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ETL Process Overview
• Data is periodically brought from the ODS to the data warehouse.

• In most DW systems, the ETL process is the most complex part.
• and the most underestimated and time-consuming part.

• Often, 80% of development time is spent on ETL
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Data Staging Area

• Transit storage for data underway 
in the ETL process
• Transformations/cleansing done here

• No user queries (some do it)

• Sequential operations (few) on large data volumes
• Performed by central ETL logic
• Easily restarted
• No need for locking, logging, etc.
• RDBMS or flat files? (DBMS have become better at this)

• Finished dimensions copied from the staging area to relevant marts
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ETL Process Types

• When do we run the ETL process?
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ETL Process Types

• Considerations:
• Overhead on data warehouse and source sides.

• E.g., online propagation puts a permanent burden on both sides; cannot benefit from 
bulk loading mechanisms

• Data Staleness
• Frequent updates reduce staleness but increase overhead.

• Debugging, Failure Handling
• With online/stream-based mechanisms, it may be more difficult to track down problems.

• Different process for different flavors of data?
• E.g., periodic refresh may work well for small (dimension) tables.
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Data Extraction: Getting Data

• Source→ Staging Table:
• Tool selection depends on data source 

• database, XML, flat files, etc.

• Use SQL, XQuery, Perl, awk, etc. to query the source system

• Often:
• Extract source data to flat file (e.g., CSV)

• Then bulk-load into staging table

• Data compression for large data transfers

• Data encryption if transfer over public networks
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Data Extraction: Capturing Data Changes

• Detecting changes is a challenge:
• Audit Columns

• E.g., “last modified” timestamp
• Set timestamps or “new” flags on every row update. How?
• Unset “new” flags on every load into the DW. Why?

• Full Diff
• Keep old snapshot and diff it with the current version.
• Thorough, will detect any change
• Resource-intensive: need to move and scan large volumes
• Optimization: Hashes/checksums to speed up comparison

• Database Log Scraping
• The database’s write-ahead log contains all change information
• Scraping the log may get messy, though.
• Variant: create a message stream ODS → DW

• Message Queue Monitoring
• The source system must use a messaging framework; then low overhead
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Data Cleansing

• After extraction, data must be normalized and cleaned.
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Data Quality (Revision)

• Data in DW must be:
• Precise

• DW data must match known numbers - or explanation needed

• Complete
• DW has all relevant data, and the users know

• Consistent
• No contradictory data: aggregates fit with detail data

• Unique
• The same thing is called the same and has the same key (customers)

• Timely
• Data is updated ”frequently enough” and the users know when

• Data almost never has decent quality
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Data Cleansing

• Problem:
• Real-world data is messy.

• Consistency rules in the OLTP system?
• A lot of data is still entered by people.

• Data warehouses serve as an integration platform.

• Typical cleaning and normalization tasks:
• Correct spelling errors / data type conversion.

• Handle missing / null values.

• Identify record matches and duplicates.

• Resolve conflicts and inconsistencies.

• Normalize (“conform”) data.
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Data Cleansing: Primitives

• Parsing
• E.g., source table has an ‘address’ column; whereas target table has ‘street’, 

‘zip’, and ‘city’ columns; pieces of a string to normalize (e.g., “Road” → “Rd”)

• Similarity Join – bring together similar data
• For record matching (same entity recognition) and deduplication

• Clustering – put items into groups, based on “similarity”
• E.g., pre-processing for deduplication

• Outlier detection – values ​​not matching the pattern
• E.g., failure of a sensor; detection of a new “class” / entity
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Data Cleansing: Similarity Join

• Process of identifying duplicates:

• Similarity measures: 
• edit distance, Jaccard coefficient, Soundex

• Threshold of similarity is important
• Limits the number of candidates for duplicates!
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Similarity Join – Edit distance

• What is the “similarity” between strings s1 and s2?

• dedit(s1,s2) = min. number of operations to transform s1 into s2

• E.g., s1 = “Sweet” and s2 = “Sweat”

• Levenshtein distance – ins, del, replace only

• Longest common subsequence (LCS) – ins, del only
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Similarity Join – Jaccard coefficient

• Similarity of two sets S1 and S2

• by comparing cardinalities of intersection and union

• Example
• q-grams: converting a string to a set

• i.e. a set of all substrings of length q

• 2grams(“Sweet”) = { Sw, we, ee, et }
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Similarity Join – SoundEx

• Phonetic algorithm to index words by sound
1. Retain the first letter

2. Replace letters with numbers
• Mapping of alike sounds to the same number

• If no mapping, drop the letter

3. Drop letters where the preceding letter
yielded the same number.

4. Collect three numbers, fill with zero’s
if necessary.
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Similarity Join – Algorithms

• Naïve strategy
• O(n2)

• Blocking naïve strategy
• Assume b blocks and compare only within 
• O(1/2 (n2/b – n))

• Sorted neighborhood
• Sort the inputs and scan with sliding windows of w

• Index to accelerate similarity range query R(q,threshold)
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Similarity Join – Naïve strategy

• Compare every record with each other
• Assume symmetry of distance
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Similarity Join – Blocking naïve strategy

• Partition input data into blocks
• Duplicates must end in the same block!
• Disadv: typically, uneven block sizes…

• Compare all pairs within blocks only

• E.g. for matching customers
• Use their ZIP code (assuming ZIP has not changed, customer has not moved)
• Use first character of last name

October 25, 2024 PA220 DB for Analytics 19

Source: Jens Teubner Data Warehousing 



Similarity Join – Sorted neighborhood

• Assign a sort key to each record

• Sort the records

• Apply a sliding window of size w 
across the sorted list and join within.

• E.g., sort customers by
• First 3 consonants of last name

• First letter of last name and first 2 digits of ZIP code
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Data Cleansing: Detecting Inconsistencies

• Data (quality) screening system:
• Column screens: Test data within a column

• Correct value ranges, value formatting, null values?
• Detect random/noise values

• Structure screens: Relationship across columns
• Two or more columns implement a hierarchy (e.g., a series of m:n relationships)
• Foreign key relationships between tables
• Combination of columns is a valid item, e.g., an existing postal address

• Business rule screens: Data plausible according to business rules?
• E.g., customer status X requires Y years of loyalty, Z EUR total revenue in previous period
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Data Cleansing: Error Handling

• Halting the process on error
• requires manual intervention – diagnose, restart/resume the job or abort it

• Create a suspense file (logging)
• Log the errors in a side channel for later processing
• Not clear when to handle its contents – fix the records and re-introduce to the 

job?
• until these data items are restored, the overall DB integrity is questionable

• Tag the data and continue
• Bad fact records – create an audit dimension
• Bad dimension data – use unique error values
• Best solution whenever possible
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Data Cleansing: Error Handling by Logging 
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• A special error event schema can be created
• as a result of “Tag the data and continue“

• Grain corresponds to 
the error appearance
• Batch dim – info of the job

• Date dim – not a minute 
and sec of the error
• rather a weekday, last day of fiscal period,

to constraint / summarize errors

• Time of day – timestamp 
when the error occurred



Data Cleansing: Error Handling by Tagging
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• Audit dimension
• attached to the resulting fact table

• created in data cleansing

• stores audit conditions

• Example
• an ETL job finished with no error

• a new audit rec. describing it is created

• all new fact records are associated with it

• if an error occurred (e.g., out of bounds)
• another audit rec is created, and the failing fact records get attached



Improving Data Quality

• Appoint ”data stewards” - responsible for data quality
• A given steward has the responsibility for certain tables
• Includes manual inspections and corrections!

• DW-controlled improvement
• Default values
• ”Not yet assigned 157” note to data steward

• Source-controlled improvements
• The optimal?

• Construct programs that check data quality
• Are totals as expected?
• Do results agree with alternative source?

• Do not fix all problems with data quality
• Allow management to see ”weird” data in their reports?
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Data Transformation: Schema Integration

• Different source systems, types, and schemas must be integrated.

• Infer mapping between schemas (automatically)?

• Tools:
• Compare table and attribute names; consider synonyms and homonyms
• Infer data types/formats and mapping rules
• Techniques like similarity joins and deduplication.

• Still:
• Often a lot of manual work needed.
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Data Loading: Prepare Dimension Tables

• For each dimension do the following checks:
• Dimension row is new

• Generate the surrogate keys

• Attributes in dimension have changed

• Handle updates respecting 
SCD type of dimension
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Data Loading: Prepare Dim Tables - Problems

• “upsert” – update if exists, else insert (aka SQL-based update)
• often a real performance killer
• better: separate updates and bulk-load inserts

• Generate and find dimension surrogate keys
• e.g., use key generator of back-end DB
• Maintain “Dim Cross Ref” table in memory or in back-end DB

• Dimensions must be updated before facts
• The relevant dimension rows for new facts must be in place
• Special key considerations if initial load must be performed again

• May re-compute aggregates (Type 1 updates)
• again, bulk-loading/changing is a good choice
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Data Loading: Performance Tips

1. Turn off logging
• Databases maintain a write-ahead log to implement failure tolerance 

mechanisms.

• Row-by-row logging causes huge overhead.

2. Disable indexes and reindex after updates

3. Pre-sort data
• Depending on system, may speed up index construction.

• Additional benefit: may result in better physical layout

4. Truncate table
• When loading from scratch
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Loading Data – Performance Tips

5. Enable “fast mode”
• If data is prepared properly, database may use faster parsing mechanisms

• e.g., “copy from” command

6. Make sure data is correct
• Transformation, field truncation, error reporting may slow down bulk-loading 

significantly

7. Temporarily disable integrity control
• Avoid checking during load, but do it in bulk, too.

• e.g., foreign keys in the fact table
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Loading Data – Performance Tips

8. Parallelization
• Dimensions can be loaded concurrently

• Fact tables can be loaded concurrently
• Partitions of one fact table can be loaded concurrently

• when horizontal partitioning is used
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Hints on ETL Design

• Do not try to implement all transformations in one step!

• Do one (or just a few) thing(s) at a time
• Copy source data one-one to staging area
• Compute deltas

• Only if doing incremental load

• Handle versions and generate DW keys
• Versions only if handling slowly changing dimensions

• Implement complex transformations
• Load dimensions
• Load facts
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General Issues / Decisions

• Files versus streams/pipes
• Streams/pipes: no disk overhead, fast throughput
• Files: easier restart, often the only possibility

• ETL tool or self-coding
• Code: easy start, co-existence with IT infrastructure
• Tool: better productivity on subsequent projects

• Load frequency
• ETL time depends on processed data volumes.

• Daily load is much faster than monthly.
• Applies to all steps in the ETL process

• Should DW be on-line 24/7?
• Use partitions or several sets of tables
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Summary

• ETL is very time consuming (80% of entire project)
• Needs to be implemented as a sequence of many small steps

• Types of ETL processes

• Extraction of data from source systems might be very time consuming
• Incremental approach is suggested

• Transformation into DW format includes many steps, such as
• building key, cleansing the data, handle inconsistent/duplicate data, etc.

• Load includes the loading of the data in the DW, updating indexes, 
computing pre-aggregates, etc.

• Performance issues and tips
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