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 Euler approach:

 Fluid is modelled by a vector field, representing the velocity of the fluid.

 Lagrange approach:

 Fluid is modelled by set of particles.

 Smoothed Particle Hydrodynamics:

 Fluid is modelled by set of particles moved via a velocity vector field.

 Hight-field surface approximation:

 Suitable for simulation of only fluid’s surface, e.g., lake or ocean surface.

Outline
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Euler approach
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 Assumptions:

 Incompressible fluid:

 Volume of any subregion of the fluid is constant over time.

 Represented by an incompressible constraint.

 Homogeneous fluid:

 The density of fluid is the same and constant in every region of the fluid and over 

time.

 Navier-Stokes equations model a fluid:

 Fluid velocity (motion) represented by a vector field 𝒖 𝒙, 𝑡 .

 Fluid pressure represented by a scalar field 𝑝 𝒙, 𝑡 .

 Partial differential equations define changes in the vector field 𝒖 over time.

Fluid Model
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 The momentum equations (for each coordinate one):

𝜕𝒖

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝒖 −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈

 The incompressibility constraint:

∇ ⋅ 𝒖 = 0
 Where (let  𝒙 = 𝑥, 𝑦, 𝑧 ⊤ be a position in space and 𝑡 be simulation time):

 𝒖 𝒙, 𝑡 = 𝑢 𝒙, 𝑡 , 𝑣 𝒙, 𝑡 , 𝑤 𝒙, 𝑡
⊤

 is the velocity vector field of the fluid. (computed)

 𝑝(𝒙, 𝑡) is a pressure scalar field of the fluid; used to preserve incompressibility. (computed)

 𝜌 is the density of the fluid, e.g., water 𝜌 = 103 𝑘𝑔

𝑚3.

 𝜈 is the viscosity (resistance to deformation) of the fluid, e.g., honey – high viscosity, water – low 
viscosity.

 𝒈(𝒙, 𝑡) is the acceleration vector field of forces acting on the fluid, e.g., gravity 𝒈(𝒙, 𝑡) = 0,0, −10 ⊤ 𝑚

𝑠2.

 ⋅ is the dot product.

Navier-Stokes Equations

advection pressure diffusion external
accel.
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 Operator of spatial partial derivatives: ∇ =
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧

⊤
.

 Identifies a direction of a maximum increase of a function at a given time.

 Example: ∇𝑝 =
𝜕𝑝

𝜕𝑥
,

𝜕𝑝

𝜕𝑦
,

𝜕𝑝

𝜕𝑧

⊤
.

 Divergence operator: ∇ ⋅ 𝒖 =
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧

⊤
⋅ 𝑢, 𝑣, 𝑤 ⊤ =

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
.

 Can only be applied to a vector field.

Gradient, Divergence and Laplacian

∇ ⋅ 𝒖 < 0 ∇ ⋅ 𝒖 > 0 ∇ ⋅ 𝒖 = 0
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 Directional derivative:  𝒖 ⋅ ∇ = 𝑢, 𝑣, 𝑤 ⊤ ⋅
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧

⊤
= 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
.

 Therefore, 𝒖 ⋅ ∇ 𝒖 = 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
𝑢, 𝑣, 𝑤 ⊤ =

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

.

 Laplacian operator: ∇2 = ∇ ⋅ ∇ =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2.

 Example:  ∇2𝒖 = ∇ ⋅ ∇ 𝒖 =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 𝑢, 𝑣, 𝑤 ⊤ =

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +
𝜕2𝑣

𝜕𝑧2

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 +
𝜕2𝑤

𝜕𝑧2

.

Gradient, Divergence and Laplacian
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 Beside the fluid we also simulate other quantities, e.g., smoke density, 
temperature.

 Represent any such quantity 𝑞 as another scalar/vector field.

 Add a related equation, how 𝑞 changes in time:
𝜕𝑞

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝑞 + 𝜈𝛻2𝑞 + 𝑆

 Observe the similarity with the momentum equation:

 Advection: − 𝒖 ⋅ ∇ 𝑞

 Diffusion: 𝜈𝛻2𝑞

 We do not have pressure term.

 𝑆 can be used to simulate constant inflow of 𝑞 into the fluid.

=> Methods for solving the momentum equation can be also applied for 
𝑞 equation.

Adding Custom Quantities
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 The fluid can collide with:

 Static solid objects, like walls.

 Freely moveable solid objects, like piece of wood in water.

 Another fluid, like oil stain on water surface. (not covered in this lecture)

 Our goal is to prevent the fluid to flow into the solid objects.

 Let 𝒏 𝒙, 𝑡 , 𝒖𝑠 𝒙, 𝑡  be the normal and velocity of the solid surface.

 The boundary constraint for:

 Low viscosity fluid:     𝒖 𝒙, 𝑡 ⋅ 𝒏 𝒙, 𝑡 = 𝒖𝑠 𝒙, 𝑡 ⋅ 𝒏 𝒙, 𝑡

 High viscosity fluid:    𝒖 𝒙, 𝑡 = 𝒖𝑠 𝒙, 𝑡

 We can use boundary condition to model fluid source and/or sink.

Boundary Conditions
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 Discretize the space into a regular grid.                                                  

For each cell 𝑖, 𝑗, 𝑘 we store:

 Fluid velocity: 𝒖𝑖,𝑗,𝑘

 Pressure: 𝑝𝑖,𝑗,𝑘

 Any other field: 𝑞𝑖,𝑗,𝑘

 Discretize boundary conditions:

 Mark cells filled by solid objects, e.g., walls.

Discretize fields

Δx

Δ𝑦

2D grid
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 Use finite differences to approximate partial derivatives.

 Examples:

 ∇𝑝𝑖,𝑗,𝑘 =
𝑝𝑖+1,𝑗,𝑘 − 𝑝𝑖−1,𝑗,𝑘 

2Δ𝑥
,

𝑝𝑖,𝑗+1,𝑘 − 𝑝𝑖,𝑗−1,𝑘 

2Δ𝑦
,

𝑝𝑖,𝑗,𝑘+1 − 𝑝𝑖,𝑗,𝑘−1 

2Δ𝑧

⊤

 ∇ ⋅ 𝒖𝑖,𝑗,𝑘 =
𝒖𝑖+1,𝑗,𝑘 − 𝒖𝑖−1,𝑗,𝑘 

2Δ𝑥
+

𝒖𝑖,𝑗+1,𝑘 − 𝒖𝑖,𝑗−1,𝑘 

2Δ𝑦
+

𝒖𝑖,𝑗,𝑘+1 − 𝒖𝑖,𝑗,𝑘−1 

2Δ𝑧

 ∇2𝑞𝑖,𝑗,𝑘 =
𝑞𝑖+1,𝑗,𝑘 −2𝑞𝑖,𝑗,𝑘+ 𝑞𝑖−1,𝑗,𝑘 

Δ𝑥2 +
𝑞𝑖,𝑗+1,𝑘 −2𝑞𝑖,𝑗,𝑘+ 𝑞𝑖,𝑗−1,𝑘 

Δ𝑦2 +
𝑞𝑖,𝑗,𝑘+1 −2𝑞𝑖,𝑗,𝑘+ 𝑞𝑖,𝑗,𝑘−1 

Δ𝑧2

Discretize derivatives
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 Method of splitting:

 Solve a complex equation by a sequence numerical integrations.
𝑑𝑞

𝑑𝑡
= 𝑓 𝑞 + 𝑔 𝑞  →  

ො𝑞 = 𝑞𝑡 + Δ𝑡𝑓(𝑞𝑡)

𝑞𝑡+Δ𝑡 = ො𝑞 + Δ𝑡𝑔( ො𝑞)

 The result is equivalent to a single integration: 

  𝑞𝑡+Δ𝑡 = ො𝑞 + Δ𝑡𝑔 ො𝑞

      = 𝑞𝑡 + Δ𝑡𝑓(𝑞𝑡) + Δ𝑡𝑔 𝑞𝑡 + Δ𝑡𝑓(𝑞𝑡)

      = 𝑞𝑡 + Δ𝑡𝑓(𝑞𝑡) + Δ𝑡(𝑔(𝑞𝑡) + 𝒪(Δ𝑡))

      = 𝑞𝑡 + Δ𝑡(𝑓(𝑞𝑡) + 𝑔(𝑞𝑡)) + 𝒪(Δ𝑡2)

      = 𝑞𝑡 + Δ𝑡
𝑑𝑞

𝑑𝑡
+ 𝒪(Δ𝑡2)

Solving Equations 
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 We solve the momentum equation using the splitting method:
𝜕𝒖

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝒖 −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈

 Start in the current state:

  𝒘𝟎 𝒙 = 𝒖 𝒙, 𝑡

 Apply external accelerations 𝒈:

   𝒘1 𝒙 = 𝒘0 𝒙 + Δ𝑡𝒈

    (forward Euler)

 Apply fluid advection − 𝒖 ⋅ ∇ 𝒖:

   𝒘2 𝒙 = 𝒘1 𝐩(𝒙, −Δ𝑡)

    (method of characteristics)

Solving Equations 

The new velocity at 𝒙 is the velocity that the 

particle had a time Δ𝑡 ago at the location 

𝐩(𝒙, −Δ𝑡) (going backward in time along 𝐩).
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 We solve the momentum equation using the splitting method:
𝜕𝒖

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝒖 −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈

 Apply fluid viscosity 𝜈∇2𝒖:

   𝒘3 𝒙 = 𝒘2 𝒙 + Δ𝑡𝜈∇2𝒘3 𝒙

    (backward Euler)

 Lastly, we must compute the pressure −
1

𝜌
∇𝑝 acceleration s.t. we 

remove divergence from 𝒘3, i.e., to satisfy the incompressibility:

∇ ⋅ 𝒖 = 0

Solving Equations 
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 Helmholtz-Hodge Decomposition: Any vector field 𝒘 can be uniquely 

decomposed to a vector field 𝒖 and a scalar field 𝑝 satisfying:
𝒘 = 𝒖 + ∇𝑝

where 𝒖 is a divergence free, i.e., ∇ ⋅ 𝒖 = 0.

 When we apply divergence operator to both sides of the equation:

∇ ⋅ 𝒘 = ∇2𝑝

 we get a Poisson equation.

 Due to discretization, we get a sparse system of linear equations

 => Use, for example, Jacobi method.

 We use the computed pressure field to get the resulting fluid velocity:

𝒖(𝒙, 𝑡 + Δt) = 𝒘3(𝒙) − ∇𝑝

Solving Equations 



17

Euler approach

DEMO!

https://paveldogreat.github.io/WebGL-Fluid-Simulation/

http://haxiomic.github.io/projects/webgl-fluid-and-particles/

https://paveldogreat.github.io/WebGL-Fluid-Simulation/
http://haxiomic.github.io/projects/webgl-fluid-and-particles/
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Lagrange approach
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 The fluid is represented by 𝑛 particles {𝒫0, … , 𝒫𝑛−1}.

 Each particle 𝒫𝑖 is defined by:

 Mass: 𝑚𝑖

 Position vector: 𝒑𝑖

 Velocity vector: 𝒖𝑖

 Total external force: 𝒇𝑖

 Newton’s equations of motion for moving particles:



𝑑𝒑𝑖

𝑑𝑡
= 𝒖𝑖     (3 equations in 3D space)



𝑑𝒖𝑖

𝑑𝑡
=

𝒇𝑖

𝑚𝑖
     (3 equations in 3D space)

Particles Simulation
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 The attribute 𝒇𝑖 of a particle 𝒫𝑖 is a sum of all forces acting on the particle.

 We usually want Earth’s gravity to act on particles:

 Force of a homogenous field:   𝑚𝑖𝒈

 Typically:  𝒈 = 0,0, −10 ⊤

 Interaction between particles 𝒫𝑖 and 𝒫𝑗 via                                                                            
Lennard-Jones force:

 Let 𝑑𝑖,𝑗 = |𝒑𝑖 − 𝒑𝑗| and 𝒅𝑖,𝑗 =
𝒑𝑖−𝒑𝑗

𝑑𝑖,𝑗
.

 𝑭𝑖,𝑗 =
𝑘1

𝑑𝑖,𝑗
𝑚 −

𝑘2

𝑑𝑖,𝑗
𝑛 𝒅𝑖,𝑗 ,  𝑭𝑗,𝑖 = −𝑭𝑖,𝑗

 where typically 𝑘1 = 𝑘2, 𝑚 = 4 and 𝑛 = 2.

External Forces

|𝑭𝑖,𝑗| for 𝑘1 = 𝑘2 = 10, 𝑚 = 4, 𝑛 = 2.
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Lagrange approach

DEMO!
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Smoothed Particle Hydrodynamics
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 Simulate fluid using a set of 𝑛 particles, i.e., Lagrange approach.

 Compute forces acting on the particles by Euler approach. How?

 Smooth properties of particles into continuous fields.

 Use a smoothing kernel 𝑊(𝑥), e.g., poly6:

 𝑊 𝑥 =
315

64𝜋𝑑9 ቊ 𝑑2 − 𝑥2 3 if 0 ≤ 𝑥 ≤ 𝑑
0 otherwise 

 Let 𝐴 be a property of particle. Then continuous

 field 𝐴(𝒙) is:

𝐴 𝒙 = ෍

𝑗=0

𝑛−1

𝑚𝑗

𝐴𝑗

𝜌𝑗
𝑊(|𝒙𝑗 − 𝒙|) .

 Example: 𝜌 𝒙 = σ𝑗=0
𝑛−1 𝑚𝑗

𝜌𝑗

𝜌𝑗
𝑊(|𝒙𝑗 − 𝒙|) = σ𝑗=0

𝑛−1 𝑚𝑗𝑊(|𝒙𝑗 − 𝒙|).

Smoothed Particle Hydrodynamics

𝑊 𝑥  for 𝑑 = 1.
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 With the fields defined we can use momentum and incompressibility 

equations:
𝜕𝒖

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝒖 −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈, ∇ ⋅ 𝒖 = 0.

 We simulate particles => mass is conserved => ∇ ⋅ 𝒖 = 0 is not needed.

 Particles automatically move with the fluid => − 𝒖 ⋅ ∇ 𝒖 is not needed.

 So, we only solve:  
𝜕𝒖

𝜕𝑡
= −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈.

 Recall second Newton’s equation of motion: 
𝑑𝒖𝑖

𝑑𝑡
=

𝒇𝑖

𝑚𝑖
.

 Therefore, 
𝒇𝑖

𝑚𝑖
= −

1

𝜌(𝒙𝑖)
∇𝑝(𝒙𝑖) + 𝜈∇2𝒖(𝒙𝑖) + 𝒈.

Smoothed Particle Hydrodynamics
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 The pressure field 𝑝 can be obtained from density field 𝜌 by law of ideal gas:

 𝑝 𝒙 = 𝑘(𝜌 𝒙 − 𝜌0), where 𝑘 is a gas constant and 𝜌0 is the environment pressure.

 Derivatives of any field 𝐴(𝒙):

∇𝐴 𝒙 = ෍

𝑗=0

𝑛−1

𝑚𝑗

𝐴𝑗

𝜌𝑗
∇𝑊(|𝒙𝑗 − 𝒙|) , ∇2𝐴 𝒙 = ෍

𝑗=0

𝑛−1

𝑚𝑗

𝐴𝑗

𝜌𝑗
∇2𝑊(|𝒙𝑗 − 𝒙|)

where ∇𝑊(|𝒙𝑗 − 𝒙|) = 𝑊′(|𝒙𝑗 − 𝒙|)
𝒙𝑗−𝒙

𝒙𝑗−𝒙
, ∇2𝑊(|𝒙𝑗 − 𝒙|) = 𝑊′′(|𝒙𝑗 − 𝒙|) +

2𝑊′(|𝒙𝑗−𝒙|)

𝒙𝑗−𝒙
.

 Forces between two particles generated by fields ∇𝑝, ∇2𝒖 should be 

symmetric => we usually modify their computation:

∇𝑝 𝒙𝑖 = ෍

𝑗=0

𝑛−1

𝑚𝑗

𝑝𝑖 + 𝑝𝑗

2𝜌𝑗
∇𝑊(|𝒙𝑗 − 𝒙𝑖|) , ∇2𝒖 𝒙𝑖 = ෍

𝑗=0

𝑛−1

𝑚𝑗

𝒖𝑗 − 𝒖𝑖

𝜌𝑗
∇2𝑊 𝒙𝑗 − 𝒙𝑖 .

Smoothed Particle Hydrodynamics
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Height-field surface approximation
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 We model a fluid surface by a function ℎ(𝑥, 𝑦, 𝑡).

 At a point (𝑥, 𝑦) in the XY plane and in time 𝑡 the function defines fluid height z =
ℎ(𝑥, 𝑦, 𝑡).

 Change of ℎ in time is given by:
𝜕2ℎ

𝜕𝑡2 = 𝑣2∇2ℎ

   where 𝑣 is the speed of waves in the fluid.

 How to solve the equation?

 Introduce an auxiliary function 𝑞 =
𝜕ℎ

𝜕𝑡
.

 Rewrite the equation into this system:
𝜕𝑞

𝜕𝑡
= 𝑣2∇2ℎ,

𝜕ℎ

𝜕𝑡
= 𝑞.

 Discretize (next slide).

Fluid Surface Model
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 We discretize the functions ℎ, 𝑞 by 2D arrays:

 ℎ(𝑥0 + 𝑖Δ𝑥, 𝑦0 + 𝑗Δ𝑦, 𝑡0 + 𝑘Δ𝑡) => ℎ𝑖,𝑗
𝑘

 𝑞(𝑥0 + 𝑖Δ𝑥, 𝑦0 + 𝑗Δ𝑦, 𝑡0 + 𝑘Δ𝑡) => 𝑞𝑖,𝑗
𝑘

    where

 𝑖, 𝑗 are indices to the arrays.

 Δ𝑥, Δ𝑦 are distances between grid cells in X,Y axes.

 𝑘 simulation step number.

 𝛥𝑡 simulation time step.

 NOTE: Usually, 𝑥0 = 𝑦0 = 𝑡0 = 0.

 We solve the discretized system numerically, e.g., using forward Euler method:

  𝑞𝑖,𝑗
𝑘+1 = 𝑞𝑖,𝑗

𝑘 + Δ𝑡𝑣2 ℎ𝑖+1,𝑗
𝑘  −2ℎ𝑖,𝑗

𝑘 +ℎ𝑖−1,𝑗
𝑘

Δ𝑥2 +
ℎ𝑖,𝑗+1

𝑘  −2ℎ𝑖,𝑗
𝑘 +ℎ𝑖,𝑗−1

𝑘

Δ𝑦2 ,

  ℎ𝑖,𝑗
𝑘+1 = ℎ𝑖,𝑗

𝑘 + Δ𝑡𝑞𝑖,𝑗
𝑘+1.

Discretize Model

𝑥0, 𝑦0 Δ𝑥

Δ𝑦

𝑖Δ𝑥

𝑗Δ𝑦
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Hight-field surface approximation

DEMO!



30

[1] W.J. Laan, S. Green, M. Sainz; Screen Space Fluid Rendering with 
Curvature Flow; I3D 2009.

[2] S. Green; Screen Space Fluid Rendering for Games; GDC 2010.

[3] Jos Stam; Stable Fluids; ACM Transactions on Graphics, 2001.

[4] R.Bridson, M.Müller; Fluid simulation; SIGGRAPH 2007 course notes.

[5] GPU Gems 3; Chapter 30: Real-Time Simulation and Rendering of 3D 
Fluids.

[6] GPU Gems; Chapter 38: Fast Fluid Dynamics Simulation on the GPU; 
https://developer.download.nvidia.com/books/HTML/gpugems/gpuge
ms_ch38.html

[7] C. Johanson; Real-time water rendering; Master thesis, Lund 
University,2004.

References


	Slide 1: Fluid simulation
	Slide 2: Motivation
	Slide 3: Outline
	Slide 4: Euler approach
	Slide 5: Fluid Model
	Slide 6: Navier-Stokes Equations
	Slide 7: Gradient, Divergence and Laplacian
	Slide 8: Gradient, Divergence and Laplacian
	Slide 9: Adding Custom Quantities
	Slide 10: Boundary Conditions
	Slide 11: Discretize fields
	Slide 12: Discretize derivatives
	Slide 13: Solving Equations 
	Slide 14: Solving Equations 
	Slide 15: Solving Equations 
	Slide 16: Solving Equations 
	Slide 17: Euler approach
	Slide 18: Lagrange approach
	Slide 19: Particles Simulation
	Slide 20: External Forces
	Slide 21: Lagrange approach
	Slide 22: Smoothed Particle Hydrodynamics
	Slide 23: Smoothed Particle Hydrodynamics
	Slide 24: Smoothed Particle Hydrodynamics
	Slide 25: Smoothed Particle Hydrodynamics
	Slide 26: Height-field surface approximation
	Slide 27: Fluid Surface Model
	Slide 28: Discretize Model
	Slide 29: Hight-field surface approximation
	Slide 30: References

