
PA230: Reinforcement Learning

Petr Novotný

“Good and evil, reward and punishment, are the only motives
to a rational creature; these are the spur and reins whereby
all mankind are set on work and guided.”

John Locke, Some Thoughts Concerning Education (1693)
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Organizational Information



General

• Lecture: Thursdays 2-3:40p.m.

• Homework: see the interactive syllabus in IS
• mainly binary classification (accepted/not accepted)
• all your homeworks need to be marked as passed to proceed to exam
• can (but do not have to) be done in pairs (pairs can differ across the individual assignments)
• for those who passed, the teacher will receive feedback on the general quality of the

solutions for each student - can be taken into account when determining the final grade
(typically in students’ favor)

• Exam:
• oral
• each attempt counts ? (unlike the Brázdil system)
• in general, knowledge of anything mentioned on the slides can be required, unless explicitly

marked with “nex” (like the Brázdil system)
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Team

• Lecturer: Petr Novotný

• HW team:

Martin Kurečka Václav Nevyhoštěný Vít Unčovský 3/189



Communication

Official discord server:

https://discord.gg/9mxTgYhcdB

• Official communication forum of the course: falls under the university ethical guidelines.

• Use your real name for posting (you can set-up an account under your IS email if
necessary).
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Reading

• Compulsory:
• these slides,
• material explicitly prescribed by these slides (not much).

• Recommended:
• Sutton & Barto: Reinforcement Learning: An Introduction (2nd ed.), available at

http://incompleteideas.net/book/RLbook2020.pdf
• henceforth referenced as “S&B”

• slides by David Silver https://www.davidsilver.uk/teaching/
• CMU slides https://www.andrew.cmu.edu/course/10-703/
• more specific literature recommendations will be given for each topic later
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Reinforcement Learning:
What, Why, When, How,
& Other Questions



Types of machine learning

• unsupervised
• spot ”useful” patterns in data

• supervised
• given labeled data, predict labels on unlabeled data

• reinforcement
• agents and decision-making
• agency = “the ability to take action or to choose what action to take” (Cambridge

Dictionary)
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General RL scheme

source: Sutton&Barto, p. 48

Keywords: sequential, dynamic, subject to uncertainty
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RL: Objective and approach

• Objective: Design a decision policy (= agent behavior) which prescribes to the agent how
to act in different situations (states), typically so as to achieve some goal.

• Approach: Start with (± random) behavior and adapt it based on past experience via the
law of effect:

• actions with good/bad consequences for the agent are more/less likely to be repeated by the
agent (within the same context)
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RL in psychology (nex)

I.P. Pavlov
(1849-1936)
classical conditioning

E. Thorndike
(1874-1949)
law of effect

J.B. Watson
(1878-1958)
behaviorist manifesto

B.F. Skinner
(1904-1990)
radical behaviorism,
reinforcement,
rewards
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Learning by trying & XX dilemma

Underlying the RL approach is the idea of learning by trying:

• first, act more or less randomly (exploration)
• integral part of early human development

• continually adapt behavior according to experience and feedback from the environment
(exploitation)

• strength of feedback ≈ strength of behavior adaptation

Balancing exploration and exploitation (XX) is a recurring theme in RL.
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Incomplete history of RL in computer science I

“Learning by trying” machines and software, ad hoc approaches:

A. Turing
(1912-1954)
1948: theoretical
“pleasure & pain” system
to train computers

C. Shannon
(1916-2001)
1950: Theseus
maze-solving mouse

M. Minsky
(1927-2016)
1950s: analog neural net
machines (SNARCS)

And many more. . .
Recommended: S&B: Sec. 1.7.
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Incomplete history of RL in computer science II

Mathematical foundations of sequential decision making:

R. Bellman
(1920-1984)

R. Howard
(b. 1934)

• Formalization via Markov decision
processes (MDPs)

• value iteration
(attributed to Bellman, 1957)

• policy iteration
(attributed to Howard, 1960)
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Incomplete history of RL in computer science III

Since late 1980’s: synthesis – learning by trial in MDPs

R. Sutton A. Barto

Temporal difference learning

C. Watkins

Q-learning

. . . and many more. 13/189



Successes of RL (nex)
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Words of caution (and controversy) (nex)
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Mathematical Foundations
of Sequential Decision-Making



MDP Example

MDP with actions, rewards and transition probabilities.

start next passed

sleep

study: -2 1 study: -2 1

done: 20

1

done: 0 1

procrast.: 4

1 leave: -1

1
2

1
2

procrast.: -1 1

pub: +4

0.3
0.4

0.3
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Markov Decision Process

Given a set X , we denote D(X ) the set of all probability distributions over X .

Definition 1

A Markov decision process (MDP) is a tuple (S,A, p, r) where

• S is a set of states,

• A is a set of actions,

• p : S ×A→ D(S) is a probabilistic transition function,

• r : S ×A→ R is a reward function.

We will shorten p(s, a)(s ′) to p(s ′ | s, a).

The p, r can be partial functions: action a is enabled in state s if both p(s, a) and r(s, a) are
defined. We denote by A(s) the set of all actions enabled in s.
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Dynamics of MDPs

• start in some initial state s0

• MDP evolves in discrete time steps t = 0, 1, 2, 3, . . .
• in each time step t, let st be the current state; then:

• agent selects action at ∈ A(st)

• the environment responds with next state st+1 ∼ p(st , at) and with immediate reward
rt+1 = r(st , at)

• t is incremented and the process repeats in the same fashion forever

Thus, the agent produces a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ..

τ is produced randomly (due to p and possibly also agent choices being probabilistic): it is a
random variable and so are its components: we define random variables

• St = state at time step t

• At = action at time step t

• Rt = reward received just before entering St
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Policies

Definition 2

A history is a finite prefix of a trajectory ending in a state, i.e., an object of type

s0, a0, r1, s1, a1, r2, . . . , at−1, rt , st ∈ (S ·A · R)∗S.

we denote by last(h) the last state of a history h.

Definition 3

A policy is a function π : (S · A · R)∗S → D(A) which to each history h assigns a
probability distribution over A(last(h)).

A policy is by definition an infinite object!
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MD policies

Definition 4

A policy π is:

• memoryless if π(h) = π(h′) whenever last(h) = last(h′) (we can view memoryless
policies as objects of type π : S → D(A));

• deterministic if π(h) always assigns probability 1 to one action, and zero to all
others (we can view det. policies of objects of type π : (S ·A · R)∗S → A).

Definition 5

A policy π is MD (memoryless deterministic) if it is both memoryless and deterministic.
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Dynamics of MDPs (more precise)

Given a distribution I of initial states and a policy π

• start in some initial state s0 ∼ I

• MDP evolves in discrete time steps t = 0, 1, 2, 3, . . .

• in each time step t, let ht be the history produced so far; then:
• agent selects action at ∈ A(st) according to π, i.e. at ∼ π(ht)

• the environment responds with next state st+1 ∼ p(st , at) and with immediate reward
rt+1 = r(st , at), the history is extended by at , rt , st+1,

• t is incremented and the process repeats in the same fashion forever
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Probability space induced by a policy

In particular, each policy π together with a distribution I of initial states induce a probability
measure Pπ over the trajectories of the MDP.1

We denote by Eπ the associated expected value (expectation) operator.

We denote by Pπ[E | S0 = s] the probability of event E provided that the initial state is fixed
to s (and similarly for expectations).

Exercise 6

In the “study” MDP, consider an MD policy π s.t. π(start) = study and π(next) = pub.
Compute the following quantities:

• Pπ[visit pub at least twice′ | S0 = start ′′]

• Pπ[visit pub at exactly twice | S0 = start ′′]

• Eπ[R1]

• Eπ[R3]

1I is typically known from the context and hence omitted from the notation
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Memorylessness

In this course, we will almost exclusively focus on memoryless policies. Hence, from now on,
policy = memoryless policy. General policies will be referred to as history-dependent policies
should the need arise.

Why memoryless?

Intuition: Markov property of MDPs: next step depends only on the current state and on
action performed in the current step. Hence, intuitively there is no need for a policy to
remember the past so as to “play well”.

The sufficiency of memoryless policies does not extended to more general/complex
decision-making settings (not covered in this course), such as:

• partially observable MDPs

• non-stationary environments

• quantile/risk-aware MDPs, etc.
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Returns (payoffs)

Definition 7

Let γ ∈ [0, 1) be a discount factor.
For a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . we define the discounted return
(or payoff) of τ to be the quantity

G (τ) = r1 + γ · r2 + γ2 · r3 + · · · γ3 · r4 =
∞∑
i=0

γ i · ri+1.

Equivalently

G =
∞∑
i=0

γ i · Ri+1.
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Returns (variants)

• Finite horizon (FH): additionally, we are given a finite decision horizon H ∈ N ∪ {∞}. The
return is that counted only up to step H:

GH =
H−1∑
i=0

γ i · Ri+1

For finite H, the discount factor can be 1. H =∞ corresponds to the original definition.

• Episodic returns: In episodic tasks, there is a distinguished set Term ⊆ S of terminal
states which is guaranteed to be reached with probability 1 under any policy. We denote
by T a random variable denoting the first point in time when we hit a terminal state. We
count rewards only up to that time:

GT =
T−1∑
i=1

γ i · Ri+1

Can be modeled under original definition by “sink” states.
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Types of returns: discussion

• We will typically omit the superscripts since the type of task considered will be known
from the context.

• We have GH → G (pointwise) as H →∞. I.e., finite-horizon returns with high enough H

approximate the standard (infinite-horizon) case.

• In real world, we typically deal with FH or episodic tasks: we cannot wait infinite time to
learn something from a trajectory. However, the infinite-horizon case can be viewed as a
neat mathematical abstraction of the FH&episodic tasks, and the classical sequential
decision-making theory is most developed for the infinite horizon case.
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Policy and state values

Definition 8

Let π be a policy and s a state. The value of π in state s is the quantity

vπ(s) = Eπ[G | S0 = s].

Exercise 9

Discuss the values of MD policies in our running example.

Definition 10

The (optimal) value of state s is the quantity

v∗(s) = sup
π

vπ(s).
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Optimality

Definition 11

Let π be a policy and ε > 0. We say that π is ε-optimal in state s if

vπ(s) ≥ v∗(s)− ε.

We say that π is optimal in s is it is 0-optimal in s, i.e. if

vπ(s) = v∗(s).

A policy is (ε-)optimal if it is (ε-)optimal in every state.
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Existence of optimal policies

Theorem 12: (Classical result, not formally proven here)

Let M be a finite MDP (i.e., the state and action sets are finite) with infinite-horizon
returns. Then there exists an optimal MD policy. Moreover, an optimal MD policy can
be computed in polynomial time.

Agent control solved? NO! “Only” works if you can actually construct the MDP model of your
environment and fit it into a computer. Otherwise, we use reinforcement learning.
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Exact Planning
with Known Model:
Value & Policy Iteration



Goal of this lecture

Algorithms that compute the optimal value vector v∗ and some optimal MD policy π∗ given a
full knowledge of an MDP M.
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Polynomial-time algorithm

MDPs can be solved by linear programming (LP)

maximize c⃗ · x⃗

subject to A · x⃗ ≤ b⃗

• LP can be solved in polynomial time by so-called interior-point algorithms.

• However, we typically use other, MDP-specific algorithms: value iteration (VI) and policy
iteration (PI). These are not polynomial-time in general, but typically faster on practical
instances.

• Moreover, most truly RL algorithms can be seen as approximate generalizations of VI or PI
(or both).
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Example: Policy evaluation

Exercise 13

Consider all four MD policies in our running “pub or study” example that always try to
quit when in X state. Compute the values of these policies in the initial state start.
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Policy evaluation equations

Theorem 14

For any memoryless policy π and any state s it holds:

vπ(s) =
∑

a∈A(s)

π(a|s) ·

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · vπ(s ′)

]
︸ ︷︷ ︸

def
= qπ(s,a)

.
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Bellman optimality equations

Theorem 15

The following holds for any state s:

v∗(s) = max
a∈A(s)

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · v∗(s ′)

]
︸ ︷︷ ︸

def
= q∗(s,a)

• Note: the policy evaluation equations are a special case of the Bellman ones: given a
policy π, we can consider an MDP Mπ in which there is a single action ∗ enabled in each
state and the probability of transition s

∗→ s ′ equals
∑

a∈A(s) π(a|s) · p(s ′|s, a). Then Mπ

mimics the behavior of π in M and Bellman eq’s in Mπ = evaluation equations for π in
M.

• But these equations are no longer linear! How do we solve them? Is the solution even
unique?
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Bellman update operator

The right-hand-side (RHS) of the Bellman equations can be viewed as an operator
Φ: RS → RS : for any x⃗ ∈ RS , Φ(x⃗) is a vector such that for any state s:

Φ(x⃗)(s)
def
= max

a∈A(s)

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · x⃗(s ′)

]

Exercise 16

In our running example, compute Φ(⃗0).

Theorem 15 says that the optimal value vector v∗ is a fixed point of Φ:

v∗ = Φ(v∗).
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Mathematical hammers for Bellman

Lemma 17: (not proven here)

For any discount factor γ ∈ [0, 1), the Bellman operator Φ is a contraction, i.e. for any
pair of vectors x⃗ , y⃗ it holds

∥x⃗ − y⃗∥∞ ≤ γ · ∥Φ(x⃗)− Φ(y⃗)∥∞.

Theorem 18: Banach fixed point theorem (classical calculus, not proven here)

A contraction mapping from a complete metric space (in particular, Rn) to itself has a
unique fixed point.
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Exact characterization of v ∗

Corollary 19

The optimal value vector is a unique solution of the Bellman optimality equations.

In particular, also the policy evaluation equations have a unique solution, equal to vπ. Since the
policy evaluation equations are linear, their solution can be computed by Gaussian elimination.

But the general Bellman equations are not linear. How can ve solve them?
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Banach fixpoint theorem (full)

Theorem 20: Banach fixed point theorem (full version, not proven here)

A contraction mapping Φ from a complete metric space (in particular, Rn) to itself has
a unique fixed point z⃗ .

Moreover, z⃗ is the limit of iterative applications of Φ on any initial vector. I.e., for any
x⃗0 ∈ Rn, the sequence x⃗0,Φ(x⃗0),Φ(Φ(x⃗0)),Φ

(3)(x⃗0), . . . converges to z⃗ :

z = lim
i→∞

Φ(i)(x⃗0)
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Value iteration (VI; Bellman, 1957)

Algorithm 1: Value iteration
Input: MDP M = (S,A, p, r)

Output: Approximation ṽ of v∗

x ← any vector from R|S| ; // typically 0⃗
next ← x ;
repeat

foreach s ∈ S do
next(s)← max

a∈A(s)
[r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · x⃗(s ′)]︸ ︷︷ ︸
Φ(x)(s)

;

x ← next
until termination condition;

Typical term. conditions:

• after a fixed no. of iterations (i.e., use for-loop with a fixed bound)
• after each component of x changes less then some given ε 39/189



How to use VI

By the Banach fixpoint theorem (and Lemma 17), the value of variable x VI converges to v∗.
Can we recognize when is x “close enough” to x⃗?

In the following couple of theorems, let x⃗0, x⃗1, x⃗2, . . . be the sequence of vectors computed by
VI, i.e. x⃗0 is arbitrary and x⃗i+1 = Φ(x⃗i ) for all i ≥ 0.

Theorem 21: Stopping condition (not proven here)

For any ε > 0: if

∥x⃗i+1 − x⃗i∥∞ ≤ ε · 1− γ

γ
,

then
∥x⃗i+1 − v∗∥∞ ≤ ε
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How to use VI (2)

How fast can we get to the point where we are close enough?

Theorem 22: Speed of convergence (not proven here)

For all i ≥ 0 it holds

∥x⃗n − v∗∥∞ ≤
γn

1− γ
· ∥x⃗1 − x⃗0∥∞.

In particular, if we terminate VI after

i =


log(ε) + log

(
1−γ

∥x⃗1−x⃗0∥∞

)
log(γ)


steps, then its output xi will be an ε-approximation of v∗.
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How to use VI (3)

Can we actually get some optimal values instead of approximations?

First, note that VI
computes optimal finite-horizon values:

Let v i = supπ Eπ[
∑H

i=1 γ
i−1 · Ri ]. The supremum is over all (i.e., history dependent) policies,

since in the FH problem an optimal policy needs to track the number of elapsed (and thus
remaining) steps: memory is needed for that.

Theorem 23: (Easy but important exercise)

If x⃗0 = 0⃗, then x⃗H = vH for all H ≥ 0.
Moreover, let πH be a deterministic history-dependent policy such that for all 1 ≤ i ≤ H,
whenever there are i steps remaining till the horizon, the policy πH selects in state s an
action a s.t.

a = argmax
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′|s, a) · x⃗i−1(s
′)]

(with ties broken arbitrarily). Then πH is an optimal H-step policy.
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Greedy policies

Can we actually get optimal policy for the inf. horizon problem?

Definition 24: x⃗-greedy policy (very important)

Let x⃗ ∈ RS be any vector. A x⃗-greedy policy is an MD policy π such that in any state s:

π(s) = argmax
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′|s, a) · x⃗(s ′)].
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How to use VI (4)

Theorem 25: Optimal inf.-horizon policy from VI (not proven here)

There is a number N polynomial in size of the MDP and exponential in the binary
encoding size of γ such that a policy π that is x⃗N -greedy is optimal in every state, i.e.
vπ = v∗.

Note that once π is computed, vπ can be computed in polynomial time via policy evaluation
equations.

Hence, VI can be said to solve MDPs in exponential time (and in polynomial time if the
discount factor is assumed to be a fixed constant instead of an input parameter), though the
approximate version is typically used in practice.

Note: the fact that some policy π is x⃗-greedy does not mean that vπ ≥ x⃗! Homework: find a
counterexample and post it to Discord.

However, for VI it can be shown that if ∥x⃗i+1 − x⃗i∥∞ ≤ ε · 1−γ
γ (stopping condition from

Theorem 21), then an x⃗i+1-greedy policy is ε-optimal. 44/189



Policy improvement

start next passed

sleep

study: -2 1 study: -2 1

done: 20

1

done: 0 1

procrast.: 4

1 leave: -1

1
2

1
2

procrast.: -1 1

pub: +4

0.3
0.4

0.3

vπ = ( )

let π′ be vπ-greedy
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Policy improvement theorem

Theorem 26: Policy improvement

Let π be a policy. If Φ(vπ) ≥ vπ, then any vπ-greedy policy πg is at least as good as π,
i.e. ∀s ∈ S : vπg (s) ≥ vπ(s).
Moreover, if Φ(vπ)(s) > vπ(s) for some state s, then also vπg (s ′) > vπ(s ′) for some
state s ′.
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Returns from a given time step

For the proof of PIT and also many times later, we will need the following notation:

Definition 27: Important!

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory and t ∈ N a time step. We
define

Gt(τ) =
H−1∑
i=t

γ i−t · ri+1 = rt+1 + γrt+2 + γ2rt+3 + · · · ,

where H ∈ N ∪ {∞} or H = T for episodic tasks.
We similarly define, for any policy π:

Gπ
t = Eπ[Gt ] = Eπ[

H−1∑
i=t

γ i−t · Ri+1].
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Proof of PIT (setup)

We will define a sequence of policies π0, π1, π2, . . . s.t.:

• π0 = π

• πi behaves as πg (i.e., selects the same actions in same states) for the first i steps, then
“switches” back to behave as π:

• we also define π∞ = πg

We want: vπ∞(s) ≥ vπ(s) for all s.

Not hard to see: vπi → vπ∞ as i →∞ (πi behaves as π∞ for longer and longer as i increases
+ discounting).
It suffices to show: vπi (s) ≥ vπ(s) for all i ∈ N and all s ∈ S.
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Proof of PIT (induction)

vπi (s) ≥ vπ(s) for all i ∈ N and all s ∈ S

• i = 0: clear

• i > 0:

vπi (s) = Eπi [R1 + γR2 + · · ·+ γ i−1Ri + γ iRi+1 + · · · | S0 = s]

= Eπi [R1 + γR2 + · · ·+ γ i−2Ri−1 | S0 = s] + Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s]

= Eπi−1 [R1 + γR2 + · · ·+ γ i−2Ri−1 | S0 = s] + Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s]︸ ︷︷ ︸
Suppose we prove ≥Eπi−1 [γ i−1Ri+γ iRi+1···|S0=s]

≥ Eπi−1 [R1 + γR2 + · · ·+ γ i−2Ri−1 + γ i−1Ri + γ iRi+1 · · · | S0 = s]

IH
≥ vπ(s)
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Proof of PIT (induction, behavior at “reset”)
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Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s]

= γ i−1 · Eπi [Ri + γRi+1 · · · | S0 = s]

= γ i−1 ·
∑
s′∈S

Pπi [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πi (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πi (s
′)) · Eπi [Gi | Si = s ′′]

)
= γ i−1 ·

∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πg (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πg (s
′)) · Eπ[Gi | Si = s ′′]︸ ︷︷ ︸

vπ(s′′)

)
︸ ︷︷ ︸

=Φ(vπ)(s′), since πg is vπ-greedy︸ ︷︷ ︸
≥vπ(s′), since Φ(vπ)≥vπ by PIT assumption.

≥ γ i−1 ·
∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] · vπ(s ′) = γ i−1 · Eπi−1 [Gi−1 | S0 = s]

= Eπi−1 [γ i−1Gi−1 | S0 = s] = Eπi−1 [γ i−1Ri + γ iRi+1 · · · | S0 = s] Strictness?
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Policy iteration (PI; Howard, 1960)

Algorithm 2: Policy iteration
Input: MDP M = (S,A, p, r)

Output: Optimal MD policy π∗ for M, its value vector v∗

π ← arbitrary MD policy ;
v ← vπ ; // e.g. by solving linear policy evaluation equations
while Φ(v) ̸= v do

foreach s ∈ S do
π(s)← argmaxa∈A(s)[r(s, a) + γ ·

∑
s′∈S p(s ′|s, a) · v(s ′)]

v ← vπ

return π, v
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PI correctness & complexity

Theorem 28

Policy iteration terminates after at most exponentially many iterations. Upon termina-
tion, it returns an optimal MD policy.

Proof:

• Optimal upon termination: vπ is a fixpoint of Φ when terminating: optimality follows
from Corollary 19.

• Terminates: π always stores an MD policy and there are finitely many of these. We will
show that no single MD policy appears in more than one iteration of PI.
Consider any iteration and let v , v ′ be the contents of variable v before and after the
iteration. We will show that unless Φ(v) = v , it holds v ′ > v , i.e. v ′ ≥ v componentwise
with strict inequality in some component. Hence, v = vπ strictly increases during PI, so
no π can appear twice.
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PI: correctness proof

v ′ ≥ v :

We verify assumptions of PIT: Φ(v) ≥ v . Recall v = vπ. For all s ∈ S:

Φ(v)(s) = max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · v(s ′)]

≥ r(s, π(s)) + γ ·
∑
s′∈S

p(s ′ | s, π(s)) · vπ(s ′)

= vπ(s) = v(s).

By PIT, v ′ = vπ′ ≥ vπ = v (here π′ is the v -greedy policy).
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PI: correctness proof II

It remains to prove that v ′ > v or PI terminates. Assume that v ′ = v . Then for all s ∈ S:

v ′(s) = r(s, π′(s)) + γ ·
∑
s′∈S

p(s ′ | s, π′(s)) · vπ′
(s ′)

= r(s, π′(s)) + γ ·
∑
s′∈S

p(s ′ | s, π′(s)) · vπ(s ′) (assumption)

= max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · vπ(s ′)] (π′ is v = vπ-greedy)

= max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · vπ′
(s ′)] (assumption)

= Φ(v ′)(s)

,

so PI terminates at this point. Complexity?
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PI&VI: discussion

• We know that MDPs have a linear programming (LP) formulation. PI is basically a
variant of a simplex method for this LP, using a special pivoting rule.

• PI typicaly requires less iterations to converge than VI, though each iteration is more
expensive (policy eval.)

• Both PI and VI typically work well in practice for MDPs whose explicit transition table fits
inside a computer. Which of the two is faster is rather domain-specific.
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PI variants

Can we get rid of the expensive policy evaluation by linear system solving?

Yes: we can approximate the value of the current policy π by applying VI on the MDP Mπ, for
either fixed number of steps or until v does not change much. Often appearing in RL
textbooks:
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Policy iteration with approximate evaluation

π ← arbitrary MD policy; v ← arbitrary vector;
repeat

v ← Eval(π, v);
foreach s ∈ S do

π(s)← argmaxa∈A(s)[r(s, a) + γ ·
∑

s′∈S p(s ′|s, a) · v(s ′)]

until π has not changed;
return π, v

Function Eval(π, v):
v ′ ← v ;
repeat

foreach s ∈ S do
v(s)← v ′(s);
v ′(s)← r(s, π(s)) + γ ·

∑
s′∈S p(s ′ | s, π′(s)) · v(s ′)

until ∥v − v ′∥∞ ≤ ε;

return v ′ 57/189



Convergence of PI variants

• The algorithm on previous slide still converges to an optimal policy provided that ε is
small enough.

• If we replaced the “π not changed condition” with the original “Φ(v) = v ” condition, the
algorithm might not terminate, since the VI is only guaranteed to reach a true fixpoint in
the limit. However, v would still converge to v∗ and thus π would eventually become
equal to an optimal policy.

• The previous point holds even in the very degenerate case when we do just one iteration of
VI per policy evaluation! See next slide.
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Curiously looking approximate PI

v ← arbitrary vector;
π ← v -greedy MD policy ;
repeat

foreach s ∈ S do
v ′(s)← r(s, π(s)) + γ ·

∑
s′∈S p(s ′|s, π(s)) · v(s ′);

v ← v ′;
foreach s ∈ S do

π(s)← argmaxa∈A(s)[r(s, a) + γ ·
∑

s′∈S p(s ′|s, a) · v(s ′)]

until Φ(v) = v ;
return π, v

This is just VI in disguise!
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Generalized policy iteration

Evaluate

Improve

push v

towards vπ

make π

(more)
v -greedy

Source: Sutton&Barto, p. 87
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Tabular Methods
for Model-Free
Reinforcement Learning



Model-free

We will still be working with MDPs. But for a bunch of the following lectures, we will not
(necessarily) have access to, e.g.:

• a table containing explicit enumeration of all states/actions

• a table containing the description of p or r

• the ability to compute the probability vector δ(s, a) or the reward signal r(s, a) given s

and a (having this = gray-box model of the MDP)
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Sampling from MDP

But the MDP is still there “behind the scene”. In particular, we:

• know how the states of the MDP look like
• (e.g. robot state = all possible output values of its sensors)

• know how the actions of the MDP look like
• (e.g. robot = all possible signals that can be sent to the actuators)

• can, for any s ∈ S, enumerate A(s)

• could be weakened, but simplifies things

• given s ∈ S and a ∈ A(s), we can sample the next state s ′ ∼ p(s, a) and receive the
reward r(s, a).
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Sampling from a policy

Given an effective representation of a policy π, we can sample a trajectory
s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . by performing, for each t ∈ {0, . . . ,T}:

• sample at ∼ π(st)

• query the environment for st+1 ∼ p(st , at) and rt+1 = r(st , at)

• increment t

Tabular = value estimates and policies represented as tables (e.g. Q(s, a) for each state s and
action a used in s – explicit representation might only be needed for states/actions actually
encountered).
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Basic classification of (tabular) RL algorithms

Three independent axes:

problem on/off updates

policy evaluation (value prediction) on-policy Monte Carlo

vs. vs.

xy
control off-policy temporal difference
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Assumptions: successor-dependent rewards & episodic tasks

Since we do no longer have the knowledge of the transition dynamics p, we cannot freely
interchange MDPs with rewards functions of type S ×A× S → R and S ×A→ R via
the equation r(s, a) =

∑
s′∈S p(s ′ | s, a) · r(s, a, s ′).

Hence, to maintain generality (and correspondence to e.g. Gymnasium environments)
we will assume reward functions of type S ×A× S → R.

We will assume episodic returns: each trajectory terminates with probability 1 at some
(possibly random) time step T. Termination can be defined e.g. by reaching some terminal
state or by running out of some fixed decision horizon (in Gymnasium, this is sometimes
called truncation):

G =
T−1∑
i=0

γ i · Ri+1.

Episode = one high-level iteration of an RL algorithm, corresponding of sampling a single
trajectory from some policy. 65/189



Monte Carlo Methods



MC evaluation

Policy evaluation: given an effective representation of a policy π, estimate vπ (or qπ).

Naive Monte Carlo: Sample from π: if {τ1, τ2, . . . , τn} are trajectories (episodes) independently
sampled under π from the same initial state s, then 1

n

∑n
i=1 G (τi )→ vπ(s) as n→∞ due to

law of large numbers (LLN).

But this throws away a lot of valuable information! E.g. what if we want to estimate the whole
vπ?
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First-visit MC

For each s, we estimate vπ(s) as an average of sample returns Ret(s) which is formed as
follows:

• initially, Ret(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, we identify the first occurrence of s on τ : let
this be at timestep t; we add Gt(τ) to Ret(s)

start X start next pass. sleep
4 -1 -2 -2 20

Sub-trajectory starting at the first appearance of s can be seen as a trajectory sampled from π

when s is the initial state! (Since we consider memoryless π.)

Theorem 29

As |Ret(s)| → ∞, the average of Ret(s) converges to vπ(s). Moreover, the average of
Ret(s) is an unbiased estimate of vπ(s) (as long as Ret(s) ̸= ∅).
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First-visit MC (pseudocode)

Source: Sutton&Barto, p.92

68/189



Every-visit MC

For each s, we estimate vπ(s) as an average of sample returns Ret(s) which is formed as
follows:

• initially, Ret(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, and each t such that St(τ) = s we add
Gt(τ) to Ret(s)

start X start next pass. sleep
2 -1 -2 -2 20

The sample returns added to Ret(s) within the same episode are not independent! Hence, the
estimate is biased, though the bias vanishes in the limit:

Theorem 30

As |Ret(s)| → ∞, the average of Ret(s) converges to vπ(s).
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MC convergence

Optional reading: More on MC estimate bias, variance, and convergence in:

Singh, S.P. and Sutton, R.S.: Reinforcement Learning with Replacing Eligibility Traces.
In Machine Learning 22:123–158. Kluwer, 1996.
(Section 3, particularly 3.3 and onwards, you can skip Theorem 4.)
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Towards MC control

Control = computation of “good” policy for a given environment. (Ideally, the policy should get
closer to the optimal policy the more episodes we sample.)

We know (PIT): given a policy π a vπ-greedy policy is at least as good as π:

πg (s) = argmax
a∈A(s)

[ ∑
s′∈S

p(s ′ | s, a) ·
(
r(s, a, s ′) + γ · vπ(s ′)

)]
Do we have an algo? There is an issue:
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MC control with q-values

Recall:

qπ(s, a)
def
=

∑
s′∈S

p(s ′ | s, a) ·
(
r(s, a, s ′) + γ · vπ(s ′).

)
Thus, the vπ-greedy policy πg can be defined as:

πg (s) = argmax
a∈A(s)

qπ(s, a)︸ ︷︷ ︸
Estimate by MC.
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MC for q-value estimation

Analogous to value estimation, e.g. first-visit:

For each s, a, we estimate qπ(s, a) as an average of sample returns Ret(s, a) which is formed
as follows:

• initially, Ret(s, a) = ∅ for all s

• we then sample trajectories until timeout:
• for each sampled trajectory τ and each state-action pair (s, a), we identify the first t such

that St(τ) = s ∧ At(τ) = a; we add Gt(τ) to Ret(s)

start X start next pass. sleep
proc.:4 study:-1 study:-2 done:-2 done:20

Similarly for every visit. Convergence guarantees the same as for state values.
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Infinite exploration and exploring starts

Issue: MC only estimates qπ(s, a) if:

• s guaranteed to be visited with positive probability in each episode

• π(a | s) > 0.

Definition 31: Infinite exploration

A RL algorithm has infinite exploration (IE) if, during the infinite execution of the algo-
rithm, each state-action pair (s, a) is visited infinitely often with probability 1.

One way of achieving IE is through exploring starts (ES): each episode begins with (typically
uniformly) randomly selected s0 and a0. This is achievable when training, e.g., in simulated
environments but might be difficult/impossible in real-world environments.
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MC control with exploring starts

Source: Sutton&Barto, p.99
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IE through ε-soft policies

Exploring starts are not always feasible. Alternative: make the sampled policy itself exploratory.

Definition 32: ε-soft policy

A policy π is ε-soft if for every s ∈ S and every a ∈ A(s) it holds π(a|s) ≥ ε
|A(s)| .

Definition 33: ε-greedy policy

Let v ∈ RS be a value vector. A policy π is v -ε-greedy if for every state s ∈ S there
is action a∗ = argmaxa∈A(s)

∑
s′∈S p(s ′ | s, a) ·

(
r(s, a, s ′) + γ · v(s ′)

)
such that for any

action a ∈ A(s) it holds:

π(a|s) =

 ε
A(s) if a ̸= a∗

1− ε+ ε
A(s) if a = a∗.

Interpretation: with prob. ε: play uniformly at random; with prob. 1− ε: play greedily.
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ε-softing

Definition 34

Let π be a policy. An ε-softing of π is a policy πε defined as follows: in each state s

• with probability ε, πε selects an action uniformly at random;

• with probability 1− ε, πε selects a ∼ π(s).

I.e., an ε-greedy policy can be alternatively defined as ε-softing of a greedy policy.
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MC control with ε-greedy policies

source: Sutton&Barto, p. 101
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Policy iteration for ε-soft policies

Theorem 35

Let π be an ε-soft policy and let π′ be a vπ-ε-greedy policy. Than vπ′ ≥ vπ (componen-
twise). Moreover, the two value vectors are equal if and only if bot π and π′ are optimal
among all ε-soft policies; i.e. if, for every state s:

vπ(s) = sup
π̄ that is ε-soft

v π̄(s).

Proof: Required reading: Sutton&Barto, p.101-103.
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Incremental computing of averages

Given a sample {n1, n2, . . . , nk+1} and average A = avg({n1, n2, . . . , nk}), how to compute
A′ = avg({n1, n2, . . . , nk , nk+1}) without recomputing the average of the whole sample?

A′ =

k

k + 1
· A+

nk+1

k + 1
.
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On-policy vs. off-policy

• On-policy algorithms: track one “policy variable” π; the policy stored in π is used to
interact with the environment (i.e., to sample episodes) and at the same time we learn
something about it (e.g. its value vector).

• Corresponds to the generalized policy iteration scheme.
• All the MC algos we have seen so far.

• Off-policy algorithms: track more (typically two) different policy variables:
• behavior policy: used to sample episodes
• target policy: which we want to learn about
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Off-policy evaluation

We are given effective representations of:

• a behavior policy β,

• a target policy π.

The task is to estimate vπ by sampling episodes from β . We cannot sample from π! (E.g. π

too risky or expensive to sample from.)

Assumptions:

• given (s, a), we can effectively compute π(a|s) and β(a|s) (or at least estimate via
sampling)

• coverage: ∀s ∈ S, a ∈ A(s): if π(a|s) > 0, then also β(a|s) > 0

82/189



Off-policy evaluation

We are given effective representations of:

• a behavior policy β,

• a target policy π.

The task is to estimate vπ by sampling episodes from β . We cannot sample from π! (E.g. π

too risky or expensive to sample from.)

Assumptions:

• given (s, a), we can effectively compute π(a|s) and β(a|s) (or at least estimate via
sampling)

• coverage: ∀s ∈ S, a ∈ A(s): if π(a|s) > 0, then also β(a|s) > 0

82/189



Importance sampling

Definition 36: Importance ratio

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory. The importance-sampling
ratio of τ is the quantity

ρ(τ)
def
=

Pπ[τ | S0 = s0]

Pβ[τ | S0 = s0]

=
Pπ[A0 = a0,S1 = s1,A1 = a1, . . . ,AT−1 = aT−1,ST = sT | S0 = s0]

Pβ[A0 = a0,S1 = s1,A1 = a1, . . . ,AT−1 = aT−1,ST = sT | S0 = s0]
.

ρ(τ) can be computed without the knowledge of MDP transition probabilities!

ρ(τ) =
π(a0 | s0) · p(s1 | s0, a0) · π(a1 | s1) · p(s2 | s1, a1) · · ·
β(a0 | s0) · p(s1 | s0, a0) · β(a1 | s1) · p(s2 | s1, a1) · · ·

83/189



Importance sampling

Definition 36: Importance ratio

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory. The importance-sampling
ratio of τ is the quantity

ρ(τ)
def
=

Pπ[τ | S0 = s0]

Pβ[τ | S0 = s0]

=
Pπ[A0 = a0,S1 = s1,A1 = a1, . . . ,AT−1 = aT−1,ST = sT | S0 = s0]

Pβ[A0 = a0,S1 = s1,A1 = a1, . . . ,AT−1 = aT−1,ST = sT | S0 = s0]
.

ρ(τ) can be computed without the knowledge of MDP transition probabilities!

ρ(τ) =
π(a0 | s0) · p(s1 | s0, a0) · π(a1 | s1) · p(s2 | s1, a1) · · ·
β(a0 | s0) · p(s1 | s0, a0) · β(a1 | s1) · p(s2 | s1, a1) · · ·

83/189



Importance ratio from time t

Definition 37

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory. By τi..j we denote the sub-
trajectory of τ starting in time step i and ending in timestep j . By τi.. we denote the
suffix of si , ai , ri+1, si+1, ai+1, . . ..

Definition 38: Importance ratio from time t

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory and t a time step. The
importance-sampling ratio of τ from t is the quantity

ρt(τ)
def
=

Pπ[τt.. | S0 = st ]

Pβ[τt.. | S0 = st ]

=
Pπ[A0 = at ,S1 = st+1,A1 = at+1, . . . ,AT−1−t = aT−1,ST−t = sT | S0 = st ]

Pβ[A0 = at ,S1 = st+1,A1 = at+1, . . . ,AT−1−t = aT−1,ST−t = sT | S0 = st ]
.
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Off-policy evaluation with importance sampling

Theorem 39

For any s ∈ S it holds:
Eβ[ρ · G | S0 = s] = vπ(s).

Proof:

Eβ[ρ · G | S0 = s] =
∑
τ

Pβ[τ | S0 = s] · ρ(τ) · G (τ)

=
∑
τ

Pβ[τ | S0 = s] · P
π[τ | S0 = s]

Pβ[τ | S0 = s]
· G (τ)

=
∑
τ

Pπ[τ | S0 = s] · G (τ) = Eπ[G | S0 = s] = vπ(s)

.

Easily integrates into both first-visit and every visit MC: sample from β and store ρt(τ) · Gt(τ)

in Ret(st)

.
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Weighted importance sampling

First-visit variant: for each state s, we keep a set of samples Sam(s). Each sample is a tuple
(τ, t) – trajectory and time step.

• initially, Sam(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, and the smallest t such that St(τ) = s we
add (τ, t) to Sam(s)

Throughout the algorithm, the value of state s is estimated as

WIS(s) =

∑
(τ,t)∈Sam(s)

ρt(τ) · Gt(τ)∑
(τ,t)∈Sam(s)

ρt(τ)

Exercise 40

Compare ordinary/weighted importance sampling after single sample.
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Weighted importance sampling – correctness

The weighted sampling is clearly a biased estimator. However, the bias vanishes in the limit:

Theorem 41

With probability 1: as |Sam(s)| → ∞, we have that WIS(s)→ vπ(s).

Proof:
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Ordinary vs. weighted sampling

source: Sutton&Barto, p. 106
88/189



Importance sampling: summary

But ordinary and weighted importance sampling can be adapted to every-visit MC.

Bias & Convergence:

• First visit:
• ordinary IS: unbiased, i.e. also converges
• weighted IS: biased, but converges in the limit

• Every visit:
• both ordinary and weighted: biased (due to EV), but converges in the limit
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Weighted IS: incremental implementation

Instead of recomputing the weighted average for each new sample, WIS(s) can be updated by
keeping keep just two variables:

• V – current value of WIS(s), initially arbitrary

• C – the sum of importance ratios, initially 0

Upon arrival of new sample (τ ′, t ′), we update V ,C into new values V ′,C ′ by setting:

C ′ = C + ρt′(τ
′)

V ′ = V +
ρt′(τ

′)

C ′ · (Gt′(τ
′)− V ) .
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Off-policy evaluation with weighted IS

source: Sutton&Barto, p.110
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Off-policy control with weighted IS

Required reading: Sutton&Barto, Section 5.7.
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Temporal Difference Methods



TD: Motivation

Let us first focus on policy evaluation.

MC: zero bias (at least in the limit), but potentially high variance: many samples needed to
converge. Also, to update estimates, it must wait till the end of each episode.

TD methods retain the focus on sampling but combine it with bootstrapping.
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Incremental update notation

Definition 42: Notation for updates

In the context of RL algorithms will denote by V n(s) (resp. Qn(s, a)) the algorithm’s
estimate of vπ(s) (resp. qπ(s, a)) after n-th update of this estimate.
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MC vs. TD(0) update

On-policy MC (incremental) update using sampled trajectory
τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . .:

V n+1(st)← (1− αn)V
n(st) + αnGt(τ) = V n(st) + αn ·

[
Gt(τ)︸ ︷︷ ︸

update target

−V n(st)

︸ ︷︷ ︸
update error

]
,

where αn = n/(n + 1).

TD(0) update in the same situation, with αn “suitably chosen” (possibly constant):

V n+1(st)← V n(st) + αn ·
[
Rt+1(τ) + γ · V n(St+1(τ))︸ ︷︷ ︸

bootstrap

−V n(st)
]
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Policy evaluation with TD(0)

source: Sutton&Barto, p. 120
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How can it even work?

Really “just” a very asynchronous, sample-based, and “α-dampened” version of value iteration.

Eπ[Gt |St = s] = Eπ[Rt+1 + γ · Gt+1 | St = s] = Eπ[Rt+1 | St = s] + γ · Eπ[Gt+1 | St = s]︸ ︷︷ ︸
vπ(St+1)

.

In expectation, the TD(0) update is the same as VI update in Mπ. Thanks to the contractivity
of the Bellman operator, VI possesses an error reduction property: after each update, the error
of the estimate decreases. Hence, in expectation, the same is true for the TD(0) update.

Formal proof of correctness in optional reading:

Sutton, R.S.: Learning to Predict by Methods of Temporal Differences. In Machine
Learning 3:9–44. Kluwer, 1988. (For MDPs with function approximation.)
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Why TD is natural (Sutton&Barto, p. 122-123)

Left: MC. Right TD(0).
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On-policy TD control

Recall:

• In control setting, we need to estimate q-values of a policy.

• On-policy: we sample trajectories according to some policy π and then push value
estimates towards qπ.

To maintain exploration, the policy π will typically be the ε-Q-greedy policy for some ε > 0,
where Q are the current Q values estimates. I.e., throughout the algorithm

π(a|s) =

1− ε+ ε
A(s) if a = argmaxa′∈A(s) Q(s, a′)

ε
A(s) otherwise.
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SARSA

State-Action-Reward-State-Action. Introduced in Rummery, Niranjan: On-Line Q-Learning
Using Connectionist Systems (1994).

In each episode, sample a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . , sT according to
current policy π; for each time step 0 ≤ t ≤ T − 1, perform the following update:

Qn+1(st , at) = Qn(st , at) + αn ·
[
rt+1 + γQn(st+1, at+1)− Qn(st , at)

]
The update can be performed immediately when st+1 and at+1 is known (no need to wait for
the episode to terminate).

After the episode ends, make π ε-Q-greedy.

Conforms to the GVI scheme.
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SARSA pseudocode

source: Sutton&Barto, p. 130
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GLIE policies

Definition 43: GLIE condition

A RL algorithm is greedy in the limit (GL) if its behavior policy (=target policy in on-
policy algorithms) converges to a 0-greedy policy with increasing number of episodes.
A RL algorithm is GLIE if it is GL and IE (infinitely exploring).

Typical ways of ensuring GLIE:

• Dynamically adjust ε in ε-greedy policy selection" When selecting action in state s,
behave ε-greedily with ε = c

n(s) , where 0 < c < 1 is a constant and n(s) is a number of
visits to state s over all the episodes so far.

• Use Boltzmann (softmax) exploration:

π(a | s) = e
Q(s,a)
η(s)∑

b∈A(s) e
Q(s,b)
η(s)

,

where η is a state-dependent and time-varying temperature parameter. We need η to
converge to 0 over time, but not too fast (often, η(s) proportional to 1

log(n(s)) ).
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policy algorithms) converges to a 0-greedy policy with increasing number of episodes.
A RL algorithm is GLIE if it is GL and IE (infinitely exploring).

Typical ways of ensuring GLIE:

• Dynamically adjust ε in ε-greedy policy selection" When selecting action in state s,
behave ε-greedily with ε = c

n(s) , where 0 < c < 1 is a constant and n(s) is a number of
visits to state s over all the episodes so far.

• Use Boltzmann (softmax) exploration:

π(a | s) = e
Q(s,a)
η(s)∑

b∈A(s) e
Q(s,b)
η(s)

,

where η is a state-dependent and time-varying temperature parameter. We need η to
converge to 0 over time, but not too fast (often, η(s) proportional to 1
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Convergence of SARSA

Theorem 44

Consider a GLIE instantiation of SARSA. Moreover, assume that the sequence of learning
rates (αn)n∈N satisfies

∑
n αn =∞ and

∑
n α

2
n <∞. In this setting, Q converges to q∗

and the behavior policy of SARSA converges to some optimal policy π∗.

For the proof, see optional reading: Singh, Jaakkola, Littman, Szepesvári: Convergence Results
for Single-Step On-Policy Reinforcement-Learning Algorithms. In Machine Learning
39:287-308. Kluwer, 2000.

Note: learning rate can itself be state/action dependent (omitted for conciseness, constant
learning rates preferred in practice).
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Off-policy TD control

Surprise: no importance sampling!

Recall the SARSA update:

Qn+1(st , at) = Qn(st , at) + αn ·
[
rt+1 + γQn(st+1, at+1)− Qn(st , at)

]
It pushes Q towards qπ, where π is the current policy.

Idea: push Q directly towards q∗.

We could do this e.g. by a VI-like update:

Qn+1(st , at) = Qn(st , at) + αn ·
[
max
a∈A(s)

∑
s′∈S

p(s ′ | s, a)
(
r(s, a, s ′) + γV (s ′)

)
− Qn(st , at)

]
.

Two problems:

• We do not calculate v -estimates. (Must somehow replace with Q)
• We must get rid of transition probabilities and instead use the sampled at and rt+1.
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Q-learning update

Solution: push the max towards the bootstrap.

Q-learning (Watkins, 1989): given a sampled trajectory s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ., for
every t we update:

Qn+1(st , at) = Qn(st , at) + αn ·
[
rt+1 + γ ·

(
max

a∈A(st+1)
Qn(st+1, a)

)
− Qn(st , at)

]

105/189



Q-learning pseudocode

source: Sutton&Bato, p. 131

Off-policy: where is the second policy? 106/189



Q-learning convergence

Theorem 45

Consider any Q-learning instantiation with infinite exploration. Assume that the sequence
of learning rates (αn)n∈N satisfies

∑
n αn = ∞ and

∑
n α

2
n < ∞. In this setting, Q

converges to q∗. Moreover, if the behavior policy is GL, then it converges to an optimal
policy π∗.

Proof in optional reading: Watkins, Dayan: Q-Learning. In Machine Learning 8:279-292.
Kluwer, 1992.

107/189



SARSA vs. Q-learning (SB: p. 132)

Left: greedy policies learned by SARSA and Q-learning.

Right: in-training performance with a 0.1-greedy behavior policy.

(Rough) takeaway: Q-learning more aggressive in finding optimal policy, can lead to risky
behavior. Possibly advantageous when environment not too stochastic or if in-training
performance has less importance (simulator vs. real world).
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Maximization bias in Q-learning

Q-learning is “risky” not only due to exploration, but also because it is optimistic in the face of
uncertainty. TBD

The positive bias only disappears in the limit.
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Double Q-learning

Idea: use two independent value estimates Q1, Q2 and decouple action selection from
evaluation in the bootstrap. During each update, we randomly select one of these for update,
which is also used to select the maximizing action in bootstrap. The other is used as the
bootstrap estimate.

I.e., in each time step t we perform one of these updates, each with probability 1
2 : either

Q1(st , at) = Q1(st , at) + αn ·
[
rt+1 + γ · Q2

(
st+1, ( max

a∈A(st+1)
Q1(st+1, a))

)
− Q1(st , at)

]
or

Q2(st , at) = Q2(st , at) + αn ·
[
rt+1 + γ · Q1

(
st+1, ( max

a∈A(st+1)
Q2(st+1, a))

)
− Q2(st , at)

]
.

Behavior policy = e.g. ε-greedy w.r.t. Q1 + Q2.
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Double Q-learning pseudocode

source: Sutton&Barto, p. 136
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Why Double Q-learning helps

TBD
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Double Q-learning: experiment

source: Sutton&Barto, p. 135
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Between Monte Carlo
and TD:
n-Step and λ-Returns



MC vs TD(0) update targets

Given a trajectory s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . .:

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

Update for time step t in:

• MC = discounted return from t till the end of trajectory, e.g. for t = 1:

r2 + γr3 + γ2r4 + · · ·+ γT−2rT

unbiased, but high variance + need the whole trajectory

• TD(0) = 1-step reward and then (discounted) bootstrap:

r2 + γV (s2)
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n-step return

Idea: use n-step discounted return and then bootstrap

Definition 46

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory and n ∈ N \ {0}.
An n-step return of τ from time step t is the quantity

Gt:t+n(τ) = rt+1 + γ · rt+2 + γ2 · rt+3 + · · · γn−1rt+n + γn · V (st+n).

We also define a Q-estimate-based version:

Gt:t+n(τ) = rt+1 + γ · rt+2 + γ2 · rt+3 + · · · γn−1rt+n + γn · Q(st+n, at+n).

(Which of the two is used will be clear from the context.)

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

115/189



n-step TD policy evaluation

Similar to TD(0), but using n-step return targets:

given a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ., for each 0 ≤ t < T we perform an
update

V (st)← V (st) + α[Gt:t+n(τ)− V (st)].

Note 1: for n = 1 we get exactly TD(0).

Note 2: for n > 1, we cannot update V (st) directly at step t + 1. We need to obtain
rt+1, . . . , rt+n, st+n first, i.e. we can perform the update after step t + n.

Note 3: if t + n > T , we truncate the sum in Gt:t+n at rT , i.e. in such a case Gt:t+n = Gt .
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n-step TD policy evaluation: pseudocode

source: Sutton&Barto, p.144 117/189



n-step TD policy evaluation: performance

19-state symmetric random walk:

source: Sutton&Barto, p.145 118/189



n-step SARSA (on-policy control)

Uses Q-value-bootstrapped n-step returns.

For a sampled trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . and for all time steps
0 ≤ t < T we perform an update

Q(st , at)← Q(st , at) + α[Gt:t+n − Q(st , at)].

We sample trajectories according to a policy π that is ε-greedy w.r.t. current Q-estimates:

π(a|s) =

1− ε+ ε
|A(s)| if a = argmaxa′∈A(s) Q(s, a′) (ties broken in principled way)

ε
|A(s)| otherwise.

π is redefined in this way after each episode
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n-step SARSA (pseudocode)

source: Sutton&Barto, p. 147
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n-step SARSA (speed of signal propagation)

source: Sutton&Barto, p. 147
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n-step Q-learning

The Q-learning update for a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . and time step t:

Q(st , at)← Q(st , at) + α · [rt+1 + γ · max
a∈A(st+1)

Q(st+1, a)− Q(st , at)].

Naive extension to n-step returns

Q(st , at)← Q(st , at)+α·[rt+1+γrt+2+· · ·+γt+n−1·rt+n+γt+n· max
a∈A(st+1)

Q(st+n+1, a)−Q(st , at)]

does not really correspond to Q-learning, since some of the actions at+1, . . . , at+n might not be
Q-greedy (the behavior policy is ε-greedy, so some actions might be exploratory). Hence, we
are no longer pushing Q towards the Q-value of an optimal policy.

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5
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n-step Q-learning: correct

Idea: apply the Q-learning bootstrap at the first occurrence of a non-Q-greedy action.

I.e., for each episode:

• make π an ε-Q-greedy policy

• sample a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . from π

• for each time step 0 ≤ t < T :
• identify the smallest n′ ∈ {t + 1, t + 2, . . . , t + n} such that an′ is not a Q-greedy action
• perform the update

Q(st , at)← Q(st , at) + α · [rt+1 + γrt+2 + · · ·+ γn′−1rn′ + γn′ · max
a∈A(sn′ )

Q(sn′ , a)− Q(st , at)]

(if n′ > T , do the standard MC update).

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5
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λ-returns: idea

By varying n, the n-step returns provide a nice tradeoff between bias and variance (and update
speed). But the choice of optimal n is mostly a guesswork.

Idea: find a notion of return which combines n-step returns for multiple n’s. E.g., a suitable
convex combination of individual n-step returns. This leads to the notion of λ-returns.

We will focus only on policy evaluation, though λ-returns can be used also in control.
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λ-returns: definition

Recall: Gt:t+n is the n-step return from timestep t.

Definition 47: λ-return

Let λ ∈ [0, 1]. A λ-return from timestep t is the random variable

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n.

Note that due to truncation at t + n ≥ T , the λ-return can be more explicitly written as

Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1 · Gt:t+n + λT−t−1 · Gt .

s0

a0

s1

a1

s2

a2

s3

a3

s4
r1 r2 r3 r4
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λ-returns: definition
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s0

a0

s1

a1

s2

a2

s3

a3

s4
r1 r2 r3 r4

125/189



λ-return as discounting of n-step returns

source: Sutton&Barto, p. 290
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(Forward-view) TD(λ)

Like TD(0), but uses λ-returns.

Given a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . sampled from the evaluated policy π,
we perform, for each time step t an update:

V (st)← V (st) + α(Gλ
t (τ)− V (st)).

Note:

• for λ = 0, this is exactly the TD(0) update,

• for λ = 1, this is exactly the MC update,

• Gλ
t (τ) depends on the whole suffix of τt.., hence the update can be only performed at the

end of the episode. (We will show a workaround later.)
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TD(λ) vs. n-step TD on 19-state random walk

source: Sutton&Barto, p. 291
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Forward vs. backward view TD(λ)

Backward-view TD(λ) = an algorithm performing roughly the same updates as Forward-view
TD(λ) in an online fashion (V (st) can be updated by time t + 1).

Implemented using eligibility traces: state-wise signals that indicate how much is the current
state eligible for an update (sort of state-wise modulation of the learning rate).

We are more keen to update states that:

• appear often along the trajectory (frequency heuristic)

• were visited in the recent past (recency heuristic)
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Accumulating eligibility trace

Definition 48: (Accumulating) eligibility trace

For a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ., λ ∈ [0, 1], and a state s ∈ S,
an (accumulating) eligibility trace is a sequence of values E0(s),E1(s),E2(s), . . . defined
inductively as follows:

E0(s) = 0

and for t > 0 Et(s) = γ · λ · Et−1(s) + I(St(τ) = s),

where I(St(τ) = s) is the indicator of the t-th state of τ being s, i.e. I(St(τ) = s) = 1
if st = s and I(St(τ) = s) = 0 otherwise.

source:
slides of D.

Silver
(Model-free
prediction) 130/189



Backward-view TD(λ): idea

• Et(s) denotes how much is s eligible for an update after playing t-th action along the run
(i.e., action at−1).

• In time step t, all states with non-zero eligibility signal will have their estimates updated in
proportion to the learning rate and the strength of the eligibility signal.

• The update target is the standard TD(0) target for time t. I.e., for each timestep t and
each state q, we perform the update

V (q)← V (q) + α · Et(q) ·
[
rt+1 + γ · V (st+1)− V (st)

]
.
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Backward-view TD(λ): pseudocode

Input: policy π to evaluate
Output: Estimate V of vπ

initialize V arbitrarily
repeat

s ← sample uniformly (ES) or according to init. distr.
initialize E to be uniformly zero
while s not terminal do

a← sample from π(s)

s ′ ← sample from p(s, a)

r ← r(s, a, s ′)

foreach q ∈ S (Only q’s visited so far) do
E (q) = γ · λ · E (q) + I(q = s)

V (q)← V (q) + α · E (q) ·
[
r + γ · V (s ′)− V (s)

]
s ← s ′

until timeout 132/189



Forward vs. backward view

If λ = 0, then Et(q) = I(St(τ) = q), i.e. the backward-view update at time point t is

V (st)← V (st) + α ·
[
r + γ · V (st+1)− V (st)

]
,

while for all states other than st , no update is performed. I.e., backward TD(0) is exactly the
same thing as forward TD(0).

For general λ the correspondence is more subtle:

Theorem 49: Forward-backward view correspondence

Assume that in the backward view, all the updates along the trajectory are performed
offline, i.e. only after the end of the episode, and in a batch, i.e. concurrently, using the
pre-episode estimates in right-hand sides.
Then, for any λ ∈ (0, 1), this offline backward TD(λ) performs the same updates as
forward TD(λ).
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Offline backward and forward view (source: D. Silver slides)

Given the batch nature of updates, it suffices to show that the forward update target at time t

equals the sum of all updates “triggered” by a visit to state st .
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Online vs. offline backward view on 19-state RW

In practice, we want to use the online backward algorithm, which only approximates the
forward view. Nevertheless, it performs acceptably:

source: Sutton&Barto, p. 295, LEFT: online backward TD(λ), RIGHT: offline forward TD(λ) 135/189



Concluding remarks on λ-returns

• There are other types of eligibility traces (replacing, dutch, . . . ), yielding different
algorithms.

• Eligibility traces neatly generalize to deep learning, where they are not state-wise but
parameter-wise signals; optional reading: Sutton&Barto, Sec. 12.1-12.2

• λ-returns and eligibility traces can be generalized to control setting SARSA(λ), Q(λ);
optional reading: Sutton&Barto, Sec. 12.7-12.10.

• There is a true online backward TD(λ) version. Here, true online=having perfect
equivalence with the forward view. However, the equivalence is w.r.t. a more complex
notion of λ-return (truncated λ-return) and uses more complex version of eligibility traces
than presented here. Outperforms both forward and backward algorithms presented here.
Optional reading: van Seijen, Sutton: True Online TD(λ). In Proceedings of ICML’14.
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• There is a true online backward TD(λ) version. Here, true online=having perfect
equivalence with the forward view. However, the equivalence is w.r.t. a more complex
notion of λ-return (truncated λ-return) and uses more complex version of eligibility traces
than presented here. Outperforms both forward and backward algorithms presented here.
Optional reading: van Seijen, Sutton: True Online TD(λ). In Proceedings of ICML’14.
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First Steps Towards Deep RL:
Value-Based
On-Policy Methods



Working with huge MDPs

E.g. original Atari games have 160x192 resolution with 128 colors: observable state space of
size 27·160·192 = 2215040 (though only a fraction reachable and resolution typically scaled down
in benchmarks – however, state typically encompass last 3 frames so as to provide some info on
movement).

State space can be even continuous (position, velocity,. . . ).

Most states will not be seen - we need the ability to generalize from experience to
unseen/rarely seen states.
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Huge MDP representation

From now on, states of the MDP will be represented by vectors from Rn. The vectorized
representation is chosen in a domain-specific manner, e.g.:

• Atari = one component per pixel per frame

• continuous navigation = agent coordinates, velocity, etc.

• small discrete MDPs can be represented by one-hot encoding

For simplicity, we will still assume that the action space is discrete, and reasonably small,
though many algorithms can be adapted for continuous actions (acceleration, etc).
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Function approximators

The value functions have types:

vπ, v∗ : Rn → R qπ, q∗ : Rn ×A→ R.

In RL, we need to approximate these functions.

Definition 50

A function approximator (FA) for functions of type X → Y is a class of functions f ⊆ Y X

parameterized by a some set of parameter vectors Θ ⊆ Rn.

Each concrete parameter vector θ ∈ Θ defines a concrete function fθ ∈ f , i.e. f = {fθ | θ ∈ Θ}.

For FA f , we often write fθ(x) = f (x , θ) to stress the fact that the output of fθ depends on
both the input x and on θ. Hence, FA for type X → y can be itself seen as a function of type
X ×Θ→ Y .
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Function approximators in RL

Our algorithms will use mainly these types of function approximators:

• V : Rn ×Θ→ R to approximate vπ or vθ

• Q : (Rn ×A)×Θ→ R to approximate qπ or qθ

The typical task is to find θ ∈ Θ such that Vθ = V (·, θ) is a “good” approximation for vπ or
vθ, and similarly for Qθ.

The parametrization Θ will depend on the concrete form of function approximator used.
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Forms of function approximators

• tabular
• θ = the vector containing the contents of the table

• linear
• Θ = S = Rn and e.g. Vθ(s) = θ⊤ · s

• neural nets
• θ = NN weights and biases

• decision trees

• . . .

We require the approximators to be differentiable and to admit a training method suitable for
non-stationary data.
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Neural nets (source: slides by T. Brázdil)
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Policy evaluation with FAs

Task: given a policy π and FA V : Rn ×Θ→ R, find θ s.t. Vθ is “close” to vπ.

“Closeness” can be expressed using various loss functions. Typically, we want to minimize the
mean squared error (MSE):

MSE(vπ,Vθ) =
1
2
Es∼µ

[
(vπ(s)− Vθ(s))

2] = 1
2

∑
s∈S

µ(s) ·
[
(vπ(s)− Vθ(s))

2],
where µ is some distribution over states expressing how much do we care about errors in
particular states.

A local minimum of MSE can be found gradient descent: making successive step in the
direction opposite to the gradient of MSE.
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Recall: gradients

Definition 51

Given a scalar function f (x1, . . . , xn, θ1, . . . , θm) : Rn × Θ → R (where Θ ⊆ Rm), the
gradient of f w.r.t. parameters θ = (θ1, . . . , θm) is the vector function

∇θf = (
∂f

∂θ1
, . . . ,

∂f

∂θm
) of type Rn ×Θ→ Rm

When f is a function approximator defined by a neural net, the value of the gradient ∇θf (x , θ)

at a given point (x , θ) = (x1, . . . , xn, θ1, . . . , θm) can be computed by backpropagation (under
some usual conditions like smoothness, etc.).
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Gradient descent for policy evaluation

To (locally) minimize MSE(vπ,Vθ), it suffices to perform (sufficiently small) steps in the
negative direction of the current gradient, i.e., repeatedly perform updates:

θ ← θ − α · ∇θMSE(vπ,Vθ) = θ − α · ∇θ
1
2
· Es∼µ

[(
vπ(s)− Vθ(s)

)2]

= θ − α

2
· Es∼µ

[
∇θ

(
vπ(s)− Vθ(s)

)2]

= θ + α · Es∼µ

[(
vπ(s)− Vθ(s)

)
· ∇θVθ(s)

]

The expected value above is typically impossible to evaluate in practice. Instead we estimate it
by samples ⇒ stochastic gradient descent.

We typically take µ(s) representing the overall fraction of time spent in s when behaving
according to µ. Hence, Es∼µ can be estimated by sampling a trajectory from µ and performing
the update for each s on the trajectory in an every-visit fashion.

145/189



Gradient descent for policy evaluation

To (locally) minimize MSE(vπ,Vθ), it suffices to perform (sufficiently small) steps in the
negative direction of the current gradient, i.e., repeatedly perform updates:

θ ← θ − α · ∇θMSE(vπ,Vθ) = θ − α · ∇θ
1
2
· Es∼µ

[(
vπ(s)− Vθ(s)

)2]
= θ − α

2
· Es∼µ

[
∇θ

(
vπ(s)− Vθ(s)

)2]

= θ + α · Es∼µ

[(
vπ(s)− Vθ(s)

)
· ∇θVθ(s)

]
The expected value above is typically impossible to evaluate in practice. Instead we estimate it
by samples ⇒ stochastic gradient descent.

We typically take µ(s) representing the overall fraction of time spent in s when behaving
according to µ. Hence, Es∼µ can be estimated by sampling a trajectory from µ and performing
the update for each s on the trajectory in an every-visit fashion.

145/189



Gradient descent for policy evaluation

To (locally) minimize MSE(vπ,Vθ), it suffices to perform (sufficiently small) steps in the
negative direction of the current gradient, i.e., repeatedly perform updates:

θ ← θ − α · ∇θMSE(vπ,Vθ) = θ − α · ∇θ
1
2
· Es∼µ

[(
vπ(s)− Vθ(s)

)2]
= θ − α

2
· Es∼µ

[
∇θ

(
vπ(s)− Vθ(s)

)2]
= θ + α · Es∼µ

[(
vπ(s)− Vθ(s)

)
· ∇θVθ(s)

]

The expected value above is typically impossible to evaluate in practice. Instead we estimate it
by samples ⇒ stochastic gradient descent.

We typically take µ(s) representing the overall fraction of time spent in s when behaving
according to µ. Hence, Es∼µ can be estimated by sampling a trajectory from µ and performing
the update for each s on the trajectory in an every-visit fashion.

145/189



Gradient descent for policy evaluation

To (locally) minimize MSE(vπ,Vθ), it suffices to perform (sufficiently small) steps in the
negative direction of the current gradient, i.e., repeatedly perform updates:

θ ← θ − α · ∇θMSE(vπ,Vθ) = θ − α · ∇θ
1
2
· Es∼µ

[(
vπ(s)− Vθ(s)

)2]
= θ − α

2
· Es∼µ

[
∇θ

(
vπ(s)− Vθ(s)

)2]
= θ + α · Es∼µ

[(
vπ(s)− Vθ(s)

)
· ∇θVθ(s)

]
The expected value above is typically impossible to evaluate in practice. Instead we estimate it
by samples ⇒ stochastic gradient descent.

We typically take µ(s) representing the overall fraction of time spent in s when behaving
according to µ. Hence, Es∼µ can be estimated by sampling a trajectory from µ and performing
the update for each s on the trajectory in an every-visit fashion.

145/189



Gradient descent for policy evaluation

To (locally) minimize MSE(vπ,Vθ), it suffices to perform (sufficiently small) steps in the
negative direction of the current gradient, i.e., repeatedly perform updates:

θ ← θ − α · ∇θMSE(vπ,Vθ) = θ − α · ∇θ
1
2
· Es∼µ

[(
vπ(s)− Vθ(s)

)2]
= θ − α

2
· Es∼µ

[
∇θ

(
vπ(s)− Vθ(s)

)2]
= θ + α · Es∼µ

[(
vπ(s)− Vθ(s)

)
· ∇θVθ(s)

]
The expected value above is typically impossible to evaluate in practice. Instead we estimate it
by samples ⇒ stochastic gradient descent.

We typically take µ(s) representing the overall fraction of time spent in s when behaving
according to µ. Hence, Es∼µ can be estimated by sampling a trajectory from µ and performing
the update for each s on the trajectory in an every-visit fashion.

145/189



Stochastic gradient policy evaluation + MC instantiation

We keep sampling trajectories τ from π:

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

For each timestep t we perform the update of parameters

θ ← θ + α ·
[(
vπ(st)− Vθ(st)

)
· ∇θVθ(st)

]
.

Problem: in policy evaluation setting, we do not know vπ(st). Hence, we estimate it using RL
targets.

The simplest is the Monte Carlo target: estimate st by the discounted return of the sampled
trajectory from st , i.e. perform updates of the form

θ ← θ + α ·
[(
Gt(st)− Vθ(st)

)
· ∇θVθ(st)

]
.
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Gradient Monte Carlo policy evaluation: pseudocode

Algorithm 3: Gradient MC evaluation
Input: Policy π, FA V : S ×Θ→ R, step size α

Output: Approximation Vθ of vπ

initialize θ arbitrarily;
repeat

sample trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . from π;
foreach t ∈ {0, . . . ,T − 1} do

θ ← θ + α · [Gt(τ)− V (st , θ)] · ∇θV (st , θ)

until timeout;
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Semi-gradient TD(0)

In the gradient update formula

θ ← θ + α ·
[(
vπ(st)− Vθ(st)

)
· ∇θVθ(st)

]
.

we can also estimate vπ(st) with the TD(0) target:

θ ← θ + α ·
[(
rt+1 + γ · Vθ(st+1)− Vθ(st)

)
· ∇θVθ(st)

]
.

This yield the semi-gradient TD(0) policy evaluation algorithm.

Why semi-gradient?
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Gradient vs. semi-gradient TD(0)

Recall that our ultimate goal is to minimize

MSE(vπ,Vθ) =
1
2
Es∼µ

[
(vπ(s)− Vθ(s))

2].
The gradient of this loss is

∇θ
1
2
Es∼µ

[
(vπ(s)− Vθ(s))

2] = 1
2
Es∼µ

[
∇θ(v

π(s)− Vθ(s))
2],

Estimation with sample trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . and substituting
vπ(s) with the TD(0) target would yield

∇θMSE(vπ,Vθ) ≈
1
2
∇θ

(
rt+1+γVθ(st+1)−Vθ(st)

)2
= (rt+1+γVθ(st+1)−Vθ(st))·(γ∇θVθ(st+1)−∇θVθ(st)),

different update then semi-gradient TD(0)! However, this full gradient:

• is more expensive to compute (2 backpropagations per update);
• does not really express TD(0) idea (the update target is not fixed).
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Semi-gradient TD(0): pseudocode

Algorithm 4: Semi-gradient TD(0) evaluation
Input: Policy π, FA V : S ×Θ→ R, step size α

Output: Approximation Vθ of vπ

initialize θ arbitrarily;
repeat

s ← initial state;
a ∼ π(s);
while s not terminal do

s ′ ∼ p(s, a);
r ← r(s, a, s ′);
a′ ∼ π(s ′);
θ ← θ + α · [r + γ · V (s ′, θ)− V (s, θ)] · ∇θV (s, θ);
s ← s ′; a← a′

until timeout;
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On-policy control with function approximation

Semi-gradient SARSA uses the same idea as TD(0), but with Q-approximator, i.e.
Q : Rn ×A×Θ→ R.

Behavior policy = e.g. ε-greedy with respect to the current Q. For a sampled trajectory τ =

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

we perform, in each timestep t, an update

θ ← θ + α ·
[(
rt+1 + γ · Qθ(st+1, at+1)− Qθ(st , at)

)
· ∇θQθ(st , at)

]
.
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Semi-gradient SARSA: pseudocode

Algorithm 5: Semi-gradient SARSA
Input: FA Q : S ×A×Θ→ R, step size α

Output: Approximation Qθ of q∗

initialize θ arbitrarily;
repeat

s ← initial state;
π ← policy ε-greedy w.r.t. Qθ;
a ∼ π(s);
while s not terminal do

s ′ ∼ p(s, a);
r ← r(s, a, s ′);
a′ ∼ π(s ′);
θ ← θ + α · [r + γ · Qθ(s

′, a′)− Qθ(s, a)] · ∇θQθ(s, a);
s ← s ′; a← a′

until timeout;
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Representing actions in DNNs

How to represent actions in the (say, DNN) function approximator Q is largely a
domain-dependent engineering choice.

If the set of actions A = {a1, . . . , ak} is discrete and reasonably small, we can consider a net
which inputs a state (i.e., n input neurons when S = Rn) and outputs an |A|-dimensional
vector (i.e., one output neuron per action), so that the output of the i-th neuron on input s is
interpreted as Q(s, ai ).

I.e., in such a case we consider Q to be function of type Q : S ×Θ→ R|A|.
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On-policy semi-gradient methods: concluding remarks

The presented algorithms can be instantiated also with other types of returns, such as:

• n-step returns
• n-step SARSA update:

θ ← θ+α·
[(

rt+1 + γ · rt+2 + · · ·+ γn−1rt+n + γn · Qθ(st+n, at+n)︸ ︷︷ ︸
Gt:t+n,θ

−Qθ(st , at)
)
·∇θQθ(st , at)

]

• forward-view λ-returns
• SARSA(λ) update: θ ← θ + α ·

[(
(1− λ)

∑∞
n=1 λ

n−1Gt:t+n,θ − Qθ(st , at)
)
· ∇θQθ(st , at)

]
• backward-view λ-returns (optional reading: Sutton&Barto, sections 12.2 and 12.7)
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Value-Based
Off-Policy Control with
Approximators:
DQNs and Friends



Off-policy methods with function approximation

...are tricky to get right, already in the case of policy evaluation. The training can become very
unstable.

For on-policy (semi)-gradient methods, one can typically prove convergence to correct/optimal
values at least in the case of linear function approximation (though not in the more general
case of NN approximators).

Off-policy semi-gradient methods, such as:

• TD with importance sampling (not covered here), or

• Q-learning with function approximators (will be covered a bit later),

can diverge already with linear function approximators.
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Divergence examples (high-level)

• Baird’s counterexample: semi-gradient TD with importance sampling can diverge in
presence of linear FAs

• Moreover, the divergence is not due to the instability of (semi)-gradient descent. Tsitsiklis
and Van Roy’s counterexample shows divergence even in the case where each update
completely replaces the current θ with the optimal θ∗ which minimizes the MSE between
Vθ and the TD(0) update target. The problem lies in the off-policy distribution of updates.

• Counterexamples explained in optional reading: Sutton&Barto, Sec. 11.2.
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Deadly triad

Identified by Sutton&Barto: risk of training instability and divergence steeply rises when
combining:

• function approximation,

• bootstrapping, and

• off-policy training.

But often we want to do just that. :)

Practical solution: Happily do the deadly triad, but use insights from supervised learning to
develop additional techniques that help stabilize the training.

157/189



Deadly triad

Identified by Sutton&Barto: risk of training instability and divergence steeply rises when
combining:

• function approximation,

• bootstrapping, and

• off-policy training.

But often we want to do just that. :)

Practical solution: Happily do the deadly triad, but use insights from supervised learning to
develop additional techniques that help stabilize the training.

157/189



Deep Q-Networks (DQN)

2013 arXiv tech. report, there is also follow-up 2015 Nature paper
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Q-learning with function approximators

Same semi-gradient idea as in TD(0), SARSA: adjust θ to bring Qθ(s, a) closer to the fixed
Q-learning update target.

I.e., for a sampled trajectory

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

and its timestep t, the update is

θ ← θ + α ·
[(
rt+1 + γ · max

a∈A(st+1)
Qθ(st+1, a)− Qθ(st , at)

)
· ∇θQθ(st , at)

]
.

But performing the updates based solely on the current step would be susceptible to instability
due to the presence of the deadly triad.
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Deep Q-learning challenges

From Mnih et al. Playing Atari with Deep Reinforcement Learning:
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Experience replay

Originated in the work of Long-Ji Lin, e.g.: Reinforcement Learning for Robots Using Neural
Networks, dissertation, 1993.

Definition 52: Experience

An experience is a 4-tuple (s, a, r , s ′) ∈ S ×A× S × R interpreted as ("state", "action
played in it", "reward obtained", "next state observed").

• DQN does not perform update based only on the current step. Instead, for each sampled
trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . and each timestep t it:

• first stores the one-step experience (st , at , rt+1, st+1) in a data structure B called replay
buffer;

• then, sample a random minibatch of experiences B ⊆ B of a given minibatch size Bsize
• perform a minibatch-gradient-descent update w.r.t. B: compute the gradient of the

Q-learning loss for each e ∈ B and then update θ in the direction of an average gradient
over the whole B.
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• then, sample a random minibatch of experiences B ⊆ B of a given minibatch size Bsize
• perform a minibatch-gradient-descent update w.r.t. B: compute the gradient of the

Q-learning loss for each e ∈ B and then update θ in the direction of an average gradient
over the whole B.
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Minibatch update

Fix a minibatch B.

For each e = (s, a, r , s ′) ∈ B we compute the gradient of the Q-learning loss ∇θL(θ, e) at
point e:

∇θL(θ, e) = ∇θ
1
2
(
r + γ · max

b∈A(s′)
Qθ(s

′, b)︸ ︷︷ ︸
fixed target

− Qθ(s, a)
)2

=
[(
r + γ · max

b∈A(s′)
Qθ(s

′, b)︸ ︷︷ ︸
=0 if s terminal

− Qθ(s, a)
)
· ∇θQθ(s, a)

]

We then perform an update in the direction of average gradient:

θ ← θ + α · 1
|B|

∑
e∈B

∇θL(θ, e).
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Experience replay rationale

• helps decorrelate the DNN training data

• helps to prevent catastrophic forgetting

• improves data efficiency via experience re-use

Why good match for deep Q-learning? Experience replay is by design off-policy since we train
on old data, which were sampled from different policy than the current one.
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Replay buffer implementation

The replay buffer B is typically not unbounded, but has a fixed capacity Bsize. Replacement is
eventually needed. If B is full, the oldest experience if removed (B = queue).

How to sample the minibatches?

• Original DQN: uniformly from B.

• Alternative: prioritized experience replay: each experience is assigned a priority (several
heuristics exist). An experience is sampled into a minibatch with probability proportional
to its priority.
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DQN: 2013 pseudocode

Algorithm 6: DQN with replay buffer
Input: Black-box MDP M = (S,A, p, r), approximator Q; hyperparam’s

ε,Bsize,Bsize, . . .
Output: Approximation Qθ of q∗

initialize θ arbitrarily; initialize empty replay buffer B of capacity Bsize;
repeat

s ← initial state;
while s not terminal do

π ← policy ε-greedy w.r.t. Qθ;
a ∼ π(s);
s ′ ∼ p(s, a);
r ← r(s, a, s ′);
store (s, a, r , s ′) in B;
sample a minibatch B of size Bsize from replay buffer B;
perform the minibatch update θ ← θ + α · 1

Bsize

∑
e∈B ∇θL(θ, e) (see this slide);

s ← s ′;

until timeout; 165/189



DQN: 2013 results

Mnih et al. (2013, arXiv)
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Target networks: another stabilizing factor in DQNs

Introduced in the reviewed version of DQN paper:

Mnih et al.: Human-level control through deep reinforcement learning. Nature, 518
(2015).
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Performing the (minibatch) Q-update looks like supervised learning, but:

change θ so that Qθ(s, a) gets closer to the fixed target r + γ · max
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the “label” changes
with each update!

,

where (s, a, r , s ′) is the processed experience.
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Target networks: idea

To stabilize learning, we use two networks: the main network, and the target network. They
have the same architecture (denote it by Q), but their weights may differ during the execution
of the algorithm.

We denote:

• θ - weights of main network
• θ̂ - weights of target network

Usage:

• The target network is used only to compute TD targets when computing losses:

∇θL(θ, e) =
(
r + γ · max

b∈A(s′)
Q(s ′, b, θ̂)− Q(s, a, θ)

)
· ∇θQ(s, a, θ)

• At the start, and also in periodic intervals (but not after each update!) the two networks
are synchronized by performing θ̂ ← θ. Other than this, θ̂ stays fixed, the gradient steps
are only used to update θ (i.e., the main network).
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DQN: 2015 pseudocode

Algorithm 7: DQN with replay buffer and target network
Input: Black-box MDP M = (S,A, p, r), approximator Q; hyperparam’s ε,Bsize,Bsize,C , . . .

Output: Approximation Qθ of q∗

initialize θ arbitrarily; θ̂ ← θ; counter ← C ;
initialize empty replay buffer B of capacity Bsize;
repeat

s ← initial state;
while s not terminal do

if counter = 0 then θ̂ ← θ; counter ← C else counter ← counter − 1;
π ← policy ε-greedy w.r.t. Qθ;
a ∼ π(s);
s ′ ∼ p(s, a);
r ← r(s, a, s ′);
store (s, a, r , s ′) in B;
sample a minibatch B of size Bsize from replay buffer B;
perform the minibatch update θ ← θ + α · 1

Bsize

∑
e∈B ∇θL(θ, e), where

∇θL(θ, e) =
(
r + γ ·maxb∈A(s′) Q(s ′, b, θ̂)− Q(s, a, θ)

)
· ∇θQ(s, a, θ);

s ← s ′;

until timeout; 169/189



DQN: 2015 results
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Engineering behind DQN for Atari: partial observability

True state = current state (program counter + variable values) of the game program.

We do not see this – only the frames rendered on screen.

Solving partially observable environments requires (per some POMDP theory) making decisions
based on the whole history of observations. This is computationally demanding (recurrent
NNs...).

DQN for Atari solves this by feeding the last 4 observed frames into the NN. This is typically
enough to deduce the dynamics of the current play.
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DQN: dynamics from limited frame history
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Engineering behind DQN for Atari: the network

Inputs four 84x84px images, then 3 convolutional layers, then two fully connected layers. all
with ReLU activations. Outputs Q-estimate for each action.

source: Mnih et al. (Nature, 2015), details in appendix “Model architecture” 173/189



DQN for Atari: dirty engineering tricks

• Preprocessing: 210x160 RGB color images are converted to grayscale and resized to 84x84
resolution.

• Frame skipping: the agent only observes and acts in every K -th frame, for the frames in
between, the last selected action is repeated without providing the frame to the agent. (In
the paper, K = 4.)

• Reward clipping: all positive one-step Atari rewards are clipped to +1, all negative ones
are clipped to −1 (Atari gives integer rewards).

• TD error clipping: for each update, the Q-learning error
r + γ ·max b ∈ A(s ′)Q(s ′, b)− Q(s, a) is clipped to [−1, 1].
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DQN for Atari: selected hyperparameters (nex)

minibatch size Bsize 32
replay buffer size Bsize 1,000,000
target network update freqeuency C 10,000
discount factor γ 0.99
update frequency (steps between two minibatch updates) 4
learning rate 0.00025
initial ε 1
final ε (linear decay) 0.1
final decay frame 1,000,000
random policy played for init. 50,000 frames
max. do-nothing actions at episode start 30
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RAINBOW of heuristics

Multitude of heuristics for the improvement of DQN were developed over time. Some of them
make sense also in the context of other deep RL algorithms.

The RAINBOW agent combines six such heuristics to further improve the DQN performance
on Atari games.

(In proceedings of AAAI 2018.)

176/189



Rainbow heuristics

• dueling networks architecture

• double DQN

• prioritized experience replay

• n-step rewards

• distributional learning

• noisy networks
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Action advantage

Idea: imagine that for some state s, the Q-values of all actions are high. Then s should be in
some sense valuable in itself.

Definition 53: Advantage

Let π be a policy. An advantage function advπ : S ×A→ R is defined as

advπ(s, a) = qπ(s, a)− vπ(s).

Dueling architecture splits certain layers of the neural network into two “streams”, one
estimating (somethign like) vπ(s) and one estimating (something like) advπ(s, a). The final
layer combines these estimates to produce an estimate of qπ(s, a).

178/189



Action advantage

Idea: imagine that for some state s, the Q-values of all actions are high. Then s should be in
some sense valuable in itself.

Definition 53: Advantage

Let π be a policy. An advantage function advπ : S ×A→ R is defined as

advπ(s, a) = qπ(s, a)− vπ(s).

Dueling architecture splits certain layers of the neural network into two “streams”, one
estimating (somethign like) vπ(s) and one estimating (something like) advπ(s, a). The final
layer combines these estimates to produce an estimate of qπ(s, a).

178/189



Dueling architecture

Wang et al.: Dueling Network Architectures for Deep Reinforcement Learning. In pro-
ceedings of ICML’16.
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Dueling architecture: theory and training

We have Qθ,α,β(s, a) = aggregate(Vθ,α(s),Aθ,β(s, a)), where

• θ - convolutional (or other feature extraction) layer parameters

• α - value channel parameters

• β - advantage channel parameters

The whole network Q is trained to estimate qπ (where π is the target policy) using any deep
RL algorithm (e.g. DQN, in which case π is the optimal policy). There is nothing new from RL
perspective here, all the novelty is inside the network. The factorization into state value and
advantage is supposed to help the network “focus” on features that are important to recognize
valuable states and features that help us rank actions.
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Dueling architecture: Atari example

From Wang et al.: Dueling Network Architectures for Deep Reinforcement Learning. In
proceedings of ICML’16.
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Learning state values and advantages

• The whole net is trained end-to-end to predict qπ.

• How do we ensure the value/advantage channels are trained to predict state
values/advantages?

• By a suitable choice of aggregator:
• Qθ,α,β(s, a) = Vθ,α(s) + Aθ,β(s, a) does not work: e.g. Vθ,α could converge to constant 0

and Aθ,β to qπ.
•

Qθ,α,β(s, a) = Vθ,α(s) + Aθ,β(s, a)− max
b∈A(s)

Aθ,β(s, b),

the training then indeed pushes Vθ,α to vπ and Aθ,β to advπ + c where c is some constant.
Issues: not differentiable, update sensitive to the value of maximizing action changes.
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Aggregation in Rainbow

The point: aggregating layer should anchor the sum of the channels to same baseline value
derived non-trivially from the advantages (if all advantages shift up/down, so should the
baseline). Rainbow uses mean advantage baseline:

Qθ,α,β(s, a) = Vθ,α(s) + Aθ,β(s, a)−
1

|A(s)|
∑

b∈A(s)

Aθ,β(s, b)

pushes the value channel to predict 1
|A(s)|

∑
a∈A(s) q

π(s, a).
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Double DQN

van Hasselt, Guez, Silver: Deep Reinforcement Learning with Double Q-learning. In
proceedings of AAAI 2016.

Similar idea to tabular Double Q-learning (use different estimates for selecting maximizing
action in bootstrap and for evaluating the bootstrap), but instead of independently updated
networks uses main and target networks. I.e., for experience (s, a, r , s ′), the update is:

θ ← θ + α ·
[
r + γ · Qθ̂

(
s ′, argmax

b∈A(s′)

Qθ(s
′, b)

)
− Qθ(s, a)

]
∇θQθ(s, a),

where θ̂ is the parameter vector of the target network.
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Prioritized experience replay (Schaul et al., ICLR’16)

Each experience e = (s, a, r , s ′) in the replay buffer is assigned a priority according to its
TD-error

pe = |r + γ · max
b∈A(s′)

Qθ̂(s
′, b)− Qθ(s, a)|+ ε

(ε > 0 ensures all priorities are positive).

The probability of sampling an experience e from the buffer is set to pα
e∑

e′∈B pα
e′

, where α > 0 is
a hyperparameter controlling the degree of prioritization.

Prioritization induces bias: the sampled experiences no longer follow the same distribution as
sampled trajectories. We can correct this by using importance sampling during updates:

θ ← θ + α ·
(

1
|B|
· 1
pαe

)β

·
[
r + γ · Qθ̂

(
s ′, argmax

b∈A(s′)

Qθ(s
′, b)

)
− Qθ(s, a)

]
· ∇θQθ(s, a),

where β > 0 determines the degree of IS correction (annealed to 1 during training).
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n-step returns

Self-explanatory, use n-step return with Q-learning bootstrap when computing TD target.

How to combine with replay buffer? Each experience stores a single step.

Solutions:

• Store experiences in B sequentially, with each sampled experience, retrieve also the next
n − 1 ones (up to episode termination). Requires careful implementation.

• Naive: each element of B consists of n consecutive experiences (space inefficient).

Given consecutive experiences
(st , at , rt+1, st+1), (st+1, at+1, rt+2, st+2), . . . , ((st+n−1, at+n−1, rt+n, st+n)), perform update

θ ← θ+ α ·
[
rt+1 + γrt+2 + · · ·+ ·γn−1rt+n + γn max

b∈A(st+n)
Qθ̂(st+n, b)−Qθ(st , at)

]
∇θQθ(st , at).
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Distributional learning

Very rough idea: instead of expected returns, predict (discretized) distribution of returns.

Source: Bellemare, Dabney, Munos: A Distributional Perspective on Reinforcement Learning. In
proceedings of ICML’17.

We still optimize the expected value of the distribution, but the NN processes richer
information (neurological inspiration). 187/189



Noisy nets

Fortunato et al.: Noisy Networks for Exploration . In proceedings of ICRL’17.

An alternative way of achieving exploration (without ε-greedy policies). Replaces linear layers
y = W · x + b with noisy layers of the form

y = (µw + σw ⊙ εw ) · x + µb + σb ⊙ εb,

where matrices µw , σw and vectors µb, σb are learnable, matrix εw and vector εb consist of
random noise, and ⊙ represents component-wise multiplication.

The loss function of the DQN training is then encapsulated in expectation over the noise.

Interesting point: the net can learn to adjust σ’s and thus the degree of exploration over time.
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Rainbow: evaluation and ablations (Hessel et al., 2017)
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