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Why Indexes?

• Consider a 100 GB table; at 100 MB/s read speed we need 17 minutes 
for a full table scan

• Query for the number of “Bosch S500” washing machines sold in 
Germany last month
• Applying restrictions (product, location) the selectivity would be strongly 

improved
• If we have 30 locations, 10,000 products and 24 months in the DW, 

the selectivity value is 1/30 * 1/ 10,000 * 1/24 = 0,000 000 14

• So… we read 100 GB for 1,4KB of data

• The problem is: how to filter data in a fact table as much as possible
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The low value of selectivity 
→ Highly selective predicate!



Why Indexes?

• Reduce the size of read pages of data cube to a minimum with indexes

October 31, 2024 PA220 DB for Analytics 4



Index Types

• Tree structures
• B+-tree, R-tree, …

• Hash based
• Dynamic hash table

• Special
• Bitmap index

• Block-Range INdex (in Pg)
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Multidimensional Data

• B+-tree
• classic structure – very efficient in updates

• supports point and range queries

• limited to 1D data

• UB-tree 
• uses B*-tree and

• Z-curve to linearize n-dim data

• R-tree
• wrapping by n-dim rectangles

• R+, R*, X-tree
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UB-Trees

• Convert n-dim data to a single dimension by the Z-curve

• and Index by B* tree

• The Z-curve provides for good performance 
for range queries!
• Consecutive values on the Z-curve index similar data

• Similarity by means of neighborhood
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UB-Trees

• Z-Value address representation
• Calculate the z-values such that 

neighboring data is clustered together

• Calculated through bit interleaving of 
the coordinates of the tuple

• To localize a value with coordinates 
one must perform de-interleaving
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For Z-value 51, we have 
the offset 50.
50 in binary is 110010

Z-value = 110010

Y = 101 = 5 X = 100 = 4

row at x=4, y=5

We have Z-regions –
describes one block 
in storage. 
E.g. [1-9], [10-18].



UB-Trees – Range Query

• Range queries (RQ) in UB-Trees
• Each query can be specified by 2 coordinates

• qa (the upper left corner of the query rectangle)

• qb (the lower right corner of the query rectangle)

• Range Query Algorithm
1. Calculate z-values for qa and qb

2. Get a node with Z-Region containing qa

• e.g., Z-Region of qa is [10:18]

3. The corresponding page is loaded and filtered with the query predicate
• E.g., value 10 has after de-interleaving x=1 and y=2, 

which is outside the query rectangle
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Q: x[2;5], y[3;6]



UB-Trees – Range Query

• Range Query Algorithm (cont.)
4. After qa, all values on the Z-curve are 

de-interleaved and checked by their
coordinates
• The data is only accessed from the disk.

• The next jump point on the Z-curve is 27.

5. Repeat Steps 2 and 3 until the decoded 
end-address of the last filtered region is bigger than qb

October 31, 2024 PA220 DB for Analytics 10

Calculating the jump point mostly involves:
• Performing bit operations and comparisons
• 3 points: qa, qb and the current Z-Value 



UB-Trees – next “jump” point

• Idea of getting next jump point
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Index comparison

• Area of records to scan (dark-grey) to get the answer (light-grey)
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R-Trees

• Like B-trees 
• Data objects stored in leaf nodes

• Nodes represented by minimum bounding rectangles

• High-balanced structure
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Query S:
3 out of 11 nodes are checked.
(root, R2, R8)

R1 R2 R3 root

R7 R8 R9 xx

Check all the objects
in node R8.



R-Trees Querying

• Many MBR overlaps deteriorate query performance
• All nodes get visited in the worst case.

• Key is insertion/split optimization
• Minimize volume by MBR → overlaps.
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Bad split Better split



R+ Tree

• Eliminates overlaps by replication of objects in leaves

• Improves performance of point queries
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A B C P root

K J I

Read the object G.

G H



Bitmap Index
• A bitmap index for an attribute is a data structure composed of:

• A collection of bitmaps (bit-vectors)
• The number of bit-vectors represents the count of distinct values of an attr. in the relation

• Bitmap (bit vector/array) is an array data structure that stores individual bits
• Bit signals the presence of value in the row with the relative index of the bit’s position.

• The length of each bit-vector is the cardinality of the relation.

• It is compressed by Run-length encoding.
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Shop dim Sales fact Bitmap on Shop of Sales
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Bitmap Index

• Records are allocated under permanent numbers.
• There is a mapping between record numbers and record addresses.

• Insertion 
• bit-vectors are extended, and the new record is appended to the table

• Update 
• toggle the bits in the old bit-vector array and in the new one.

• Deletion
• in the fact table → tombstones

• in the index → bit is cleared
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Bitmap Index – Queries

• Combine OR/AND values
• OR/AND bit ops on vectors

• E.g., Saturn | P&C

• Combine different indexes on the same table
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Bitmap Index

• Good for data which has a “small” number of distinct values
• E.g., gender data, clothing sizes
• Thus, the selectivity value is low.

• Combinations of multiple indexes lead to highly-selective predicates.

• Similar performance as B+ tree for static (read-only) data
• also, when all values are distinct

• Many distinct values cause many bit arrays.
• Transform to multiple components and project to decrease it.
• →Multi-component Bitmap Index

• Not very good for range queries on values.
• → Range-encoded Bitmap Index
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Multi-component Bitmap Index

• Encoding using a different numeration system to reduce storage 
space
• E.g., <div,mod> classes

• Idea:
• transform values into more dimensions and project

• intersection of projections gives the original value

• E.g., the month attribute has values between 0 and 11. 
• Encode by X = 3*Z+Y
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Multi-component Bitmap Index

• Encoding using a different numeration system to reduce storage 
space, e.g., <div,mod> classes

• Idea:
• transform values into more dimensions and project

• intersection of projections gives the original value

• E.g., the month attribute
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1 0

A_,1 A_,0A_,2A_,3A1,_ A0,_A2,_

Q1 Q2 Q3 Q4

1st Jan Apr Jul Oct

2nd Feb May Aug Nov

3rd Mar Jun Sep Dec

Encode by X = 3*Z+Y
i.e., June: 5=3*1+2 New bit-arrays



Multi-component Bitmap Index

• If we have 100 (0..99) different days to index we can use a multi-
component bitmap index with the basis of <10,10>

• The storage is reduced from 100 to 20 bitmap-vectors
• 10 for y and 10 for z

• The read-access for a point query (1 day out of 100)
needs however 2 read operations instead of just 1
• plus, the bit-and operation on the bit-arrays
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Range-encoded Bitmap Index

• Requires a logical ordering of values

• Idea:
• set the bit in all bit-vectors of the values following this current one

• range queries will check just 2 bit-vectors
• matches are: NOT previous AND current

• Disadvantage:
• a point query requires reading 2 vectors
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Range-encoded Bitmap Index

• Query: Persons born between March and August
• So, persons who didn’t exist in February but existed in August.

• Just 2 vectors read: ((NOT A1) AND A7)

• Normal bitmap would require 6 vectors to read.
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Index on 
month of birth



Summary of Indexes

• B-Trees are not fit for multidimensional data
• UB-trees can be applicable

• R-Trees may not scale to many dimensions

• Bitmap indexes are typically only a fraction of the size of the indexed 
data in the table

• Bitmap indexes reduce response time for large classes of ad hoc 
queries
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Data Partitioning

• Breaking data into “non-overlapping” parts

• May correspond to the granularity of a dimension and use ranges to 
define partitions of a fact table.

• Improves:
• Business query performance, 

• i.e., minimize the amount of data to scan

• Data availability, 
• e.g., back-up/restore can run at the partition level

• Database administration, 
• e.g., archiving data, recreating indexes, loading tables
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Data Partitioning

• Approaches:
• Logical partitioning by

• Date, Line of business, Geography, Organizational unit, Combinations of these factors, …

• Physical partitioning
• Makes data available to different processing nodes

• Possible parallelization on multiple disks/machines

• Implementation:
• Application level

• Database system
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Data Partitioning: Two Options

• Horizontal – splitting out the rows of a table into multiple tables

• Vertical – splitting out the columns of a table into multiple tables
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Partitioning key



Horizontal Partitioning

• Distributes records into disjoint “tables”

• Typically, “view” over the union of the table is created

• Types of partition function:
• range – a range of values per table
• list – enumeration of values per table
• hash – result of a hash function determines the table

• Data warehouse context:
• Fact table is partitioned by, e.g.,

• Time dimension – weeks, months, or age of data
• Another dim if it does not change often – branch, region

• Individual partitions (tables)
• require defining constraints on their contents

• to use a subset of partitions in query execution
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Vertical Partitioning

• Involves creating tables with fewer columns and using additional 
tables to store the remaining columns
• Usually called row splitting

• Row splitting creates one-to-one relationships between the partitions
• Create a view that merges them

• Different physical storage might be used
• E.g., storing infrequently used or very wide columns on a different device

• Data warehouse context :
• move seldom-used columns from a highly-used table to another

• Sometimes done as a side effect when an “outrigger” dimension is used.

• This is relevant to fact tables and their measure columns!
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Vertical Partitioning (contrast to dimensions)

• Mini-dimension with outrigger is a solution
• Many dimension attributes are used very frequently as browsing constraints

• In big dimensions these constraints can be hard to find among the lesser used ones

• Logical groups of often used constraints can be separated into small dimensions
• which are very well indexed and easily accessible for browsing

• E.g., demography dimension
• Notice the foreign key in

customer
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Summary of Data Partitioning

• Advantages
• Records used together are grouped together
• Each partition can be optimized for performance
• Security, recovery
• Partitions stored on different disks reduce contention
• Take advantage of parallel processing capability

• Disadvantages
• Slow retrieval across partitions (expensive joins in vertical partitioning)
• Complexity

• Recommendations
• A table is larger than 2GB (from Oracle)
• A table has more than 100 million rows (practice)
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Join Optimization in DWH

• Queries over several dimensions are often needed
• This results in joins over the tables

• Though joins are generally expensive operations, the overall cost of the query 
may strongly differ with the chosen evaluation plan for the joins

• Joins are commutative and associative
• R ⋈ S ≡ S ⋈ R

• R ⋈ (S ⋈ T) ≡ (S ⋈ R) ⋈ T

October 31, 2024 PA220 DB for Analytics 33



Join Optimization

• This allows evaluating individual joins in any order
• Results in join trees

• Different join trees may show very different evaluation performance

• Number of possible join trees may grow rapidly (n!)

• DBMS optimizer considers
• statistics to minimize result size

• all possibilities → impossible for large n

• heuristics to pick promising ones
• when the number of relations is high (e.g., >6)

• e.g., genetic algorithms
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Join Selection Heuristics

• Join relations that relate by an attribute/condition
• which avoids cross joins

• Minimize the result size (A is the common attr.)

•
𝑇 𝑅 ∗𝑇(𝑆)

max(𝑉 𝑅,𝐴 ,𝑉 𝑆,𝐴 )

• Availability of indexes and selectivity of 
other conditions

• User tuning
• Hints in Oracle
• Change join_collapse_limit in PostgreSQL
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Join Selection Heuristics in DWs

• OLTP’s heuristics are not suitable in DWs
• E.g., join Sales with Geo in the following case:

• Sales has 10 mil records, in Germany there are 10 stores, 
in January 2016 there were products sold in 20 days, and 
the Electronics group has 50 products

• If 20 % of our sales were performed in Germany, 
• the selectivity value is high.

• so, an index would not help that much

• The intermediate result would still comprise 2 mil records
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Join Selection Heuristics in DWs

• The cross join of the dimension tables is recommended
• Geo dimension – 10 stores in Germany

• Time dimension – 20 days in Jan 2016

• Product dimension – 50 products in Electronics

• 10m facts in Sales

• 10*20*50 = 10,000 records after performing the cross product

• But can also be expensive!

• Cross-join of dimensions allows
• a single pass over Sales

• using an index on the most selective attribute yet.
October 31, 2024 PA220 DB for Analytics 37



Join Selection Heuristics in DWs

• If cross join is too large, intersect partial joins
• applicable when all dimension FKs are indexed

• in fact, it is a semi-join (no record duplication can take place)
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Summary of Joins

• Prefer a cross-join on dimensions
• If not all dimension FKs are indexed

• Intersect semi-joins otherwise

• Avoid standard DBMS’s plans
• But check the plan first ☺
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Materialized Views

• Views whose tuples are stored in the database are said to be 
materialized

• They provide fast access, like a (very high-level) cache

• Need to maintain the view’s contents as the underlying tables change
• Ideally, we want incremental view maintenance algorithms

October 31, 2024 PA220 DB for Analytics 40



Materialized Views

• How can we use MV in DW?
• E.g., we have queries requiring us to join the Sales table with another 

dimension table and aggregate the result
• SELECT P.Categ, SUM(S.Qty) FROM Product P, Sales S WHERE P.ProdID=S.ProdID

GROUP BY P.Categ

• SELECT G.Store, SUM(S.Qty) FROM Geo G, Sales S WHERE G.GeoID=S.GeoID
GROUP BY G.Store

• …

• There are more solutions to speed up such queries
• Pre-compute the two joins involved (product with sales and geo with sales)

• Pre-compute each query in its entirety

• Or use a common and already materialized view
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Materialized Views

• Having the following view materialized
• CREATE MATERIALIZED VIEW Totalsales(ProdID, GeoID, total) AS 

SELECT S.ProdID, S.GeoID, SUM(S.Qty) FROM Sales S
GROUP BY S.ProdID, S.GeoID

• We can use it in our queries
• SELECT P.Categ, SUM(T.Total) FROM Product P, Totalsales T 

WHERE P.ProdID=T.ProdID GROUP BY P.Categ

• SELECT G.Store, SUM(T.Total) FROM Geo G, Totalsales T 
WHERE G.GeoID=T.GeoID GROUP BY G.Store
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Materialized Views - Issues

• Choice of materialized views
• What views should we materialize, and what indexes should we build on the 

pre-computed results?

• Utilization
• Given a query and a set of materialized views, can we use the materialized 

views to answer the query?

• Maintenance
• How frequently should we refresh materialized views to make them 

consistent with the underlying tables?

• And how can we do this incrementally?
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Materialized Views: Utilization

• Utilization must be transparent
• Queries are internally rewritten to use the available MVs by the query 

rewriter

• The query rewriter performs integration of the MV based on the query 
execution graph
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Materialized Views: Utilization

• E.g., mono-block query (perfect match)
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Materialized Views: Utilization

• Correctness:
• A query Q` represents a valid replacement of query Q by utilizing the 

materialized view M, if Q and Q` always deliver the same result.

• Implementation requires the following:
• The selection condition in M cannot be more restrictive than the one in Q.

• The projection from Q must be a subset of the projection from M.

• It must be possible to derive the aggregation functions in Q from ones in M.

• Additional selection conditions in Q must also be possible on M.
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Materialized Views: Integration

• A way to integrate a more restrictive view:
• Split the query Q in two parts, Qa and Qb, such that 

• σ(Qa) = (σ(Q) ⋀ σ(M)) and

• σ(Qb) = (σ(Q) ⋀ ¬σ(M))
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Materialized Views & DWs

• Often store aggregated results

• For a set of “n” group-by attributes, there are 2n possible combinations
• Too many to materialize all

• What to materialize?
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Materialized Views & DWs

• Choosing the views to materialize
• Static choice:

• The choice is performed at a certain time point 
• by the DB administrator (not very often) or by an algorithm

• The set of MVs remains unmodified until the next refresh

• The chosen MVs correspond to older queries

• Dynamic choice:
• The MV set adapts itself according to new queries
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Views to Materialize

• Static choice
• Choose which views to materialize, in concordance with the “benefit” they bring

• The benefit is computed based on a cost function

• The cost function involves
• Query costs
• Statistical approximations of the frequency of the query
• Actualization/maintenance costs

• Classical knapsack problem – a limit on MV storage and the cost of each MV
• Greedy algorithm

• Input: the lattice of cuboids, the expected cardinality of each node, and the maximum storage 
size available to save MVs

• It calculates the nodes from the lattice which bring the highest benefit according to the cost 
function, until there is no more space to store MVs

• Output: the list of lattice nodes to be materialized
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Views to Materialize

• Disadvantages of static choice
• OLAP applications are interactive

• Usually, the user runs a series of queries to explain a behavior he has observed, which 
happened for the first time
• So now the query set comprises hard to predict, ad-hoc queries

• Even if the query pattern is observed after a while, it is unknown for how 
much time the pattern will remain valid
• Queries are always changing

• Often modification to the data leads to high update effort

• There are, however, also for OLAP applications, some often repeating 
queries that should in any case be statically materialized.
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Views to Materialize

• Dynamic choice
• Monitor the queries being executed over time

• Maintain a materialized view processing plan (MVPP) by incorporating most 
frequently executed queries

• Modify MVPP incrementally by executing MVPP generation algorithm
• as a background process

• Decide on the views to be materialized

• Reorganize the existing views

• It works on the same principle as caching, but with semantic knowledge
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Views to Materialize

• Dynamic choice
• Updates of cached MV:

• In each step, the cost of MV in the cache as well as of the query is calculated
• All MVs as well as the query result are sorted according to their costs
• The cache is then filled with MV in the order of their costs, from high to low
• This way it can happen that one or more old MVs are replaced with the current query

• Factors consider in the cost function:
• Time of the last access
• Frequency of query
• Size of the materialized view
• The costs a new calculation or actualization would produce for a MV
• Number of queries which were answered with the MV
• Number of queries which could be answered with this MV
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Maintenance of Materialized Views

• Keeping a materialized view up-to-date with the underlying data
• How do we refresh a view when an underlying table is refreshed?
• When should we refresh a view in response to a change in the underlying table?

• Approaches:
• Re-computation – re-calculated from the scratch
• Incremental – updated by new data, not easy to implement

• Immediate – as part of the transaction that modifies the underlying data tables
• Advantage: materialized view is always consistent
• Disadvantage: updates are slowed down

• Deferred – some time later, in a separate transaction
• Advantage: can scale to maintain many views without slowing updates
• Disadvantage: view briefly becomes inconsistent
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Maintenance of Materialized Views

• Incremental maintenance
• Changes to database relations are used to compute changes to the 

materialized view, which is then updated

• Considering that we have a materialized view V, and that the basis relations 
suffer modifications through inserts, updates or deletes, we can calculate V` 
as follows
• V` = (V - Δ-) ∪ Δ+, where Δ- and Δ+ represent deleted and inserted tuples, respectively
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Maintenance of Materialized Views

• Deferred update options:
• Lazy

• delay refresh until next query on view, then refresh before answering the query

• Periodic (Snapshot)
• refresh periodically – queries are possibly answered using outdated version of view 

tuples

• widely used in DWs

• Event-based
• e.g., refresh after a fixed number of updates to underlying data tables
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Summary

• The term selectivity and its interpretation.

• Bitmap indexes are universal, space-efficient

• UB-trees, R*-trees, X-trees for multidimensional data

• Partitioning
• Records used together should be stored together
• Mini-dimension

• Joins
• Computing cross join on dimension table is an option

• Materialized views can replace parts of a query
• Select what to materialize (not everything) statically or dynamically
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