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Motivation
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Qutline

» Euler approach:
» Fluid is modelled by a vector field, representing the velocity of the fluid.

» Lagrange approach:
» Fluid is modelled by set of particles.

» Smoothed Particle Hydrodynamics:
» Fluid is modelled by set of particles moved via a velocity vector field.

» Hight-field surface approximation:
» Suitable for simulation of only fluid’s surface, e.g., lake or ocean surface.



Euler approach



Fluid Model

» Assumptions:
» Incompressible fluid:
» Volume of any subregion of the fluid is constant over time.
» Represented by an incompressible consiraint.
» Homogeneous fluid:

» The density of fluid is the same and constant in every region of the fluid and over
time.

» Navier-Stokes equations model a fluid:
» Fluid velocity (motion) represented by a vector field u(x, t).
» Fluid pressure represented by a scalar field p(x, t).
» Partial differential equations define changes in the vector field u over time.



Navier-Stokes Equations

» The momentum equations (for each coordinate one):

ou (u-V) = Vp + vV2u +
— = —u- u—— vv-u
at ( It p p}\ A g J
odvecy:’rion pressdre diffuvsion exTYernol
» The incompressibility constraint: accel.
V-u=0

» Where (let x = (x,y,z)" be a position in space and t be simulation time):

> u(xt) = (ulx, t),v(xt), wix, 1:))T is the velocity vector field of the fluid.
» p(x,t)is a pressure scalar field of the fluid; used to preserve incompressibility.
. " o k
» pis the density of the fluid, e.g., water p = 103 m—‘i.
» v is the viscosity (resistance to deformation) of the fluid, e.g., honey — high viscosity, water — low
viscosity.
» g(x,t)is the acceleration vector field of forces acting on the fluid, e.g., gravity g(x,t) = (0,0,—10)T sz

» -is the dot product.



Gradient, Divergence and Laplacian

d o0 0

.
» Operator of spatial partial derivatives: V = (5,5,5) :

» Identifies a direction of a maximum increase of a function at a given tfime.

dp dp ap)T
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» Example: Vp = (
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» Divergence operator: V- u = (ax'ay'az) (u,v,w)' = 6x+6y+ P

» Can only be applied to a vector field.
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Gradient, Divergence and Laplacian
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» Directional derivative: u-V = (u,v,w) (ax'ay'az) uax+vay+waz.
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» Therefore, (u-V)u = (u — vy, + W_az) (wo,w)T = u—+ v +w
ow ow ow
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Laplaci tor: V2 A
> Laplacian operafor: V=V -V = -7 + 25 + 7.
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» Example: VZu=V-Vu (axz t5zt aZZ) (w,v,w) oxz Ty T a2




Adding Custom Quantities

» Beside the fluid we also simulate other quantities, e.g., smoke density,
temperature.

» Represent any such quantity g as another scalar/vector field.
» Add arelated equation, how g changes in fime:

9]
a—Zz—(u-V)q+vl72q+S

» Observe the similarity with the momentum equation:
» Advection: —(u - V)q
» Diffusion: v’?q
» We do not have pressure term.
» S can be used to simulate constant inflow of g info the fluid.

=> Methods for solving the momentum equation can be also applied for
g equation.



Boundary Conditions

» The fluid can collide with:

» Static solid objects, like walls.

» Freely moveable solid objects, like piece of wood in water.

» Another fluid, like oil stain on water surface. (not covered in this lecture)
» Our goadlis to prevent the fluid to flow into the solid objects.

» Let n(x, t), u,(x,t) be the normal and velocity of the solid surface.
» The boundary constraint for:

» Low viscosity fluid:  u(x,t) -n(x,t) =u.(x,t) n(x,t)

» High viscosity fluid: u(x,t) = u,(x,t)
» We can use boundary condition 1o model fluid source and/or sink.
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Discretize fields

» Discretize the space info a regular grid.
For each cell i, j, k we store:

» Fluid velocity: u; ; «
» Pressure: p; j «
» Any other field: q; j x

» Discretfize boundary conditions:
» Mark cells filled by solid objects, e.g., walls.




Discretize derivatives

» Use finite differences to approximate partial derivatives.
» Examples:

v __ (DPi+1,j,k —Pi-1,j,k Pij+1,k ~Pij-1,k Pijk+1 ~ Pijk-1 U
Pijk =

2Ax ’ 2Ay ’ 20z
Uit1,jk — Ui-1,jk Ujj+1,k — Ui j-1,k Ujjk+1 — Uij k-1
v U = J jk 4 L) J 4 b J
') 2Ax 2Ay 2Az
V2g. .. — di+1,j,k —29ijkt di-1,jk n qij+1,k —29ijkt qij-1k n qijk+1 —29ijkt qijk—1
dijk = Ax2 Ay? Az?



Solving Equations

» Method of splitting:

» Solve a complex equation by a sequence numerical infegrations.

dq 4 =q" + Atf(q")
- = +
g TDHI@D = e a4 arg@)

» The result is equivalent to a single integration:
q"*at = g + Atg(@)
=q" + Atf(q") + Atg(q® + Atf(q%))
=q° + Atf(q") + At(g(q") + O(AD))
=q° + At(f(q%) + 9(q¢") + O(At?)
= q' + AtSL 4+ 0 (At?)
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Solving Equations

» We solve the momentum equation using the splitting method:
u

Frie —(u-V)u—%Vp+vV2u+g
» Start in the current state:
wo(x) = u(x,t)
» Apply external accelerations g:
wi(x) = wo(x) + Atg
(forward Euler)

» Apply fluid advection —(u - V)u: . : :
The new velocity at x is the velocity that the

w,(x) = wy(p(x, —At)) particle had a time At ago at the location
(me‘l’hod Of Chargc‘l‘erlshcs) p(x, —At) (gomg backward in time Olong p)

14
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Solving Equations

» We solve the momentum equation using the splitting method:
u

1
== —(u-V)u—;Vp+vV2u+g

» Apply fluid viscosity vV2u:
ws(x) = w,(x) + AtvViw; (x)
(backward Euler)

» Lastly, we must compute the pressure —%Vp acceleration s.t. we

remove divergence from wg, 1.€., to satisty the incompressibility:
V-u=0
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Solving Equations

» Helmholtz-Hodge Decomposition: Any vector field w can be uniquely
decomposed to a vector field u and a scalar field p safistying:
w=u-+Vp
where u is a divergence free, i.e., V-u = 0.

» When we apply divergence operator to both sides of the equation:
V-w=V?%p

we get a Poisson equation.
» Due to discretization, we get a sparse system of linear equations

=> Use, for example, Jacobi method.
» We use the computed pressure field to get the resulting fluid velocity:

u(x, t + At) = ws(x) — Vp
16



Euler approach

DEMOQO!

https://paveldogreat.github.io/WebGL-Fluid-Simulation/
http://haxiomic.github.io/projects/webgl-fluid-and-particles/
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https://paveldogreat.github.io/WebGL-Fluid-Simulation/
http://haxiomic.github.io/projects/webgl-fluid-and-particles/

Lagrange approach
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Particles Simulation

» The fluid is represented by n parficles {P,, ..., P,_1}.
» Each parficle P; is defined by:

» Mass: m;

» Position vector: p;

» Velocity vector: u;

» Total external force: f;
» Newton’s equations of motion for moving particles:

p 2P u; (3 equationsin 3D space)

QLI i1 (3 equations in 3D space)
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External Forces

» The afttribute f; of a particle P; is a sum of all forces acting on the particle.

» We usually want Earth’s gravity to act on particles:
» Force of a homogenous field: m;g *
» Typically: g = (0,0,—10)T

» Inferaction between particles P; and P; via
Lennard-Jones force:

Pi—Dj
» Letd;; = |p; —pjland d;; = L

di,j

U _
> Fij= <ﬁ - E) dij, Fji=-Fy
L] L]

» where typically k; = k,, m =4 and n = 2.

|F; ;| for ky = k, = 10,m = 4,n = 2.

JOJD|NDJDD/WOD SOWSSP MMM //:SALY 1O PaOId
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Lagrange approach

DEMO!
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Smoothed Particle Hydrodynamics
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Smoothed Parficle Hydrodynamics

» Simulate fluid using a set of n parficles, i.e., Lagrange approach.
» Compute forces acting on the particles by Euler approach. How?
» Smooth properties of particles info contfinuous fields.

» Use a smoothing kernel W (x), e.g., polyé:

W(.'X,') _ 315 {(dZ — x2)3 if0<x<d

64md® ( () otherwise
» Let A be a property of particle. Then continuous
field A(x) is:

n—1
A
A(x) = z m, —’_W(|xj —x|).

W(x) ford = 1.

p
» Example: p(x) = X725 m; ’W(|x] x|) = X712 miW (|x; — x|).
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Smoothed Parficle Hydrodynamics

» With the fields defined we can use momentum and incompressibility

equations:

ou 1 >
E:-(u-V)u—;Vp+vV u+g, V-u=0.

» We simulate particles => mass is conserved =>V - u = 0 is not needed.
» Parficles automatically move with the fluid => —(u - V)u is not needed.

» SO, we only solve: % = —1Vp +vWu +g.

» Recall second Newton's equation of moftion: E = 7{1‘
fi

» Therefore, = T3 (xl) Vp(x;) + vWeu(x) + g.
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Smoothed Parficle Hydrodynamics

» The pressure field p can be obtained from density field p by law of ideal gas:
» p(x) = k(p(x) — py), Where k is a gas constant and p, is the environment pressure.

» Derivatives of any field A(x):
— n-—1
A A;
VA(x) = Z LW =D, VAG) 5 Z my oW (1 = x)

2W' (|xj—x|)

| j—x]

where VW (|x; — x|) = W'(|x; — x|) 2= |x x| VEW (|x; — x]) = W' (|lx; — x|) +

» Forces between two particles generated by fields Vp, V?2u should be
symmetric => we usually modify their compu’ro’rion

n—1

pi +p;
Vp(x;) = 2 m; lZp- / VW (|x; — x;]), Viu(x;) = Z m;

j=0 /

o2 (| - x]).
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Helght-field surface approximation
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Fluid Surface Model

» We model a fluid surface by a function h(x, y, t).
» At a point (x,y) in the XY plane and in time t the function defines fluid height z =
h(x,y,t).
» Change of hin fime is given by:
(;ZTZ = v?V?h
where v is the speed of waves in the fluid.

» How fo solve the equation?

. : on
» Introduce an auxiliary function g = a7

» Rewrite the equation into this system:
00 _ 502, O _
ac " ac T

» Discretize (next slide).
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Discretize Model

» We discretize the functions h, g by 2D arrays:
h(xo + iAx,yo + jAy, to + kAt) => h{; )

q(xo + iAx, yo + jAy, to + kAt) => g,

where JAy <
» i,j are indices to the arrays. Ay

» Ax, Ay are distances between grid cells in X,Y axes. (;Co;}’o) \——
» k simulation step number. Ax
» At simulation time step. E v .
» NOTE: Usually, x, = v, = to = 0. iAx

» We solve the discretized system numerically, e.g., using forward Euler method:

k k |k k k |,k
K+1 — gk o Apop2 hitq,j —2hij+hi_qj n hijy1 —2hij+hij_4q
4i,j = 4i; Ax? Ay? '

k+1 _ 1k k+1
hi,j = hi,j + Atql,] .




Hight-field surface approximation

DEMO!
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