defines meaning of “potentially colliding”. Examples:

When AABBs of the bodies are colliding.

When both bodies are in the same area of space.

 We can use space partitioning data structures we already know:

 Octree, k-D tree, BSP

 Rigid bodies change their positions and orientations during simulation.

 => The data structure must be periodically updated.

 Utilize time coherence of frames (positions of bodies do not change

much between adjacent frames) to get an efficient update algorithm.

Broad phase

5

x

y

A

C

B D

Use InsertSort

Sweep and prune algorithm

6

Sweep and prune algorithm

7

Sweep and prune algorithm

8

Sweep and prune algorithm

next

prev

Link[0][*]

Link[1][*]

Points to some

“red” link in the

previous AABB.

9

Sweep and prune algorithm

10

 Performance of the algorithm is sensitive to alignment of objects

along coordinate axes:

 A relocation of an object leads to a lot of swaps thought the “cluster”

in the array.

Sweep and prune algorithm

x

y

A C B D

11

Narrow phase

12

Narrow phase

Stack of two boxes

(top view)

13

 Decides whether two convex shapes have empty intersection or not.

 Convex shapes Concave shapes

We can approximate a concave shape by a set of convex shapes.
 For the empty intersection we can obtain a pair of the closest points.

We must first build a terminology:
Minkowski sum and difference
 Simplex
 Support function

Gilbert-Johnson-Keerthi (GJK) algorithm

14

GJK: Minkowski sum

15

GJK: Minkowski difference

16

GJK: Minkowski difference

17

 A simplex is a convex hull of an affinely independent points.

 point line triangle tetrahedron

GJK searches for a simplex s.t. origin lies inside or prove that no such

simplex exists.

 Note: In 2D case we only need point, line and triangle.

GJK: Simplex

18

GJK: Support function

19

GJK: Support function

Body space

World space

Rotation matrix

Translation

vector

20

GJK: Support function

21

GJK: Support function

22

GJK: Support function examples

23

GJK: Support function examples

24

GJK: Support function

25

GJK: The algorithm – intuition (2D case)

26

GJK: The algorithm – intuition (2D case)

27

GJK: The algorithm – intuition (2D case)

28

GJK: The algorithm

Point, line, triangle,

or tetrahedron.

Can be computed quickly for shapes

29

Caching collisions

30

Caching collisions

31

 There are several possibilities:

 Distance between collision points in world space:

 Distance between collision points in body space:

Caching collisions

Imprecise.

Precise in

space of

the box

Imprecise

in space

of ground

32

Caching collisions

33

Caching collisions

Recommended

approach

34

Caching collisions

35

Computing collision time

36

Tunnelling and penetration

Penetration Tunnelling

37

Dealing with tunnelling and penetration

We move all bodies in

each internal time step.

38

Computing collision time

(2) Start position (3) (1)(1)

39

[1] Erin Catto; Iterative Dynamics with Temporal Coherence; Crystal
Dynamics, Menlo Park, California, 2005

[2] E. G. Gilbert, D. W. Johnson and S. S. Keerthi; A fast procedure for

computing the distance between complex objects in three-

dimensional space; Journal on Robotics and Automation, vol. 4, no. 2,

pp. 193-203, April 1988

 [3] G. Bergen; A Fast and Robust GJK Implementation for Collision
Detection of Convex Objects; Eindhoven University of Technology. 1999

 [4] G.v.d. Bergen; Collision detection in interactive 3D environments;
ISBN: 1-55860-801-X, Elsevier, 2004.

References

