
PA230: Reinforcement Learning

Petr Novotný

“Good and evil, reward and punishment, are the only motives to

a rational creature; these are the spur and reins whereby all

mankind are set on work and guided.”

John Locke, Some Thoughts Concerning Education (1693)

1/294

Organizational Information

General

• Lecture: Thursdays 2-3:40p.m.

• Homework: see the interactive syllabus in IS

• mainly binary classification (accepted/not accepted)

• all your homeworks need to be marked as passed to proceed to exam

• can (but do not have to) be done in pairs (pairs can differ across the individual assignments)

• for those who passed, the teacher will receive feedback on the general quality of the

solutions for each student - can be taken into account when determining the final grade

(typically in students’ favor)

• Exam:

• oral

• each attempt counts ? (unlike the Brázdil system)

• in general, knowledge of anything mentioned on the slides can be required, unless explicitly

marked with “nex” (like the Brázdil system)

2/294

Team

• Lecturer: Petr Novotný

• HW team:

Martin Kurečka Václav Nevyhoštěný V́ıt Unčovský 3/294

Communication

Official discord server:

https://discord.gg/9mxTgYhcdB

• Official communication forum of the course: falls under the university ethical guidelines.

• Use your real name for posting (you can set-up an account under your IS email if

necessary).

4/294

https://discord.gg/9mxTgYhcdB

Reading

• Compulsory:

• these slides,

• material explicitly prescribed by these slides (not much).

• Recommended:

• Sutton & Barto: Reinforcement Learning: An Introduction (2nd ed.), available at
http://incompleteideas.net/book/RLbook2020.pdf

• henceforth referenced as “S&B”

• slides by David Silver https://www.davidsilver.uk/teaching/

• CMU slides https://www.andrew.cmu.edu/course/10-703/

• more specific literature recommendations will be given for each topic later

5/294

http://incompleteideas.net/book/RLbook2020.pdf
https://www.davidsilver.uk/teaching/
https://www.andrew.cmu.edu/course/10-703/

Reinforcement Learning:

What, Why, When, How,

& Other Questions

Types of machine learning

• unsupervised

• spot ”useful” patterns in data

• supervised

• given labeled data, predict labels on unlabeled data

• reinforcement

• agents and decision-making

• agency = “the ability to take action or to choose what action to take” (Cambridge

Dictionary)

6/294

General RL scheme

source: Sutton&Barto, p. 48

Keywords: sequential, dynamic, subject to uncertainty

7/294

RL: Objective and approach

• Objective: Design a decision policy (= agent behavior) which prescribes to the agent how

to act in different situations (states), typically so as to achieve some goal.

• Approach: Start with (± random) behavior and adapt it based on past experience via the

law of effect:

• actions with good/bad consequences for the agent are more/less likely to be repeated by the

agent (within the same context)

8/294

RL in psychology (nex)

I.P. Pavlov

(1849-1936)

classical conditioning

E. Thorndike

(1874-1949)

law of effect

J.B. Watson

(1878-1958)

behaviorist manifesto

B.F. Skinner

(1904-1990)

radical behaviorism,

reinforcement,

rewards

9/294

Learning by trying & XX dilemma

Underlying the RL approach is the idea of learning by trying:

• first, act more or less randomly (exploration)

• integral part of early human development

• continually adapt behavior according to experience and feedback from the environment

(exploitation)

• strength of feedback ≈ strength of behavior adaptation

Balancing exploration and exploitation (XX) is a recurring theme in RL.

10/294

Incomplete history of RL in computer science I

“Learning by trying” machines and software, ad hoc approaches:

A. Turing

(1912-1954)

1948: theoretical

“pleasure & pain” sys-

tem

to train computers

C. Shannon

(1916-2001)

1950: Theseus

maze-solving mouse

M. Minsky

(1927-2016)

1950s: analog neural net

machines (SNARCS)

And many more. . .

Recommended: S&B: Sec. 1.7.

11/294

Incomplete history of RL in computer science II

Mathematical foundations of sequential decision making:

R. Bellman
(1920-1984)

R. Howard
(b. 1934)

• Formalization via Markov decision

processes (MDPs)

• value iteration

(attributed to Bellman, 1957)

• policy iteration

(attributed to Howard, 1960)

12/294

Incomplete history of RL in computer science III

Since late 1980’s: synthesis – learning by trial in MDPs

R. Sutton A. Barto

Temporal difference learning

C. Watkins

Q-learning

. . . and many more. 13/294

Successes of RL (nex)

14/294

Words of caution (and controversy) (nex)

15/294

Mathematical Foundations

of Sequential Decision-Making

MDP Example

MDP with actions, rewards and transition probabilities.

start next passed

sleep

study: -2 1 study: -2 1

done: 20

1

done: 0 1

procrast.: 4

1 leave: -1

1
2

1
2

procrast.: -1 1

pub: +4

0.3
0.4

0.3

16/294

Markov Decision Process

Given a set X , we denote D(X) the set of all probability distributions over X .

Definition 1

A Markov decision process (MDP) is a tuple (S,A, p, r) where

• S is a set of states,

• A is a set of actions,

• p : S ×A→ D(S) is a probabilistic transition function,

• r : S ×A→ R is a reward function.

We will shorten p(s, a)(s ′) to p(s ′ | s, a).

The p, r can be partial functions: action a is enabled in state s if both p(s, a) and r(s, a) are

defined. We denote by A(s) the set of all actions enabled in s.

17/294

Dynamics of MDPs

• start in some initial state s0

• MDP evolves in discrete time steps t = 0, 1, 2, 3, . . .

• in each time step t, let st be the current state; then:

• agent selects action at ∈ A(st)

• the environment responds with next state st+1 ∼ p(st , at) and with immediate reward

rt+1 = r(st , at)

• t is incremented and the process repeats in the same fashion forever

Thus, the agent produces a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3,

τ is produced randomly (due to p and possibly also agent choices being probabilistic): it is a

random variable and so are its components: we define random variables

• St = state at time step t

• At = action at time step t

• Rt = reward received just before entering St

18/294

Policies

Definition 2

A history is a finite prefix of a trajectory ending in a state, i.e., an object of type

s0, a0, r1, s1, a1, r2, . . . , at−1, rt , st ∈ (S ·A · R)∗S.

we denote by last(h) the last state of a history h.

Definition 3

A policy is a function π : (S · A · R)∗S → D(A) which to each history h assigns a

probability distribution over A(last(h)).

A policy is by definition an infinite object!

19/294

MD policies

Definition 4

A policy π is:

• memoryless if π(h) = π(h′) whenever last(h) = last(h′) (we can view memoryless

policies as objects of type π : S → D(A));

• deterministic if π(h) always assigns probability 1 to one action, and zero to all

others (we can view det. policies of objects of type π : (S ·A · R)∗S → A).

Definition 5

A policy π is MD (memoryless deterministic) if it is both memoryless and deterministic.

20/294

Dynamics of MDPs (more precise)

Given a distribution I of initial states and a policy π

• start in some initial state s0 ∼ I

• MDP evolves in discrete time steps t = 0, 1, 2, 3, . . .

• in each time step t, let ht be the history produced so far; then:

• agent selects action at ∈ A(st) according to π, i.e. at ∼ π(ht)

• the environment responds with next state st+1 ∼ p(st , at) and with immediate reward

rt+1 = r(st , at), the history is extended by at , rt , st+1,

• t is incremented and the process repeats in the same fashion forever

21/294

Probability space induced by a policy

In particular, each policy π together with a distribution I of initial states induce a probability

measure Pπ over the trajectories of the MDP.1

We denote by Eπ the associated expected value (expectation) operator.

We denote by Pπ[E | S0 = s] the probability of event E provided that the initial state is fixed

to s (and similarly for expectations).

Exercise 6

In the “study” MDP, consider an MD policy π s.t. π(start) = study and π(next) = pub.

Compute the following quantities:

• Pπ[visit pub at least twice′ | S0 = start ′′]

• Pπ[visit pub at exactly twice | S0 = start ′′]

• Eπ[R1]

• Eπ[R3]

1I is typically known from the context and hence omitted from the notation

22/294

Memorylessness

In this course, we will almost exclusively focus on memoryless policies. Hence, from now on,

policy = memoryless policy. General policies will be referred to as history-dependent policies

should the need arise.

Why memoryless?

Intuition: Markov property of MDPs: next step depends only on the current state and on

action performed in the current step. Hence, intuitively there is no need for a policy to

remember the past so as to “play well”.

The sufficiency of memoryless policies does not extended to more general/complex

decision-making settings (not covered in this course), such as:

• partially observable MDPs

• non-stationary environments

• quantile/risk-aware MDPs, etc.

23/294

Returns (payoffs)

Definition 7

Let γ ∈ [0, 1) be a discount factor.

For a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . we define the discounted return

(or payoff) of τ to be the quantity

G (τ) = r1 + γ · r2 + γ2 · r3 + · · · γ3 · r4 =
∞∑
i=0

γ i · ri+1.

Equivalently

G =
∞∑
i=0

γ i · Ri+1.

24/294

Returns (variants)

• Finite horizon (FH): additionally, we are given a finite decision horizon H ∈ N ∪ {∞}. The
return is that counted only up to step H:

GH =
H−1∑
i=0

γ i · Ri+1

For finite H, the discount factor can be 1. H =∞ corresponds to the original definition.

• Episodic returns: In episodic tasks, there is a distinguished set Term ⊆ S of terminal

states which is guaranteed to be reached with probability 1 under any policy. We denote

by T a random variable denoting the first point in time when we hit a terminal state. We

count rewards only up to that time:

GT =
T−1∑
i=1

γ i · Ri+1

Can be modeled under original definition by “sink” states. 25/294

Types of returns: discussion

• We will typically omit the superscripts since the type of task considered will be known

from the context.

• We have GH → G (pointwise) as H →∞. I.e., finite-horizon returns with high enough H

approximate the standard (infinite-horizon) case.

• In real world, we typically deal with FH or episodic tasks: we cannot wait infinite time to

learn something from a trajectory. However, the infinite-horizon case can be viewed as a

neat mathematical abstraction of the FH&episodic tasks, and the classical sequential

decision-making theory is most developed for the infinite horizon case.

26/294

Policy and state values

Definition 8

Let π be a policy and s a state. The value of π in state s is the quantity

vπ(s) = Eπ[G | S0 = s].

Exercise 9

Discuss the values of MD policies in our running example.

Definition 10

The (optimal) value of state s is the quantity

v∗(s) = sup
π

vπ(s).

27/294

Optimality

Definition 11

Let π be a policy and ε > 0. We say that π is ε-optimal in state s if

vπ(s) ≥ v∗(s)− ε.

We say that π is optimal in s is it is 0-optimal in s, i.e. if

vπ(s) = v∗(s).

A policy is (ε-)optimal if it is (ε-)optimal in every state.

28/294

Existence of optimal policies

Theorem 12: (Classical result, not formally proven here)

Let M be a finite MDP (i.e., the state and action sets are finite) with infinite-horizon

returns. Then there exists an optimal MD policy. Moreover, an optimal MD policy can

be computed in polynomial time.

Agent control solved? NO! “Only” works if you can actually construct the MDP model of your

environment and fit it into a computer. Otherwise, we use reinforcement learning.

29/294

Exact Planning

with Known Model:

Value & Policy Iteration

Goal of this lecture

Algorithms that compute the optimal value vector v∗ and some optimal MD policy π∗ given a

full knowledge of an MDP M.

30/294

Polynomial-time algorithm

MDPs can be solved by linear programming (LP)

maximize c⃗ · x⃗

subject to A · x⃗ ≤ b⃗

• LP can be solved in polynomial time by so-called interior-point algorithms.

• However, we typically use other, MDP-specific algorithms: value iteration (VI) and policy

iteration (PI). These are not polynomial-time in general, but typically faster on practical

instances.

• Moreover, most truly RL algorithms can be seen as approximate generalizations of VI or PI

(or both).

31/294

Example: Policy evaluation

Exercise 13

Consider all four MD policies in our running “pub or study” example that always try to

quit when in X state. Compute the values of these policies in the initial state start.

32/294

Policy evaluation equations

Theorem 14

For any memoryless policy π and any state s it holds:

vπ(s) =
∑

a∈A(s)

π(a|s) ·

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · vπ(s ′)

]
︸ ︷︷ ︸

def
=qπ(s,a)

.

33/294

Bellman optimality equations

Theorem 15

The following holds for any state s:

v∗(s) = max
a∈A(s)

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · v∗(s ′)

]
︸ ︷︷ ︸

def
=q∗(s,a)

• Note: the policy evaluation equations are a special case of the Bellman ones: given a

policy π, we can consider an MDP Mπ in which there is a single action ∗ enabled in each

state and the probability of transition s
∗→ s ′ equals

∑
a∈A(s) π(a|s) · p(s ′|s, a). Then Mπ

mimics the behavior of π in M and Bellman eq’s in Mπ = evaluation equations for π in

M.

• But these equations are no longer linear! How do we solve them? Is the solution even

unique? 34/294

Bellman update operator

The right-hand-side (RHS) of the Bellman equations can be viewed as an operator

Φ: RS → RS : for any x⃗ ∈ RS , Φ(x⃗) is a vector such that for any state s:

Φ(x⃗)(s)
def
= max

a∈A(s)

[
r(s, a) + γ ·

∑
s′∈S

p(s ′|s, a) · x⃗(s ′)

]

Exercise 16

In our running example, compute Φ(⃗0).

Theorem 15 says that the optimal value vector v∗ is a fixed point of Φ:

v∗ = Φ(v∗).

35/294

Mathematical hammers for Bellman

Lemma 17: (not proven here)

For any discount factor γ ∈ [0, 1), the Bellman operator Φ is a contraction, i.e. for any

pair of vectors x⃗ , y⃗ it holds

∥Φ(x⃗)− Φ(y⃗)∥∞ ≤ γ · ∥x⃗ − y⃗∥∞.

Theorem 18: Banach fixed point theorem (classical calculus, not proven here)

A contraction mapping from a complete metric space (in particular, Rn) to itself has a

unique fixed point.

36/294

Exact characterization of v ∗

Corollary 19

The optimal value vector is a unique solution of the Bellman optimality equations.

In particular, also the policy evaluation equations have a unique solution, equal to vπ. Since the

policy evaluation equations are linear, their solution can be computed by Gaussian elimination.

But the general Bellman equations are not linear. How can ve solve them?

37/294

Banach fixpoint theorem (full)

Theorem 20: Banach fixed point theorem (full version, not proven here)

A contraction mapping Φ from a complete metric space (in particular, Rn) to itself has

a unique fixed point z⃗ .

Moreover, z⃗ is the limit of iterative applications of Φ on any initial vector. I.e., for any

x⃗0 ∈ Rn, the sequence x⃗0,Φ(x⃗0),Φ(Φ(x⃗0)),Φ
(3)(x⃗0), . . . converges to z⃗ :

z = lim
i→∞

Φ(i)(x⃗0)

38/294

Value iteration (VI; Bellman, 1957)

Algorithm 1: Value iteration

Input: MDP M = (S,A, p, r)

Output: Approximation ṽ of v∗

x ← any vector from R|S| ; // typically 0⃗

next ← x ;

repeat

foreach s ∈ S do

next(s)← max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′|s, a) · x⃗(s ′)]︸ ︷︷ ︸
Φ(x)(s)

;

x ← next

until termination condition;

Typical term. conditions:

• after a fixed no. of iterations (i.e., use for-loop with a fixed bound)

• after each component of x changes less then some given ε 39/294

How to use VI

By the Banach fixpoint theorem (and Lemma 17), the value of variable x VI converges to v∗.

Can we recognize when is x “close enough” to x⃗?

In the following couple of theorems, let x⃗0, x⃗1, x⃗2, . . . be the sequence of vectors computed by

VI, i.e. x⃗0 is arbitrary and x⃗i+1 = Φ(x⃗i) for all i ≥ 0.

Theorem 21: Stopping condition (not proven here)

For any ε > 0: if

∥x⃗i+1 − x⃗i∥∞ ≤ ε · 1− γ

γ
,

then

∥x⃗i+1 − v∗∥∞ ≤ ε

40/294

How to use VI (2)

How fast can we get to the point where we are close enough?

Theorem 22: Speed of convergence (not proven here)

For all i ≥ 0 it holds

∥x⃗n − v∗∥∞ ≤
γn

1− γ
· ∥x⃗1 − x⃗0∥∞.

In particular, if we terminate VI after

i =

log(ε) + log

(
1−γ

∥x⃗1−x⃗0∥∞

)
log(γ)

steps, then its output xi will be an ε-approximation of v∗.

41/294

How to use VI (3)

Can we actually get some optimal values instead of approximations? First, note that VI

computes optimal finite-horizon values:

Let v i = supπ Eπ[
∑H

i=1 γ
i−1 · Ri]. The supremum is over all (i.e., history dependent) policies,

since in the FH problem an optimal policy needs to track the number of elapsed (and thus

remaining) steps: memory is needed for that.

Theorem 23: (Easy but important exercise)

If x⃗0 = 0⃗, then x⃗H = vH for all H ≥ 0.

Moreover, let πH be a deterministic history-dependent policy such that for all 1 ≤ i ≤ H,

whenever there are i steps remaining till the horizon, the policy πH selects in state s an

action a s.t.

a = argmax
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′|s, a) · x⃗i−1(s
′)]

(with ties broken arbitrarily). Then πH is an optimal H-step policy.
42/294

Greedy policies

Can we actually get optimal policy for the inf. horizon problem?

Definition 24: x⃗-greedy policy (very important)

Let x⃗ ∈ RS be any vector. A x⃗-greedy policy is an MD policy π such that in any state s:

π(s) = argmax
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′|s, a) · x⃗(s ′)].

43/294

How to use VI (4)

Theorem 25: Optimal inf.-horizon policy from VI (not proven here)

There is a number N polynomial in size of the MDP and exponential in the binary

encoding size of γ such that a policy π that is x⃗N -greedy is optimal in every state, i.e.

vπ = v∗.

Note that once π is computed, vπ can be computed in polynomial time via policy evaluation

equations.

Hence, VI can be said to solve MDPs in exponential time (and in polynomial time if the

discount factor is assumed to be a fixed constant instead of an input parameter), though the

approximate version is typically used in practice.

Note: the fact that some policy π is x⃗-greedy does not mean that vπ ≥ x⃗! Homework: find a

counterexample and post it to Discord.

However, for VI it can be shown that if ∥x⃗i+1 − x⃗i∥∞ ≤ ε · 1−γ
γ (stopping condition from

Theorem 21), then an x⃗i+1-greedy policy is ε-optimal. 44/294

Policy improvement

start next passed

sleep

study: -2 1 study: -2 1

done: 20

1

done: 0 1

procrast.: 4

1 leave: -1

1
2

1
2

procrast.: -1 1

pub: +4

0.3
0.4

0.3

vπ = ()

let π′ be vπ-greedy vπ′
= ()

let π′′ be vπ′
-greedy

45/294

Policy improvement theorem

Theorem 26: Policy improvement

Let π be a policy. If Φ(vπ) ≥ vπ, then any vπ-greedy policy πg is at least as good as π,

i.e. ∀s ∈ S : vπg (s) ≥ vπ(s).

Moreover, if Φ(vπ)(s) > vπ(s) for some state s, then also vπg (s ′) > vπ(s ′) for some

state s ′.

46/294

Returns from a given time step

For the proof of PIT and also many times later, we will need the following notation:

Definition 27: Important!

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory and t ∈ N a time step. We

define

Gt(τ) =
H−1∑
i=t

γ i−t · ri+1 = rt+1 + γrt+2 + γ2rt+3 + · · · ,

where H ∈ N ∪ {∞} or H = T for episodic tasks.

We similarly define, for any policy π:

Gπ
t = Eπ[Gt] = Eπ[

H−1∑
i=t

γ i−t · Ri+1].

47/294

Proof of PIT (setup)

We will define a sequence of policies π0, π1, π2, . . . s.t.:

• π0 = π

• πi behaves as πg (i.e., selects the same actions in same states) for the first i steps, then

“switches” back to behave as π:

• we also define π∞ = πg

We want: vπ∞(s) ≥ vπ(s) for all s.

Not hard to see: vπi → vπ∞ as i →∞ (πi behaves as π∞ for longer and longer as i increases

+ discounting).

It suffices to show: vπi (s) ≥ vπ(s) for all i ∈ N and all s ∈ S.

48/294

Proof of PIT (induction)

vπi (s) ≥ vπ(s) for all i ∈ N and all s ∈ S

• i = 0: clear

• i > 0:

vπi (s) = Eπi [R1 + γR2 + · · ·+ γ i−1Ri + γ iRi+1 + · · · | S0 = s]

= Eπi [R1 + γR2 + · · ·+ γ i−2Ri−1 | S0 = s] + Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s]

= Eπi−1 [R1 + γR2 + · · ·+ γ i−2Ri−1 | S0 = s] + Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s]

= Eπi−1 [R1 + γR2 + · · ·+ γ i−2Ri−1 | S0 = s] + Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s]︸ ︷︷ ︸
Suppose we prove ≥Eπi−1 [γ i−1Ri+γ iRi+1···|S0=s]

≥ Eπi−1 [R1 + γR2 + · · ·+ γ i−2Ri−1 + γ i−1Ri + γ iRi+1 · · · | S0 = s]

IH
≥ vπ(s)

49/294

Proof of PIT (induction, behavior at “reset”)

We need: Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s] ≥ Eπi−1 [γ i−1Ri + γ iRi+1 · · · | S0 = s].

Eπi [γ i−1Ri + γ iRi+1 · · · | S0 = s] = γ i−1 · Eπi [Ri + γRi+1 · · · | S0 = s]

= γ i−1 ·
∑
s′∈S

Pπi [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πi (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πi (s
′)) · Eπi [Gi | Si = s ′′]

)
= γ i−1 ·

∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πg (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πg (s
′)) · Eπ[Gi | Si = s ′′]

)
= γ i−1 ·

∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πg (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πg (s
′)) · Eπ[Gi | Si = s ′′]︸ ︷︷ ︸

vπ(s′′)

)
= γ i−1 ·

∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πg (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πg (s
′)) · Eπ[Gi | Si = s ′′]︸ ︷︷ ︸

vπ(s′′)

)
︸ ︷︷ ︸

=Φ(vπ), since πg is vπ-greedy

= γ i−1 ·
∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] ·
(
r(s ′, πg (s

′)) + γ ·
∑
s′′

p(s ′′ | s ′, πg (s
′)) · Eπ[Gi | Si = s ′′]︸ ︷︷ ︸

vπ(s′′)

)
︸ ︷︷ ︸

=Φ(vπ)(s′), since πg is vπ-greedy︸ ︷︷ ︸
≥vπ(s′), since Φ(vπ)≥vπ by PIT assumption.

≥ γ i−1 ·
∑
s′∈S

Pπg [Si−1 = s ′ | S0 = s] · vπ(s ′) = γ i−1 · Eπi−1 [Gi−1 | S0 = s]

= Eπi−1 [γ i−1Gi−1 | S0 = s] = Eπi−1 [γ i−1Ri + γ iRi+1 · · · | S0 = s] Strictness?

50/294

Policy iteration (PI; Howard, 1960)

Algorithm 2: Policy iteration

Input: MDP M = (S,A, p, r)

Output: Optimal MD policy π∗ for M, its value vector v∗

π ← arbitrary MD policy ;

v ← vπ ; // e.g. by solving linear policy evaluation equations

while Φ(v) ̸= v do

foreach s ∈ S do
π(s)← argmaxa∈A(s)[r(s, a) + γ ·

∑
s′∈S p(s ′|s, a) · v(s ′)]

v ← vπ

return π, v

51/294

PI correctness & complexity

Theorem 28

Policy iteration terminates after at most exponentially many iterations. Upon termina-

tion, it returns an optimal MD policy.

Proof:

• Optimal upon termination: vπ is a fixpoint of Φ when terminating: optimality follows

from Corollary 19.

• Terminates: π always stores an MD policy and there are finitely many of these. We will

show that no single MD policy appears in more than one iteration of PI.

Consider any iteration and let v , v ′ be the contents of variable v before and after the

iteration. We will show that unless Φ(v) = v , it holds v ′ > v , i.e. v ′ ≥ v componentwise

with strict inequality in some component. Hence, v = vπ strictly increases during PI, so

no π can appear twice.

52/294

PI: correctness proof

v ′ ≥ v :

We verify assumptions of PIT: Φ(v) ≥ v . Recall v = vπ. For all s ∈ S:

Φ(v)(s) = max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · v(s ′)]

≥ r(s, π(s)) + γ ·
∑
s′∈S

p(s ′ | s, π(s)) · vπ(s ′)

= vπ(s) = v(s).

By PIT, v ′ = vπ′ ≥ vπ = v (here π′ is the v -greedy policy).

53/294

PI: correctness proof II

It remains to prove that v ′ > v or PI terminates. Assume that v ′ = v . Then for all s ∈ S:

v ′(s) = r(s, π′(s)) + γ ·
∑
s′∈S

p(s ′ | s, π′(s)) · vπ′
(s ′)

= r(s, π′(s)) + γ ·
∑
s′∈S

p(s ′ | s, π′(s)) · vπ(s ′) (assumption)

= max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · vπ(s ′)] (π′ is v = vπ-greedy)

= max
a∈A(s)

[r(s, a) + γ ·
∑
s′∈S

p(s ′ | s, a) · vπ′
(s ′)] (assumption)

= Φ(v ′)(s),

so PI terminates at this point. Complexity?

54/294

PI&VI: discussion

• We know that MDPs have a linear programming (LP) formulation. PI is basically a

variant of a simplex method for this LP, using a special pivoting rule.

• PI typicaly requires less iterations to converge than VI, though each iteration is more

expensive (policy eval.)

• Both PI and VI typically work well in practice for MDPs whose explicit transition table fits

inside a computer. Which of the two is faster is rather domain-specific.

55/294

PI variants

Can we get rid of the expensive policy evaluation by linear system solving?

Yes: we can approximate the value of the current policy π by applying VI on the MDP Mπ, for

either fixed number of steps or until v does not change much. Often appearing in RL

textbooks:

56/294

Policy iteration with approximate evaluation

π ← arbitrary MD policy; v ← arbitrary vector;

repeat

v ← Eval(π, v);

foreach s ∈ S do
π(s)← argmaxa∈A(s)[r(s, a) + γ ·

∑
s′∈S p(s ′|s, a) · v(s ′)]

until π has not changed;

return π, v

Function Eval(π, v):

v ′ ← v ;

repeat

foreach s ∈ S do

v(s)← v ′(s);

v ′(s)← r(s, π(s)) + γ ·
∑

s′∈S p(s ′ | s, π′(s)) · v(s ′)

until ∥v − v ′∥∞ ≤ ε;

return v ′ 57/294

Convergence of PI variants

• The algorithm on previous slide still converges to an optimal policy provided that ε is

small enough.

• If we replaced the “π not changed condition” with the original “Φ(v) = v” condition, the

algorithm might not terminate, since the VI is only guaranteed to reach a true fixpoint in

the limit. However, v would still converge to v∗ and thus π would eventually become

equal to an optimal policy.

• The previous point holds even in the very degenerate case when we do just one iteration of

VI per policy evaluation! See next slide.

58/294

Curiously looking approximate PI

v ← arbitrary vector;

π ← v -greedy MD policy ;

repeat

foreach s ∈ S do

v ′(s)← r(s, π(s)) + γ ·
∑

s′∈S p(s ′|s, π(s)) · v(s ′);

v ← v ′;

foreach s ∈ S do
π(s)← argmaxa∈A(s)[r(s, a) + γ ·

∑
s′∈S p(s ′|s, a) · v(s ′)]

until Φ(v) = v ;

return π, v

This is just VI in disguise!

59/294

Generalized policy iteration

Evaluate

Improve

push v

towards vπ

make π

(more)

v -greedy

Source: Sutton&Barto, p. 87

60/294

Tabular Methods

for Model-Free

Reinforcement Learning

Model-free

We will still be working with MDPs. But for a bunch of the following lectures, we will not

(necessarily) have access to, e.g.:

• a table containing explicit enumeration of all states/actions

• a table containing the description of p or r

• the ability to compute the probability vector δ(s, a) or the reward signal r(s, a) given s

and a (having this = gray-box model of the MDP)

61/294

Sampling from MDP

But the MDP is still there “behind the scene”. In particular, we:

• know how the states of the MDP look like

• (e.g. robot state = all possible output values of its sensors)

• know how the actions of the MDP look like

• (e.g. robot = all possible signals that can be sent to the actuators)

• can, for any s ∈ S, enumerate A(s)

• could be weakened, but simplifies things

• given s ∈ S and a ∈ A(s), we can sample the next state s ′ ∼ p(s, a) and receive the

reward r(s, a).

62/294

Sampling from a policy

Given an effective representation of a policy π, we can sample a trajectory

s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . by performing, for each t ∈ {0, . . . ,T}:

• sample at ∼ π(st)

• query the environment for st+1 ∼ p(st , at) and rt+1 = r(st , at)

• increment t

Tabular = value estimates and policies represented as tables (e.g. Q(s, a) for each state s and

action a used in s – explicit representation might only be needed for states/actions actually

encountered).

63/294

Basic classification of (tabular) RL algorithms

Three independent axes:

problem on/off updates

policy evaluation (value prediction) on-policy Monte Carlo

vs. vs.

xy
control off-policy temporal difference

64/294

Assumptions: successor-dependent rewards & episodic tasks

Since we do no longer have the knowledge of the transition dynamics p, we cannot freely

interchange MDPs with rewards functions of type S ×A× S → R and S ×A→ R via

the equation r(s, a) =
∑

s′∈S p(s ′ | s, a) · r(s, a, s ′).
Hence, to maintain generality (and correspondence to e.g. Gymnasium environments)

we will assume reward functions of type S ×A× S → R.

We will assume episodic returns: each trajectory terminates with probability 1 at some

(possibly random) time step T. Termination can be defined e.g. by reaching some terminal

state or by running out of some fixed decision horizon (in Gymnasium, this is sometimes

called truncation):

G =
T−1∑
i=0

γ i · Ri+1.

Episode = one high-level iteration of an RL algorithm, corresponding of sampling a single

trajectory from some policy. 65/294

Monte Carlo Methods

MC evaluation

Policy evaluation: given an effective representation of a policy π, estimate vπ (or qπ).

Naive Monte Carlo: Sample from π: if {τ1, τ2, . . . , τn} are trajectories (episodes) independently

sampled under π from the same initial state s, then 1
n

∑n
i=1 G (τi)→ vπ(s) as n→∞ due to

law of large numbers (LLN).

But this throws away a lot of valuable information! E.g. what if we want to estimate the whole

vπ?

66/294

First-visit MC

For each s, we estimate vπ(s) as an average of sample returns Ret(s) which is formed as

follows:

• initially, Ret(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, we identify the first occurrence of s on τ : let

this be at timestep t; we add Gt(τ) to Ret(s)

start X start next pass. sleep
4 -1 -2 -2 20

Sub-trajectory starting at the first appearance of s can be seen as a trajectory sampled from π

when s is the initial state! (Since we consider memoryless π.)

Theorem 29

As |Ret(s)| → ∞, the average of Ret(s) converges to vπ(s). Moreover, the average of

Ret(s) is an unbiased estimate of vπ(s) (as long as Ret(s) ̸= ∅).
67/294

First-visit MC (pseudocode)

Source: Sutton&Barto, p.92

68/294

Every-visit MC

For each s, we estimate vπ(s) as an average of sample returns Ret(s) which is formed as

follows:

• initially, Ret(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, and each t such that St(τ) = s we add

Gt(τ) to Ret(s)

start X start next pass. sleep
2 -1 -2 -2 20

The sample returns added to Ret(s) within the same episode are not independent! Hence, the

estimate is biased, though the bias vanishes in the limit:

Theorem 30

As |Ret(s)| → ∞, the average of Ret(s) converges to vπ(s).

69/294

MC convergence

Optional reading: More on MC estimate bias, variance, and convergence in:

Singh, S.P. and Sutton, R.S.: Reinforcement Learning with Replacing Eligibility Traces.

In Machine Learning 22:123–158. Kluwer, 1996.

(Section 3, particularly 3.3 and onwards, you can skip Theorem 4.)

70/294

Towards MC control

Control = computation of “good” policy for a given environment. (Ideally, the policy should

get closer to the optimal policy the more episodes we sample.)

We know (PIT): given a policy π a vπ-greedy policy is at least as good as π:

πg (s) = argmax
a∈A(s)

[∑
s′∈S

p(s ′ | s, a) ·
(
r(s, a, s ′) + γ · vπ(s ′)

)]
Do we have an algo? There is an issue:

71/294

MC control with q-values

Recall:

qπ(s, a)
def
=
∑
s′∈S

p(s ′ | s, a) ·
(
r(s, a, s ′) + γ · vπ(s ′).

)
Thus, the vπ-greedy policy πg can be defined as:

πg (s) = argmax
a∈A(s)

qπ(s, a)︸ ︷︷ ︸
Estimate by MC.

72/294

MC for q-value estimation

Analogous to value estimation, e.g. first-visit:

For each s, a, we estimate qπ(s, a) as an average of sample returns Ret(s, a) which is formed

as follows:

• initially, Ret(s, a) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state-action pair (s, a), we identify the first t such

that St(τ) = s ∧ At(τ) = a; we add Gt(τ) to Ret(s)

start X start next pass. sleep
proc.:4 study:-1 study:-2 done:-2 done:20

Similarly for every visit. Convergence guarantees the same as for state values.

73/294

Infinite exploration and exploring starts

Issue: MC only estimates qπ(s, a) if:

• s guaranteed to be visited with positive probability in each episode

• π(a | s) > 0.

Definition 31: Infinite exploration

A RL algorithm has infinite exploration (IE) if, during the infinite execution of the algo-

rithm, each state-action pair (s, a) is visited infinitely often with probability 1.

One way of achieving IE is through exploring starts (ES): each episode begins with (typically

uniformly) randomly selected s0 and a0. This is achievable when training, e.g., in simulated

environments but might be difficult/impossible in real-world environments.

74/294

MC control with exploring starts

Source: Sutton&Barto, p.99
75/294

IE through ε-soft policies

Exploring starts are not always feasible. Alternative: make the sampled policy itself exploratory.

Definition 32: ε-soft policy

A policy π is ε-soft if for every s ∈ S and every a ∈ A(s) it holds π(a|s) ≥ ε
|A(s)| .

Definition 33: ε-greedy policy

Let v ∈ RS be a value vector. A policy π is v -ε-greedy if for every state s ∈ S there

is action a∗ = argmaxa∈A(s)

∑
s′∈S p(s ′ | s, a) ·

(
r(s, a, s ′) + γ · v(s ′)

)
such that for any

action a ∈ A(s) it holds:

π(a|s) =

 ε
A(s) if a ̸= a∗

1− ε+ ε
A(s) if a = a∗.

Interpretation: with prob. ε: play uniformly at random; with prob. 1− ε: play greedily.
76/294

ε-softing

Definition 34

Let π be a policy. An ε-softing of π is a policy πε defined as follows: in each state s

• with probability ε, πε selects an action uniformly at random;

• with probability 1− ε, πε selects a ∼ π(s).

I.e., an ε-greedy policy can be alternatively defined as ε-softing of a greedy policy.

77/294

MC control with ε-greedy policies

source: Sutton&Barto, p. 101
78/294

Policy iteration for ε-soft policies

Theorem 35

Let π be an ε-soft policy and let π′ be a vπ-ε-greedy policy. Than vπ′ ≥ vπ (componen-

twise). Moreover, the two value vectors are equal if and only if bot π and π′ are optimal

among all ε-soft policies; i.e. if, for every state s:

vπ(s) = sup
π̄ that is ε-soft

v π̄(s).

Proof: Required reading: Sutton&Barto, p.101-103.

79/294

Incremental computing of averages

Given a sample {n1, n2, . . . , nk+1} and average A = avg({n1, n2, . . . , nk}), how to compute

A′ = avg({n1, n2, . . . , nk , nk+1}) without recomputing the average of the whole sample?

A′ =
k

k + 1
· A+

nk+1

k + 1
.

80/294

On-policy vs. off-policy

• On-policy algorithms: track one “policy variable” π; the policy stored in π is used to

interact with the environment (i.e., to sample episodes) and at the same time we learn

something about it (e.g. its value vector).

• Corresponds to the generalized policy iteration scheme.

• All the MC algos we have seen so far.

• Off-policy algorithms: track more (typically two) different policy variables:

• behavior policy: used to sample episodes

• target policy: which we want to learn about

81/294

Off-policy evaluation

We are given effective representations of:

• a behavior policy β,

• a target policy π.

The task is to estimate vπ by sampling episodes from β . We cannot sample from π! (E.g. π

too risky or expensive to sample from.)

Assumptions:

• given (s, a), we can effectively compute π(a|s) and β(a|s) (or at least estimate via

sampling)

• coverage: ∀s ∈ S, a ∈ A(s): if π(a|s) > 0, then also β(a|s) > 0

82/294

Importance sampling

Definition 36: Importance ratio

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory. The importance-sampling

ratio of τ is the quantity

ρ(τ)
def
=

Pπ[τ | S0 = s0]

Pβ[τ | S0 = s0]

=
Pπ[A0 = a0,S1 = s1,A1 = a1, . . . ,AT−1 = aT−1,ST = sT | S0 = s0]

Pβ[A0 = a0,S1 = s1,A1 = a1, . . . ,AT−1 = aT−1,ST = sT | S0 = s0]
.

ρ(τ) can be computed without the knowledge of MDP transition probabilities!

ρ(τ) =
π(a0 | s0) · p(s1 | s0, a0) · π(a1 | s1) · p(s2 | s1, a1) · · ·
β(a0 | s0) · p(s1 | s0, a0) · β(a1 | s1) · p(s2 | s1, a1) · · ·

83/294

Importance ratio from time t

Definition 37

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory. By τi..j we denote the sub-

trajectory of τ starting in time step i and ending in timestep j . By τi.. we denote the

suffix of si , ai , ri+1, si+1, ai+1,

Definition 38: Importance ratio from time t

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory and t a time step. The

importance-sampling ratio of τ from t is the quantity

ρt(τ)
def
=

Pπ[τt.. | S0 = st]

Pβ[τt.. | S0 = st]

=
Pπ[A0 = at ,S1 = st+1,A1 = at+1, . . . ,AT−1−t = aT−1,ST−t = sT | S0 = st]

Pβ[A0 = at ,S1 = st+1,A1 = at+1, . . . ,AT−1−t = aT−1,ST−t = sT | S0 = st]
.

84/294

Off-policy evaluation with importance sampling

Theorem 39

For any s ∈ S it holds:

Eβ[ρ · G | S0 = s] = vπ(s).

Proof:

Eβ[ρ · G | S0 = s] =
∑
τ

Pβ[τ | S0 = s] · ρ(τ) · G (τ)

=
∑
τ

Pβ[τ | S0 = s] · P
π[τ | S0 = s]

Pβ[τ | S0 = s]
· G (τ)

=
∑
τ

Pπ[τ | S0 = s] · G (τ) = Eπ[G | S0 = s] = vπ(s).

Easily integrates into both first-visit and every visit MC: sample from β and store ρt(τ) · Gt(τ)

in Ret(st).
85/294

Weighted importance sampling

First-visit variant: for each state s, we keep a set of samples Sam(s). Each sample is a tuple

(τ, t) – trajectory and time step.

• initially, Sam(s) = ∅ for all s
• we then sample trajectories until timeout:

• for each sampled trajectory τ and each state s, and the smallest t such that St(τ) = s we

add (τ, t) to Sam(s)

Throughout the algorithm, the value of state s is estimated as

WIS(s) =

∑
(τ,t)∈Sam(s)

ρt(τ) · Gt(τ)∑
(τ,t)∈Sam(s)

ρt(τ)

Exercise 40

Compare ordinary/weighted importance sampling after single sample.
86/294

Weighted importance sampling – correctness

The weighted sampling is clearly a biased estimator. However, the bias vanishes in the limit:

Theorem 41

With probability 1: as |Sam(s)| → ∞, we have that WIS(s)→ vπ(s).

Proof:

87/294

Ordinary vs. weighted sampling

source: Sutton&Barto, p. 106
88/294

Importance sampling: summary

But ordinary and weighted importance sampling can be adapted to every-visit MC.

Bias & Convergence:

• First visit:

• ordinary IS: unbiased, i.e. also converges

• weighted IS: biased, but converges in the limit

• Every visit:

• both ordinary and weighted: biased (due to EV), but converges in the limit

89/294

Weighted IS: incremental implementation

Instead of recomputing the weighted average for each new sample, WIS(s) can be updated by

keeping keep just two variables:

• V – current value of WIS(s), initially arbitrary

• C – the sum of importance ratios, initially 0

Upon arrival of new sample (τ ′, t ′), we update V ,C into new values V ′,C ′ by setting:

C ′ = C + ρt′(τ
′)

V ′ = V +
ρt′(τ

′)

C ′ · (Gt′(τ
′)− V) .

90/294

Off-policy evaluation with weighted IS

source: Sutton&Barto, p.110

91/294

Off-policy control with weighted IS

Required reading: Sutton&Barto, Section 5.7.

92/294

Temporal Difference Methods

TD: Motivation

Let us first focus on policy evaluation.

MC: zero bias (at least in the limit), but potentially high variance: many samples needed to

converge. Also, to update estimates, it must wait till the end of each episode.

TD methods retain the focus on sampling but combine it with bootstrapping.

93/294

Incremental update notation

Definition 42: Notation for updates

In the context of RL algorithms will denote by V n(s) (resp. Qn(s, a)) the algorithm’s

estimate of vπ(s) (resp. qπ(s, a)) after n-th update of this estimate.

94/294

MC vs. TD(0) update

On-policy MC (incremental) update using sampled trajectory

τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . .:

V n+1(st)← (1− αn)V
n(st) + αnGt(τ) = V n(st) + αn ·

[
Gt(τ)︸ ︷︷ ︸

update target

−V n(st)

︸ ︷︷ ︸
update error

]
,

where αn = n/(n + 1).

TD(0) update in the same situation, with αn “suitably chosen” (possibly constant):

V n+1(st)← V n(st) + αn ·
[
Rt+1(τ) + γ · V n(St+1(τ))︸ ︷︷ ︸

bootstrap

−V n(st)
]

95/294

Policy evaluation with TD(0)

source: Sutton&Barto, p. 120

96/294

How can it even work?

Really “just” a very asynchronous, sample-based, and “α-dampened” version of value iteration.

Eπ[Gt |St = s] = Eπ[Rt+1 + γ · Gt+1 | St = s] = Eπ[Rt+1 | St = s] + γ · Eπ[Gt+1 | St = s]︸ ︷︷ ︸
vπ(St+1)

.

In expectation, the TD(0) update is the same as VI update in Mπ. Thanks to the contractivity

of the Bellman operator, VI possesses an error reduction property: after each update, the error

of the estimate decreases. Hence, in expectation, the same is true for the TD(0) update.

Formal proof of correctness in optional reading:

Sutton, R.S.: Learning to Predict by Methods of Temporal Differences. In Machine

Learning 3:9–44. Kluwer, 1988. (For MDPs with function approximation.)

97/294

Why TD is natural (Sutton&Barto, p. 122-123)

Left: MC. Right TD(0). 98/294

On-policy TD control

Recall:

• In control setting, we need to estimate q-values of a policy.

• On-policy: we sample trajectories according to some policy π and then push value

estimates towards qπ.

To maintain exploration, the policy π will typically be the ε-Q-greedy policy for some ε > 0,

where Q are the current Q values estimates. I.e., throughout the algorithm

π(a|s) =

1− ε+ ε
A(s) if a = argmaxa′∈A(s) Q(s, a′)

ε
A(s) otherwise.

99/294

SARSA

State-Action-Reward-State-Action. Introduced in Rummery, Niranjan: On-Line Q-Learning

Using Connectionist Systems (1994).

In each episode, sample a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . , sT according to

current policy π; for each time step 0 ≤ t ≤ T − 1, perform the following update:

Qn+1(st , at) = Qn(st , at) + αn ·
[
rt+1 + γQn(st+1, at+1)− Qn(st , at)

]
The update can be performed immediately when st+1 and at+1 is known (no need to wait for

the episode to terminate).

After the episode ends, make π ε-Q-greedy.

Conforms to the GVI scheme.

100/294

SARSA pseudocode

source: Sutton&Barto, p. 130

101/294

GLIE policies

Definition 43: GLIE condition

A RL algorithm is greedy in the limit (GL) if its behavior policy (=target policy in on-

policy algorithms) converges to a 0-greedy policy with increasing number of episodes.

A RL algorithm is GLIE if it is GL and IE (infinitely exploring).

Typical ways of ensuring GLIE:

• Dynamically adjust ε in ε-greedy policy selection” When selecting action in state s,

behave ε-greedily with ε = c
n(s) , where 0 < c < 1 is a constant and n(s) is a number of

visits to state s over all the episodes so far.

• Use Boltzmann (softmax) exploration:

π(a | s) = e
Q(s,a)
η(s)∑

b∈A(s) e
Q(s,b)
η(s)

,

where η is a state-dependent and time-varying temperature parameter. We need η to

converge to 0 over time, but not too fast (often, η(s) proportional to 1
log(n(s))). 102/294

Convergence of SARSA

Theorem 44

Consider a GLIE instantiation of SARSA. Moreover, assume that the sequence of learning

rates (αn)n∈N satisfies
∑

n αn =∞ and
∑

n α
2
n <∞. In this setting, Q converges to q∗

and the behavior policy of SARSA converges to some optimal policy π∗.

For the proof, see optional reading: Singh, Jaakkola, Littman, Szepesvári: Convergence Results

for Single-Step On-Policy Reinforcement-Learning Algorithms. In Machine Learning

39:287-308. Kluwer, 2000.

Note: learning rate can itself be state/action dependent (omitted for conciseness, constant

learning rates preferred in practice).

103/294

Off-policy TD control

Surprise: no importance sampling!

Recall the SARSA update:

Qn+1(st , at) = Qn(st , at) + αn ·
[
rt+1 + γQn(st+1, at+1)− Qn(st , at)

]
It pushes Q towards qπ, where π is the current policy.

Idea: push Q directly towards q∗.

We could do this e.g. by a VI-like update:

Qn+1(st , at) = Qn(st , at) + αn ·
[
max
a∈A(s)

∑
s′∈S

p(s ′ | s, a)
(
r(s, a, s ′) + γV (s ′)

)
− Qn(st , at)

]
.

Two problems:

• We do not calculate v -estimates. (Must somehow replace with Q)

• We must get rid of transition probabilities and instead use the sampled at and rt+1.
104/294

Q-learning update

Solution: push the max towards the bootstrap.

Q-learning (Watkins, 1989): given a sampled trajectory s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ., for

every t we update:

Qn+1(st , at) = Qn(st , at) + αn ·
[
rt+1 + γ ·

(
max

a∈A(st+1)
Qn(st+1, a)

)
− Qn(st , at)

]

105/294

Q-learning pseudocode

source: Sutton&Bato, p. 131

Off-policy: where is the second policy? 106/294

Q-learning convergence

Theorem 45

Consider any Q-learning instantiation with infinite exploration. Assume that the sequence

of learning rates (αn)n∈N satisfies
∑

n αn = ∞ and
∑

n α
2
n < ∞. In this setting, Q

converges to q∗. Moreover, if the behavior policy is GL, then it converges to an optimal

policy π∗.

Proof in optional reading: Watkins, Dayan: Q-Learning. In Machine Learning 8:279-292.

Kluwer, 1992.

107/294

SARSA vs. Q-learning (SB: p. 132)

Left: greedy policies learned by SARSA and Q-learning.

Right: in-training performance with a 0.1-greedy behavior policy.

(Rough) takeaway: Q-learning more aggressive in finding optimal policy, can lead to risky

behavior. Possibly advantageous when environment not too stochastic or if in-training

performance has less importance (simulator vs. real world).
108/294

Maximization bias in Q-learning

Q-learning is “risky” not only due to exploration, but also because it is optimistic in the face of

uncertainty. TBD

The positive bias only disappears in the limit.
109/294

Double Q-learning

Idea: use two independent value estimates Q1, Q2 and decouple action selection from

evaluation in the bootstrap. During each update, we randomly select one of these for update,

which is also used to select the maximizing action in bootstrap. The other is used as the

bootstrap estimate.

I.e., in each time step t we perform one of these updates, each with probability 1
2 : either

Q1(st , at) = Q1(st , at) + αn ·
[
rt+1 + γ · Q2

(
st+1, (argmax

a∈A(st+1)

Q1(st+1, a))
)
− Q1(st , at)

]
or

Q2(st , at) = Q2(st , at) + αn ·
[
rt+1 + γ · Q1

(
st+1, (argmax

a∈A(st+1)

Q2(st+1, a))
)
− Q2(st , at)

]
.

Behavior policy = e.g. ε-greedy w.r.t. Q1 + Q2.

110/294

Double Q-learning pseudocode

source: Sutton&Barto, p. 136
111/294

Why Double Q-learning helps

112/294

Double Q-learning: experiment

source: Sutton&Barto, p. 135
113/294

Between Monte Carlo

and TD:

n-Step and λ-Returns

MC vs TD(0) update targets

Given a trajectory s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . .:

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

Update for time step t in:

• MC = discounted return from t till the end of trajectory, e.g. for t = 1:

r2 + γr3 + γ2r4 + · · ·+ γT−2rT

unbiased, but high variance + need the whole trajectory

• TD(0) = 1-step reward and then (discounted) bootstrap:

r2 + γV (s2)

114/294

n-step return

Idea: use n-step discounted return and then bootstrap

Definition 46

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory and n ∈ N \ {0}.
An n-step return of τ from time step t is the quantity

Gt:t+n(τ) = rt+1 + γ · rt+2 + γ2 · rt+3 + · · · γn−1rt+n + γn · V (st+n).

We also define a Q-estimate-based version:

Gt:t+n(τ) = rt+1 + γ · rt+2 + γ2 · rt+3 + · · · γn−1rt+n + γn · Q(st+n, at+n).

(Which of the two is used will be clear from the context.)

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

115/294

n-step TD policy evaluation

Similar to TD(0), but using n-step return targets:

given a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ., for each 0 ≤ t < T we perform an

update

V (st)← V (st) + α[Gt:t+n(τ)− V (st)].

Note 1: for n = 1 we get exactly TD(0).

Note 2: for n > 1, we cannot update V (st) directly at step t + 1. We need to obtain

rt+1, . . . , rt+n, st+n first, i.e. we can perform the update after step t + n.

Note 3: if t + n > T , we truncate the sum in Gt:t+n at rT , i.e. in such a case Gt:t+n = Gt .

116/294

n-step TD policy evaluation: pseudocode

source: Sutton&Barto, p.144 117/294

n-step TD policy evaluation: performance

19-state symmetric random walk:

source: Sutton&Barto, p.145 118/294

n-step SARSA (on-policy control)

Uses Q-value-bootstrapped n-step returns.

For a sampled trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . and for all time steps

0 ≤ t < T we perform an update

Q(st , at)← Q(st , at) + α[Gt:t+n − Q(st , at)].

We sample trajectories according to a policy π that is ε-greedy w.r.t. current Q-estimates:

π(a|s) =

1− ε+ ε
|A(s)| if a = argmaxa′∈A(s) Q(s, a′) (ties broken in principled way)

ε
|A(s)| otherwise.

π is redefined in this way after each episode

119/294

n-step SARSA (pseudocode)

source: Sutton&Barto, p. 147
120/294

n-step SARSA (speed of signal propagation)

source: Sutton&Barto, p. 147

121/294

n-step Q-learning

The Q-learning update for a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . and time step t:

Q(st , at)← Q(st , at) + α · [rt+1 + γ · max
a∈A(st+1)

Q(st+1, a)− Q(st , at)].

Naive extension to n-step returns

Q(st , at)← Q(st , at)+α·[rt+1+γrt+2+· · ·+γt+n−1·rt+n+γt+n · max
a∈A(st+1)

Q(st+n+1, a)−Q(st , at)]

does not really correspond to Q-learning, since some of the actions at+1, . . . , at+n might not be

Q-greedy (the behavior policy is ε-greedy, so some actions might be exploratory). Hence, we

are no longer pushing Q towards the Q-value of an optimal policy.

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

122/294

n-step Q-learning: correct

Idea: apply the Q-learning bootstrap at the first occurrence of a non-Q-greedy action.

I.e., for each episode:

• make π an ε-Q-greedy policy

• sample a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . from π

• for each time step 0 ≤ t < T :

• identify the smallest n′ ∈ {t + 1, t + 2, . . . , t + n} such that an′ is not a Q-greedy action

• perform the update

Q(st , at)← Q(st , at) + α · [rt+1 + γrt+2 + · · ·+ γn′−1rn′ + γn′ · max
a∈A(sn′)

Q(sn′ , a)− Q(st , at)]

(if n′ > T , do the standard MC update).

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

123/294

λ-returns: idea

By varying n, the n-step returns provide a nice tradeoff between bias and variance (and update

speed). But the choice of optimal n is mostly a guesswork.

Idea: find a notion of return which combines n-step returns for multiple n’s. E.g., a suitable

convex combination of individual n-step returns. This leads to the notion of λ-returns.

We will focus only on policy evaluation, though λ-returns can be used also in control.

124/294

λ-returns: definition

Recall: Gt:t+n is the n-step return from timestep t.

Definition 47: λ-return

Let λ ∈ [0, 1]. A λ-return from timestep t is the random variable

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n.

Note that due to truncation at t + n ≥ T , the λ-return can be more explicitly written as

Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1 · Gt:t+n + λT−t−1 · Gt .

s0

a0

s1

a1

s2

a2

s3

a3

s4
r1 r2 r3 r4

125/294

λ-return as discounting of n-step returns

source: Sutton&Barto, p. 290

126/294

(Forward-view) TD(λ)

Like TD(0), but uses λ-returns.

Given a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . sampled from the evaluated policy π,

we perform, for each time step t an update:

V (st)← V (st) + α(Gλ
t (τ)− V (st)).

Note:

• for λ = 0, this is exactly the TD(0) update,

• for λ = 1, this is exactly the MC update,

• Gλ
t (τ) depends on the whole suffix of τt.., hence the update can be only performed at the

end of the episode. (We will show a workaround later.)

127/294

TD(λ) vs. n-step TD on 19-state random walk

source: Sutton&Barto, p. 291

128/294

Forward vs. backward view TD(λ)

Backward-view TD(λ) = an algorithm performing roughly the same updates as Forward-view

TD(λ) in an online fashion (V (st) can be updated by time t + 1).

Implemented using eligibility traces: state-wise signals that indicate how much is the current

state eligible for an update (sort of state-wise modulation of the learning rate).

We are more keen to update states that:

• appear often along the trajectory (frequency heuristic)

• were visited in the recent past (recency heuristic)

129/294

Accumulating eligibility trace

Definition 48: (Accumulating) eligibility trace

For a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ., λ ∈ [0, 1], and a state s ∈ S,

an (accumulating) eligibility trace is a sequence of values E0(s),E1(s),E2(s), . . . defined

inductively as follows:
E0(s) = 0

and for t > 0 Et(s) = γ · λ · Et−1(s) + I(St(τ) = s),

where I(St(τ) = s) is the indicator of the t-th state of τ being s, i.e. I(St(τ) = s) = 1

if st = s and I(St(τ) = s) = 0 otherwise.

source:

slides of D.

Silver

(Model-free

prediction) 130/294

Backward-view TD(λ): idea

• Et(s) denotes how much is s eligible for an update after playing t-th action along the run

(i.e., action at−1).

• In time step t, all states with non-zero eligibility signal will have their estimates updated in

proportion to the learning rate and the strength of the eligibility signal.

• The update target is the standard TD(0) target for time t. I.e., for each timestep t and

each state q, we perform the update

V (q)← V (q) + α · Et(q) ·
[
rt+1 + γ · V (st+1)− V (st)

]
.

131/294

Backward-view TD(λ): pseudocode

Input: policy π to evaluate

Output: Estimate V of vπ

initialize V arbitrarily

repeat

s ← sample uniformly (ES) or according to init. distr.

initialize E to be uniformly zero

while s not terminal do

a← sample from π(s)

s ′ ← sample from p(s, a)

r ← r(s, a, s ′)

foreach q ∈ S (Only q’s visited so far) do

E (q) = γ · λ · E (q) + I(q = s)

V (q)← V (q) + α · E (q) ·
[
r + γ · V (s ′)− V (s)

]
s ← s ′

until timeout 132/294

Forward vs. backward view

If λ = 0, then Et(q) = I(St(τ) = q), i.e. the backward-view update at time point t is

V (st)← V (st) + α ·
[
r + γ · V (st+1)− V (st)

]
,

while for all states other than st , no update is performed. I.e., backward TD(0) is exactly the

same thing as forward TD(0).

For general λ the correspondence is more subtle:

Theorem 49: Forward-backward view correspondence

Assume that in the backward view, all the updates along the trajectory are performed

offline, i.e. only after the end of the episode, and in a batch, i.e. concurrently, using the

pre-episode estimates in right-hand sides.

Then, for any λ ∈ (0, 1), this offline backward TD(λ) performs the same updates as

forward TD(λ).

133/294

Offline backward and forward view (source: D. Silver slides)

Given the batch nature of updates, it suffices to show that the forward update target at time t

equals the sum of all updates “triggered” by a visit to state st .

134/294

Online vs. offline backward view on 19-state RW

In practice, we want to use the online backward algorithm, which only approximates the

forward view. Nevertheless, it performs acceptably:

source: Sutton&Barto, p. 295, LEFT: online backward TD(λ), RIGHT: offline forward TD(λ) 135/294

Concluding remarks on λ-returns

• There are other types of eligibility traces (replacing, dutch, . . .), yielding different

algorithms.

• Eligibility traces neatly generalize to deep learning, where they are not state-wise but

parameter-wise signals; optional reading: Sutton&Barto, Sec. 12.1-12.2

• λ-returns and eligibility traces can be generalized to control setting SARSA(λ), Q(λ);

optional reading: Sutton&Barto, Sec. 12.7-12.10.

• There is a true online backward TD(λ) version. Here, true online=having perfect

equivalence with the forward view. However, the equivalence is w.r.t. a more complex

notion of λ-return (truncated λ-return) and uses more complex version of eligibility traces

than presented here. Outperforms both forward and backward algorithms presented here.

Optional reading: van Seijen, Sutton: True Online TD(λ). In Proceedings of ICML’14.

136/294

First Steps Towards Deep RL:

Value-Based

On-Policy Methods

Working with huge MDPs

E.g. original Atari games have 160x192 resolution with 128 colors: observable state space of

size 27·160·192 = 2215040 (though only a fraction reachable and resolution typically scaled down

in benchmarks – however, state typically encompass last 3 frames so as to provide some info on

movement).

State space can be even continuous (position, velocity,. . .).

Most states will not be seen - we need the ability to generalize from experience to

unseen/rarely seen states.

137/294

Huge MDP representation

From now on, states of the MDP will be represented by vectors from Rn. The vectorized

representation is chosen in a domain-specific manner, e.g.:

• Atari = one component per pixel per frame

• continuous navigation = agent coordinates, velocity, etc.

• small discrete MDPs can be represented by one-hot encoding

For simplicity, we will still assume that the action space is discrete, and reasonably small,

though many algorithms can be adapted for continuous actions (acceleration, etc).

138/294

Function approximators

The value functions have types:

vπ, v∗ : Rn → R qπ, q∗ : Rn ×A→ R.

In RL, we need to approximate these functions.

Definition 50

A function approximator (FA) for functions of type X → Y is a class of functions f ⊆ Y X

parameterized by a some set of parameter vectors Θ ⊆ Rn.

Each concrete parameter vector θ ∈ Θ defines a concrete function fθ ∈ f , i.e. f = {fθ | θ ∈ Θ}.

For FA f , we often write fθ(x) = f (x , θ) to stress the fact that the output of fθ depends on

both the input x and on θ. Hence, FA for type X → y can be itself seen as a function of type

X ×Θ→ Y .

139/294

Function approximators in RL

Our algorithms will use mainly these types of function approximators:

• V : Rn ×Θ→ R to approximate vπ or vθ

• Q : (Rn ×A)×Θ→ R to approximate qπ or qθ

The typical task is to find θ ∈ Θ such that Vθ = V (·, θ) is a “good” approximation for vπ or

vθ, and similarly for Qθ.

The parametrization Θ will depend on the concrete form of function approximator used.

140/294

Forms of function approximators

• tabular

• θ = the vector containing the contents of the table

• linear

• Θ = S = Rn and e.g. Vθ(s) = θ⊤ · s

• neural nets

• θ = NN weights and biases

• decision trees

• . . .

We require the approximators to be differentiable and to admit a training method suitable for

non-stationary data.

141/294

Neural nets (source: slides by T. Brázdil)

142/294

Policy evaluation with FAs

Task: given a policy π and FA V : Rn ×Θ→ R, find θ s.t. Vθ is “close” to vπ.

“Closeness” can be expressed using various loss functions. Typically, we want to minimize the

mean squared error (MSE):

MSE(vπ,Vθ) =
1

2
Es∼µ

[
(vπ(s)− Vθ(s))

2
]
=

1

2

∑
s∈S

µ(s) ·
[
(vπ(s)− Vθ(s))

2
]
,

where µ is some distribution over states expressing how much do we care about errors in

particular states.

A local minimum of MSE can be found gradient descent: making successive step in the

direction opposite to the gradient of MSE.

143/294

Recall: gradients

Definition 51

Given a scalar function f (x1, . . . , xn, θ1, . . . , θm) : Rn × Θ → R (where Θ ⊆ Rm), the

gradient of f w.r.t. parameters θ = (θ1, . . . , θm) is the vector function

∇θf = (
∂f

∂θ1
, . . . ,

∂f

∂θm
) of type Rn ×Θ→ Rm

When f is a function approximator defined by a neural net, the value of the gradient ∇θf (x , θ)

at a given point (x , θ) = (x1, . . . , xn, θ1, . . . , θm) can be computed by backpropagation (under

some usual conditions like smoothness, etc.).

144/294

Gradient descent for policy evaluation

To (locally) minimize MSE(vπ,Vθ), it suffices to perform (sufficiently small) steps in the

negative direction of the current gradient, i.e., repeatedly perform updates:

θ ← θ − α · ∇θMSE(vπ,Vθ) = θ − α · ∇θ
1

2
· Es∼µ

[(
vπ(s)− Vθ(s)

)2]
= θ − α

2
· Es∼µ

[
∇θ

(
vπ(s)− Vθ(s)

)2]
= θ + α · Es∼µ

[(
vπ(s)− Vθ(s)

)
· ∇θVθ(s)

]
The expected value above is typically impossible to evaluate in practice. Instead we estimate it

by samples ⇒ stochastic gradient descent.

We typically take µ(s) representing the overall fraction of time spent in s when behaving

according to µ. Hence, Es∼µ can be estimated by sampling a trajectory from µ and performing

the update for each s on the trajectory in an every-visit fashion.

145/294

Stochastic gradient policy evaluation + MC instantiation

We keep sampling trajectories τ from π:

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

For each timestep t we perform the update of parameters

θ ← θ + α ·
[(
vπ(st)− Vθ(st)

)
· ∇θVθ(st)

]
.

Problem: in policy evaluation setting, we do not know vπ(st). Hence, we estimate it using RL

targets.

The simplest is the Monte Carlo target: estimate st by the discounted return of the sampled

trajectory from st , i.e. perform updates of the form

θ ← θ + α ·
[(
Gt(st)− Vθ(st)

)
· ∇θVθ(st)

]
.

146/294

Gradient Monte Carlo policy evaluation: pseudocode

Algorithm 3: Gradient MC evaluation

Input: Policy π, FA V : S ×Θ→ R, step size α

Output: Approximation Vθ of vπ

initialize θ arbitrarily;

repeat

sample trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . from π;

foreach t ∈ {0, . . . ,T − 1} do
θ ← θ + α · [Gt(τ)− V (st , θ)] · ∇θV (st , θ)

until timeout;

147/294

Semi-gradient TD(0)

In the gradient update formula

θ ← θ + α ·
[(
vπ(st)− Vθ(st)

)
· ∇θVθ(st)

]
.

we can also estimate vπ(st) with the TD(0) target:

θ ← θ + α ·
[(
rt+1 + γ · Vθ(st+1)− Vθ(st)

)
· ∇θVθ(st)

]
.

This yield the semi-gradient TD(0) policy evaluation algorithm.

Why semi-gradient?

148/294

Gradient vs. semi-gradient TD(0)

Recall that our ultimate goal is to minimize

MSE(vπ,Vθ) =
1

2
Es∼µ

[
(vπ(s)− Vθ(s))

2
]
.

The gradient of this loss is

∇θ
1

2
Es∼µ

[
(vπ(s)− Vθ(s))

2
]
=

1

2
Es∼µ

[
∇θ(v

π(s)− Vθ(s))
2
]
,

Estimation with sample trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . and substituting vπ(s)

with the TD(0) target would yield

∇θMSE(vπ,Vθ) ≈
1

2
∇θ

(
rt+1+γVθ(st+1)−Vθ(st)

)2
= (rt+1+γVθ(st+1)−Vθ(st))·(γ∇θVθ(st+1)−∇θVθ(st)),

different update then semi-gradient TD(0)! However, this full gradient:

• is more expensive to compute (2 backpropagations per update);

• does not really express TD(0) idea (the update target is not fixed).

149/294

Semi-gradient TD(0): pseudocode

Algorithm 4: Semi-gradient TD(0) evaluation

Input: Policy π, FA V : S ×Θ→ R, step size α

Output: Approximation Vθ of vπ

initialize θ arbitrarily;

repeat

s ← initial state;

a ∼ π(s);

while s not terminal do

s ′ ∼ p(s, a);

r ← r(s, a, s ′);

a′ ∼ π(s ′);

θ ← θ + α · [r + γ · V (s ′, θ)− V (s, θ)] · ∇θV (s, θ);

s ← s ′; a← a′

until timeout;

150/294

On-policy control with function approximation

Semi-gradient SARSA uses the same idea as TD(0), but with Q-approximator, i.e.

Q : Rn ×A×Θ→ R.

Behavior policy = e.g. ε-greedy with respect to the current Q. For a sampled trajectory τ =

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

we perform, in each timestep t, an update

θ ← θ + α ·
[(
rt+1 + γ · Qθ(st+1, at+1)− Qθ(st , at)

)
· ∇θQθ(st , at)

]
.

151/294

Semi-gradient SARSA: pseudocode

Algorithm 5: Semi-gradient SARSA

Input: FA Q : S ×A×Θ→ R, step size α

Output: Approximation Qθ of q∗

initialize θ arbitrarily;

repeat

s ← initial state;

π ← policy ε-greedy w.r.t. Qθ;

a ∼ π(s);

while s not terminal do

s ′ ∼ p(s, a);

r ← r(s, a, s ′);

a′ ∼ π(s ′);

θ ← θ + α · [r + γ · Qθ(s
′, a′)− Qθ(s, a)] · ∇θQθ(s, a);

s ← s ′; a← a′

until timeout;
152/294

Representing actions in DNNs

How to represent actions in the (say, DNN) function approximator Q is largely a

domain-dependent engineering choice.

If the set of actions A = {a1, . . . , ak} is discrete and reasonably small, we can consider a net

which inputs a state (i.e., n input neurons when S = Rn) and outputs an |A|-dimensional

vector (i.e., one output neuron per action), so that the output of the i-th neuron on input s is

interpreted as Q(s, ai).

I.e., in such a case we consider Q to be function of type Q : S ×Θ→ R|A|.

153/294

On-policy semi-gradient methods: concluding remarks

The presented algorithms can be instantiated also with other types of returns, such as:

• n-step returns

• n-step SARSA update:

θ ← θ+α ·
[(

rt+1 + γ · rt+2 + · · ·+ γn−1rt+n + γn · Qθ(st+n, at+n)︸ ︷︷ ︸
Gt:t+n,θ

−Qθ(st , at)
)
·∇θQθ(st , at)

]
• forward-view λ-returns

• SARSA(λ) update: θ ← θ + α ·
[(
(1− λ)

∑∞
n=1 λ

n−1Gt:t+n,θ − Qθ(st , at)
)
· ∇θQθ(st , at)

]
• backward-view λ-returns (optional reading: Sutton&Barto, sections 12.2 and 12.7)

154/294

Value-Based

Off-Policy Control with

Approximators:

DQNs and Friends

Off-policy methods with function approximation

...are tricky to get right, already in the case of policy evaluation. The training can become very

unstable.

For on-policy (semi)-gradient methods, one can typically prove convergence to correct/optimal

values at least in the case of linear function approximation (though not in the more general

case of NN approximators).

Off-policy semi-gradient methods, such as:

• TD with importance sampling (not covered here), or

• Q-learning with function approximators (will be covered a bit later),

can diverge already with linear function approximators.

155/294

Divergence examples (high-level)

• Baird’s counterexample: semi-gradient TD with importance sampling can diverge in

presence of linear FAs

• Moreover, the divergence is not due to the instability of (semi)-gradient descent. Tsitsiklis

and Van Roy’s counterexample shows divergence even in the case where each update

completely replaces the current θ with the optimal θ∗ which minimizes the MSE between

Vθ and the TD(0) update target. The problem lies in the off-policy distribution of updates.

• Counterexamples explained in optional reading: Sutton&Barto, Sec. 11.2.

156/294

Deadly triad

Identified by Sutton&Barto: risk of training instability and divergence steeply rises when

combining:

• function approximation,

• bootstrapping, and

• off-policy training.

But often we want to do just that. :)

Practical solution: Happily do the deadly triad, but use insights from supervised learning to

develop additional techniques that help stabilize the training.

157/294

Deep Q-Networks (DQN)

2013 arXiv tech. report, there is also follow-up 2015 Nature paper

158/294

Q-learning with function approximators

Same semi-gradient idea as in TD(0), SARSA: adjust θ to bring Qθ(s, a) closer to the fixed

Q-learning update target.

I.e., for a sampled trajectory

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

. . .
r1 r2 r3 r4 r5

and its timestep t, the update is

θ ← θ + α ·
[(
rt+1 + γ · max

a∈A(st+1)
Qθ(st+1, a)− Qθ(st , at)

)
· ∇θQθ(st , at)

]
.

But performing the updates based solely on the current step would be susceptible to instability

due to the presence of the deadly triad.

159/294

Deep Q-learning challenges

From Mnih et al. Playing Atari with Deep Reinforcement Learning:

160/294

Experience replay

Originated in the work of Long-Ji Lin, e.g.: Reinforcement Learning for Robots Using Neural

Networks, dissertation, 1993.

Definition 52: Experience

An experience is a 4-tuple (s, a, r , s ′) ∈ S ×A× S × R interpreted as (”state”, ”action

played in it”, ”reward obtained”, ”next state observed”).

• DQN does not perform update based only on the current step. Instead, for each sampled

trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . and each timestep t it:

• first stores the one-step experience (st , at , rt+1, st+1) in a data structure B called replay

buffer;

• then, sample a random minibatch of experiences B ⊆ B of a given minibatch size Bsize

• perform a minibatch-gradient-descent update w.r.t. B: compute the gradient of the

Q-learning loss for each e ∈ B and then update θ in the direction of an average gradient

over the whole B.

161/294

Minibatch update

Fix a minibatch B.

For each e = (s, a, r , s ′) ∈ B we compute the gradient of the Q-learning loss ∇θL(θ, e) at

point e:

∇θL(θ, e) = ∇θ
1

2

(
r + γ · max

b∈A(s′)
Qθ(s

′, b)︸ ︷︷ ︸
fixed target

− Qθ(s, a)
)2

=
[(
r + γ · max

b∈A(s′)
Qθ(s

′, b)︸ ︷︷ ︸
=0 if s terminal

− Qθ(s, a)
)
· ∇θQθ(s, a)

]

We then perform an update in the direction of average gradient:

θ ← θ + α · 1

|B|
∑
e∈B

∇θL(θ, e).

162/294

Experience replay rationale

• helps decorrelate the DNN training data

• helps to prevent catastrophic forgetting

• improves data efficiency via experience re-use

Why good match for deep Q-learning? Experience replay is by design off-policy since we train

on old data, which were sampled from different policy than the current one.

163/294

Replay buffer implementation

The replay buffer B is typically not unbounded, but has a fixed capacity Bsize. Replacement is

eventually needed. If B is full, the oldest experience if removed (B = queue).

How to sample the minibatches?

• Original DQN: uniformly from B.

• Alternative: prioritized experience replay: each experience is assigned a priority (several

heuristics exist). An experience is sampled into a minibatch with probability proportional

to its priority.

164/294

DQN: 2013 pseudocode

Algorithm 6: DQN with replay buffer

Input: Black-box MDP M = (S,A, p, r), approximator Q; hyperparam’s

ε,Bsize,Bsize, . . .

Output: Approximation Qθ of q∗

initialize θ arbitrarily; initialize empty replay buffer B of capacity Bsize;

repeat

s ← initial state;

while s not terminal do

π ← policy ε-greedy w.r.t. Qθ;

a ∼ π(s);

s ′ ∼ p(s, a);

r ← r(s, a, s ′);

store (s, a, r , s ′) in B;

sample a minibatch B of size Bsize from replay buffer B;

perform the minibatch update θ ← θ + α · 1
Bsize

∑
e∈B ∇θL(θ, e) (see this slide);

s ← s ′;

until timeout; 165/294

DQN: 2013 results

Mnih et al. (2013, arXiv)

166/294

Target networks: another stabilizing factor in DQNs

Introduced in the reviewed version of DQN paper:

Mnih et al.: Human-level control through deep reinforcement learning. Nature, 518

(2015).

Performing the (minibatch) Q-update looks like supervised learning:

change θ so that Qθ(s, a) gets closer to the fixed target r + γ · max
b∈A(s′)

Qθ(s
′, b),

where (s, a, r , s ′) is the processed experience.

Performing the (minibatch) Q-update looks like supervised learning, but:

change θ so that Qθ(s, a) gets closer to the fixed target r + γ · max
b∈A(s′)

Qθ(s
′, b)︸ ︷︷ ︸

the “label” changes
with each update!

,

where (s, a, r , s ′) is the processed experience.

167/294

Target networks: idea

To stabilize learning, we use two networks: the main network, and the target network. They

have the same architecture (denote it by Q), but their weights may differ during the execution

of the algorithm.

We denote:

• θ - weights of main network

• θ̂ - weights of target network

Usage:

• The target network is used only to compute TD targets when computing losses:

∇θL(θ, e) =
(
r + γ · max

b∈A(s′)
Q(s ′, b, θ̂)− Q(s, a, θ)

)
· ∇θQ(s, a, θ)

• At the start, and also in periodic intervals (but not after each update!) the two networks

are synchronized by performing θ̂ ← θ. Other than this, θ̂ stays fixed, the gradient steps

are only used to update θ (i.e., the main network).
168/294

DQN: 2015 pseudocode

Algorithm 7: DQN with replay buffer and target network

Input: Black-box MDP M = (S,A, p, r), approximator Q; hyperparam’s ε,Bsize,Bsize,C , . . .

Output: Approximation Qθ of q∗

initialize θ arbitrarily; θ̂ ← θ; counter ← C ;

initialize empty replay buffer B of capacity Bsize;

repeat

s ← initial state;

while s not terminal do

if counter = 0 then θ̂ ← θ; counter ← C else counter ← counter − 1;

π ← policy ε-greedy w.r.t. Qθ;

a ∼ π(s);

s ′ ∼ p(s, a);

r ← r(s, a, s ′);

store (s, a, r , s ′) in B;

sample a minibatch B of size Bsize from replay buffer B;

perform the minibatch update θ ← θ + α · 1
Bsize

∑
e∈B ∇θL(θ, e), where

∇θL(θ, e) =
(
r + γ ·maxb∈A(s′) Q(s ′, b, θ̂)− Q(s, a, θ)

)
· ∇θQ(s, a, θ);

s ← s ′;

until timeout; 169/294

DQN: 2015 results

170/294

Engineering behind DQN for Atari: partial observability

True state = current state (program counter + variable values) of the game program.

We do not see this – only the frames rendered on screen.

Solving partially observable environments requires (per some POMDP theory) making decisions

based on the whole history of observations. This is computationally demanding (recurrent

NNs...).

DQN for Atari solves this by feeding the last 4 observed frames into the NN. This is typically

enough to deduce the dynamics of the current play.

171/294

DQN: dynamics from limited frame history

172/294

Engineering behind DQN for Atari: the network

Inputs four 84x84px images, then 3 convolutional layers, then two fully connected layers. all

with ReLU activations. Outputs Q-estimate for each action.

source: Mnih et al. (Nature, 2015), details in appendix “Model architecture” 173/294

DQN for Atari: dirty engineering tricks

• Preprocessing: 210x160 RGB color images are converted to grayscale and resized to 84x84

resolution.

• Frame skipping: the agent only observes and acts in every K -th frame, for the frames in

between, the last selected action is repeated without providing the frame to the agent. (In

the paper, K = 4.)

• Reward clipping: all positive one-step Atari rewards are clipped to +1, all negative ones

are clipped to −1 (Atari gives integer rewards).

• TD error clipping: for each update, the Q-learning error

r + γ ·max b ∈ A(s ′)Q(s ′, b)− Q(s, a) is clipped to [−1, 1].

174/294

DQN for Atari: selected hyperparameters (nex)

minibatch size Bsize 32

replay buffer size Bsize 1,000,000

target network update freqeuency C 10,000

discount factor γ 0.99

update frequency (steps between two minibatch updates) 4

learning rate 0.00025

initial ε 1

final ε (linear decay) 0.1

final decay frame 1,000,000

random policy played for init. 50,000 frames

max. do-nothing actions at episode start 30

175/294

RAINBOW of heuristics

Multitude of heuristics for the improvement of DQN were developed over time. Some of them

make sense also in the context of other deep RL algorithms.

The RAINBOW agent combines six such heuristics to further improve the DQN performance

on Atari games.

(In proceedings of AAAI 2018.)

176/294

Rainbow heuristics

• dueling networks architecture

• double DQN

• prioritized experience replay

• n-step rewards

• distributional learning

• noisy networks

177/294

Action advantage

Idea: imagine that for some state s, the Q-values of all actions are high. Then s should be in

some sense valuable in itself.

Definition 53: Advantage

Let π be a policy. An advantage function advπ : S ×A→ R is defined as

advπ(s, a) = qπ(s, a)− vπ(s).

Dueling architecture splits certain layers of the neural network into two “streams”, one

estimating (somethign like) vπ(s) and one estimating (something like) advπ(s, a). The final

layer combines these estimates to produce an estimate of qπ(s, a).

178/294

Dueling architecture

Wang et al.: Dueling Network Architectures for Deep Reinforcement Learning. In pro-

ceedings of ICML’16.

179/294

Dueling architecture: theory and training

We have Qθ,α,β(s, a) = aggregate(Vθ,α(s),Aθ,β(s, a)), where

• θ - convolutional (or other feature extraction) layer parameters

• α - value channel parameters

• β - advantage channel parameters

The whole network Q is trained to estimate qπ (where π is the target policy) using any deep

RL algorithm (e.g. DQN, in which case π is the optimal policy). There is nothing new from RL

perspective here, all the novelty is inside the network. The factorization into state value and

advantage is supposed to help the network “focus” on features that are important to recognize

valuable states and features that help us rank actions.

180/294

Dueling architecture: Atari example

From Wang et al.: Dueling Network Architectures for Deep Reinforcement Learning. In

proceedings of ICML’16.

181/294

Learning state values and advantages

• The whole net is trained end-to-end to predict qπ.

• How do we ensure the value/advantage channels are trained to predict state

values/advantages?

• By a suitable choice of aggregator:

• Qθ,α,β(s, a) = Vθ,α(s) + Aθ,β(s, a) does not work: e.g. Vθ,α could converge to constant 0

and Aθ,β to qπ.

•
Qθ,α,β(s, a) = Vθ,α(s) + Aθ,β(s, a)− max

b∈A(s)
Aθ,β(s, b),

the training then indeed pushes Vθ,α to vπ and Aθ,β to advπ + c where c is some constant.

Issues: not differentiable, update sensitive to the value of maximizing action changes.

182/294

Aggregation in Rainbow

The point: aggregating layer should anchor the sum of the channels to same baseline value

derived non-trivially from the advantages (if all advantages shift up/down, so should the

baseline). Rainbow uses mean advantage baseline:

Qθ,α,β(s, a) = Vθ,α(s) + Aθ,β(s, a)−
1

|A(s)|
∑

b∈A(s)

Aθ,β(s, b)

pushes the value channel to predict 1
|A(s)|

∑
a∈A(s) q

π(s, a).

183/294

Double DQN

van Hasselt, Guez, Silver: Deep Reinforcement Learning with Double Q-learning. In

proceedings of AAAI 2016.

Similar idea to tabular Double Q-learning (use different estimates for selecting maximizing

action in bootstrap and for evaluating the bootstrap), but instead of independently updated

networks uses main and target networks. I.e., for experience (s, a, r , s ′), the update is:

θ ← θ + α ·
[
r + γ · Qθ̂

(
s ′, argmax

b∈A(s′)

Qθ(s
′, b)

)
− Qθ(s, a)

]
∇θQθ(s, a),

where θ̂ is the parameter vector of the target network.

184/294

Prioritized experience replay (Schaul et al., ICLR’16)

Each experience e = (s, a, r , s ′) in the replay buffer is assigned a priority according to its

TD-error

pe = |r + γ · max
b∈A(s′)

Qθ̂(s
′, b)− Qθ(s, a)|+ ε

(ε > 0 ensures all priorities are positive).

The probability of sampling an experience e from the buffer is set to
pα
e∑

e′∈B pα
e′
, where α > 0 is

a hyperparameter controlling the degree of prioritization.

Prioritization induces bias: the sampled experiences no longer follow the same distribution as

sampled trajectories. We can correct this by using importance sampling during updates:

θ ← θ + α ·
(

1

|B|
· 1

pαe

)β

·
[
r + γ · Qθ̂

(
s ′, argmax

b∈A(s′)

Qθ(s
′, b)

)
− Qθ(s, a)

]
· ∇θQθ(s, a),

where β > 0 determines the degree of IS correction (annealed to 1 during training). 185/294

n-step returns

Self-explanatory, use n-step return with Q-learning bootstrap when computing TD target.

How to combine with replay buffer? Each experience stores a single step.

Solutions:

• Store experiences in B sequentially, with each sampled experience, retrieve also the next

n − 1 ones (up to episode termination). Requires careful implementation.

• Naive: each element of B consists of n consecutive experiences (space inefficient).

Given consecutive experiences

(st , at , rt+1, st+1), (st+1, at+1, rt+2, st+2), . . . , ((st+n−1, at+n−1, rt+n, st+n)), perform update

θ ← θ+ α ·
[
rt+1 + γrt+2 + · · ·+ ·γn−1rt+n + γn max

b∈A(st+n)
Qθ̂(st+n, b)−Qθ(st , at)

]
∇θQθ(st , at).

186/294

Distributional learning

Very rough idea: instead of expected returns, predict (discretized) distribution of returns.

Source: Bellemare, Dabney, Munos: A Distributional Perspective on Reinforcement Learning. In
proceedings of ICML’17.

We still optimize the expected value of the distribution, but the NN processes richer

information (neurological inspiration). 187/294

Noisy nets

Fortunato et al.: Noisy Networks for Exploration . In proceedings of ICRL’17.

An alternative way of achieving exploration (without ε-greedy policies). Replaces linear layers

y = W · x + b with noisy layers of the form

y = (µw + σw ⊙ εw) · x + µb + σb ⊙ εb,

where matrices µw , σw and vectors µb, σb are learnable, matrix εw and vector εb consist of

random noise, and ⊙ represents component-wise multiplication.

The loss function of the DQN training is then encapsulated in expectation over the noise.

Interesting point: the net can learn to adjust σ’s and thus the degree of exploration over time.

188/294

Rainbow: evaluation and ablations (Hessel et al., 2017)

189/294

Policy Gradient Methods

Value-based vs. policy-based methods

So far: focus on approximating q∗ via some parameterized estimate Qθ, policy the defined by

Qθ, e.g. (ε-)-greedy...

In policy gradient methods we work directly with some parameterized representation of

a policy πθ, and update θ so as to improve some performance characteristic of πθ (e.g.,

expected return).

In particular, the policy π can be represented by a function approximator πθ : S ×Θ→ D(A).

190/294

Standard NN + softmax representation

πθ(a|s) =
eh(s,a,θ)∑

b∈A eh(s,b,θ)
,

where h(s, a, θ) is the logit (”preference”)

of action a

191/294

General policy gradient scheme

We want to find θ that maximizes some performance measure (or objective function) J(θ) of

πθ. The obvious choice for J is the expected return:

J(θ) = vπθ = Eπθ [G],

thought some algorithms use a different surrogate objective function.

The optimization problem

max
θ

J(θ)

can be (locally) solved using gradient ascent: repeatedly perform updates

θ ← θ + α · ∇θJ(θ).

It is thus necessary to compute or approximate ∇θJ(θ): this is the scope of various policy

gradient theorems.

192/294

Gradient of expected return: possible version

∇θJ(θ) = ∇θEπθ [G] =

193/294

Gradient of expected return (cont’d)

194/294

Vanilla MC policy gradient

Algorithm 8: Vanilla MC policy gradient

Input: Black-box MDP M = (S,A, p, r), policy parametrization πθ, learning rate α

Output: Approximation πθ of π∗

initialize θ arbitrarily;

repeat

s0 ∼ initial distribution;

generate episode τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . , rT , sT using πθ;

θ ← θ + α · G (τ) ·
∑i

t=0∇θ log πθ(aj |sj)
until timeout;

195/294

Score function form

196/294

Step-wise gradient

∇θJ(θ) = ∇θEπθ [G] = ∇θEπθ [
∑∞

t=0 γ
tRt+1]

197/294

Step-wise gradient (cont’d)

198/294

REINFORCE: better MC policy gradient

Algorithm 9: REINFORCE (Williams, 1992)

Input: Black-box MDP M = (S,A, p, r), policy parametrization πθ, learning rate α

Output: Approximation πθ of π∗

initialize θ arbitrarily;

repeat

s0 ∼ initial distribution;

generate episode τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . , rT , sT using πθ;

G ← 0;

for t = T − 1 to 0 do

G ← rt+1 + γ · G ;

θ ← θ + α · γt · G · ∇θ log πθ(at |st)

until timeout;

199/294

Baseline in policy gradient

Theorem 54: Baseline theorem

Let bθ(s) : S × θ → R be any function. Then for any t:

Eπθ
[
bθ(st) · ∇θlogπθ(at |st)

]
= 0.

As a consequence

∇θJ(θ) = Eπθ
[T∑
t=0

γt · Gt · ∇θ log πθ(at |st)
]
=

= Eπθ
[T∑
t=0

γt ·
(
Gt−bθ(st)

)
· ∇θ log πθ(at |st)

]
The gradient estimates using baseline have the same expectations as the standard REINFORCE

estimate, but might have a lower variance if baseline selected correctly. 200/294

State-value baseline

Good choice is

b(s) := vπθ (s),

reducing the estimate variance by correcting the return for a bias caused by being in a certain

state.

Problem: we do not know vπθ .

Solution: Learn vπθ online using a separate function approximator V , e.g. via gradient

(every-visit) Monte Carlo.

201/294

REINFORCE with a state-value baseline

Algorithm 10: REINFORCE with baseline

Input: Black-box MDP M = (S,A, p, r), policy parametrization πθ, value parametrization

Vη, learning rates απ, αV for the two approximators

Output: Approximation πθ of π∗

initialize θ and η arbitrarily;

repeat

s0 ∼ initial distribution;

generate episode τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . , rT , sT using πθ;

G ← 0;

for t = T − 1 to 0 do

G ← rt+1 + γ · G ;

η ← η + αV ·
[
G − Vη(st)

]
· ∇ηVη(st);

θ ← θ + απ · γt ·
[
G − Vη(st)

]
· ∇θ log πθ(at |st)

until timeout;

202/294

REINFORCE: baseline effect experiment

source: Sutton&Barto, p. 330 203/294

Advantage estimation in policy gradient

Comparing returns to some state-dependent baseline is reminiscent of what happened in the

dueling network architecture.

In particular, one can derive another form of the policy gradient, showing that

∇θJ(θ) ∝ Es∼π,a∼πθ
[qπθ (s, a) · ∇θ log π(a|s)].

Inputting a state-value baseline yields

∇θJ(θ) ∝ Es∼π,a∼πθ
[(qπθ (s, a)− vπ(s))︸ ︷︷ ︸

advπ(s,a)

·∇θ log π(a|s)].

Hence, policy-gradient-type algorithms often formulate the update of policy parameters in the

form

θ ← θ + α · At
θ,η(st , at) · ∇θ log πθ(at |st),

where At
θ,η is some approximator called advantage estimate. E.g. in PG with baseline,

At
(θ,η) = γt · (Gt − Vη(st)). 204/294

Proof of Baseline theorem

205/294

Actor-critic: Policy gradient with bootstrapping

Recall the REINFORCE-with-baseline update:

θ ← θ + α · γt · (Gt − Vη(st)) · ∇θ log πθ(at |st)

Gt is a possible source of variance: let’s remove it (at the cost of introducing bias) via

bootstrapping! E.g. TD(0):

θ ← θ + α · γt · (rt + γ · Vη(st+1)− Vη(st)) · ∇θ log πθ(at |st).

Here, the value network Vη both estimates the baseline value of the current state, and (via

boostrap) the quality of the played action: we call it a critic, while the policy network πθ is

called an actor.

Note: we can use the same bootstrap to update critic parameters.

206/294

Basic Actor-Critic (AC) algorithm: pseudocode

Algorithm 11: One-step AC

Input: Black-box MDP M = (S,A, p, r), policy parametrization πθ, value parametrization

Vη, learning rates απ, αV for the two approximators

Output: Approximation πθ of π∗

initialize θ and η arbitrarily;

repeat

s ∼ initial distribution;

D ← 1;

while s is not terminal do

a ∼ πθ(s);

s ′ ∼ p(s, a);

δ ← r(s, a, s ′) + γ · Vη(s
′)− Vη(s);

η ← η + αV · δ · ∇ηVη(st);

θ ← θ + απ · D · δ · ∇θ log πθ(at |st);
D ← γ · D;

s ← s ′

until timeout; 207/294

AC: picture

208/294

Comments on AC

• The algorithm presented on previous slide is just a basic variant: actor-critic framework

covers a wide range of algorithms: soft Actor-Critic (SAC), A2C, A3C, deep deterministic

policy gradient (DDPG), twin-delayed DDPG (TD3), PPO (next time),. . .

209/294

Varieties of policy gradient heuristics

• Entropy regularization: add to the objective function a term representing the entropy of

the policy: we prefer “more” randomized policies to encourage exploration (used e.g. in

SAC).

• JENTR(θ) = Eπ[G] + β · Es∼πθ [H(π(s))]

• Off-policy training by using replay buffer (e.g. in SAC, DDPG, TD3).

• Using parallel agents whose gradients are averaged for each update (A2C).

• Using n-step (e.g. A2C) or λ-returns in bootstrap (PPO).

• Using different J(θ) than just expected return (SAC, TRPO, PPO).

Note that the above algorithms typically differ from “vanilla” AC in more aspects then

presented above. We shall see soon on the case of PPO.

210/294

Taming Unstable Gradients with

Trust Regions: TRPO, PPO

Limitations of policy gradient methods

• Basic policy gradient methods are prone to large variance of gradient estimates.

• These can be mitigated to some degree, e.g. by using n-step or λ-returns in advantage

estimation.

• Even then, the methods can yield large updates which can destabilize the training. We are

never sure the parameter updates will actually lead to an improvement of a policy:

211/294

Sensitivity of policy to parameters

For two actions and π(a|s) =

{
1

1−e−θ a = a1

1− 1
1−e−θ a = a2,

we get

Source: slides by Emma Brunskill, Lecture 6,
https://web.stanford.edu/class/cs234/modules.html 212/294

https://web.stanford.edu/class/cs234/modules.html

Direct policy improvement via surrogate objectives

• We will present algorithms that use different performance metric so as increase the chance

of policy improvement on update.

• Moreover, we will design the performance metric so that its gradient can be easily

computed by an automated differentiation tool without the need to derive the formulas

manually.

213/294

Overall structure of presented algorithms

• The algorithms will generate a sequence of policies π1, π2, π3 such that each policy will be

(likely) an improvement over the previous one.

• Each step from πi to πi+1 entails finding a policy πi+1 that optimizes some performance

metric Lπi that is dependent on the previous policy πi ! (Cf. standard policy gradient: the

performance metric J evaluated only the current policy).

• I.e. a run of such an algorithm entails solving (using gradient-based methods) multiple

optimization problems: one per each policy update.

• We will now focus on the single improvement step: we will denote by

• π = πθ the previous policy (πi)

• π′ = πθ′ the new policy (πi+1) we seek.

θ is treated as a constant, θ′ as variables!
214/294

Roles of advantages in policy improvement

Theorem 55

Let θ, θ′ be two parameter vectors and π = πθ, π
′ = πθ′ .

Then

J(θ′)− J(θ) = Eτ∼π′

[∞∑
t=0

γt · advπ(st , at)
]

︸ ︷︷ ︸
def
=Lπ(π′)

.

215/294

Another loss surrogate

To ensure that update from θ to θ′ is an improvement, we want to maximize

Lπ(π
′) = Eτ∼π′

[∞∑
t=0

γt · advπ(st , at)
]

But we cannot sample from π′, neither can we easily compute the gradient of the loss by

automated differentiation.

Trick: the loss function Lπ behaves similarly to the following loss function L̃π for all points π′

that are “close enough” to π:

L̃π(π
′) = Eτ∼π

[∞∑
t=0

γt · advπ(st , at) ·
π′(at |st)
π(at |st)

]
.

216/294

Closeness of Lπ and L̃π

Lπ(π) = Eτ∼π′

[∞∑
t=0

γt · advπ(st , at)
]

L̃π = Eτ∼π

[∞∑
t=0

γt · advπ(st , at) ·
π′(at |st)
π(at |st)

]

“Behaves similarly” can be formalized as follows:

Theorem 56

It holds Lπ(π) = L̃π(π).

Moreover the gradients ∇θ′Lπ and ∇θ′L̂π are equal at point π.

Proof: the first part is trivial. The second part is technical and requires converting the

expectation into expectation-over-states form, see

Optional reading: Schulman, Levine, Abbeel, Jordan, Moritz: Trust Region Policy Opti-

mization. In Proceedings of ICML’15.

217/294

Trust Region Methods

Hence, the constrained optimization problems

maximize Lπ(π
′) subject to π′ close to π

maximize L̃π(π
′) subject to π′ close to π

have approximately the same optimal solutions. We want to solve the first, and will proceed by

solving the second.

The set of π′ that are “close enough” to π is called a trust region. What “close enough”

means differs among algorithms. Exact bounds on the error of the approximation in terms of

KL divergence between π and π′ was given in

Optional reading: Achiam, Held, Tamar, Abbeel: Constrained Policy Optimization. In

Proceedings of ICML’17.

218/294

Optimizing the loss by sampling and automated differentiation

L̃π = Eτ∼π

[∞∑
t=0

γt · advπ(st , at) ·
π′(at |st)
π(at |st)

]
We replace the true advantage advπ with an advantage estimator Aη (neural net, more on that

later).

Instead of optimizing the true loss L̃π, we optimize a sample loss L̂π: for a trajectory

τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . .:

L̃π(π
′) ≈ L̂π(π

′) =
∞∑
t=0

γt · Aη(τ, t) ·
π′(at |st)
π(at |st)

(More trajectories can be sampled, in which case we optimize the average sample loss over the

trajectories.) We then let an automated gradient-based optimizer find π′ = πθ′ maximizing

L̂π(π
′). Note that the only term in L̂π that depends on the optimized parameters θ′ are the

likelihood ratios! Hence, the gradient can be computed easily.
219/294

Trust region policy optimization (TRPO)

Schulman, Levine, Abbeel, Jordan, Moritz: Trust Region Policy Optimization. In Proceedings

of ICML’15.

To perform update from π to π′, theoretical TRPO:

• samples a trajectory τ (or a batch of trajectories) from π

• uses the trajectory to:

• update the advantage estimator Aη (i.e., update its parameters η)

• construct the loss L̂π

• solves the optimization problem

maximize L̂π(π
′)− β · DKL(π, π

′)︸ ︷︷ ︸
JTRPO

(DKL - KL divergence, β - suitable constant) via a black-box gradient-based optimizer.

This update loop is performed until timeout. Practical TRPO makes several changes to

individual steps of the above scheme. 220/294

Proximal Policy Optimization (PPO)

221/294

PPO vs TRPO

PPO follows the same general scheme as TRPO with the following tweaks:

• Explicitly specifies how the advantage should be estimated: generalized advantage

estimation (essentialy, truncated offline λ-returns, see later).

• Tweaks the loss function a bit - uses different way of ensuring that π′ is in the proximity

of π.

PPO comes in two variants depending on how it tweaks the loss function:

• Adaptive KL divergence penalty coefficient: like TRPO, but the coefficient β changes

adaptively. Empirically does not perform as well as the second method:

• Clipped likelihood ratios.

Definition 57: Clipping

The function CLIP is defined as follows:

CLIP(x , a, b) =

x if a ≤ x ≤ b

a if x < a

b if b < x
222/294

Basic PPO empirical loss

For a trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . denote

rt(π, π
′) =

π′(at |st)
π(at |st)

The main component of PPO loss/performance metric is:

LCLIP
π (π′) =

∞∑
t=0

min

(
Aη(τ, t) · rt(π, π′) , Aη(τ, t) · CLIP

(
rt(π, π

′), 1− ε, 1 + ε
))

(Note that no γt is included in the formula: discounting to some degree implicitly encompassed

in the advantage estimation.)

223/294

Constraining improvements but not damages

LCLIP
π (π′) =

∞∑
t=0

min

(
Aη(τ, t) · rt(π, π′) , Aη(τ, t) · CLIP

(
rt(π, π

′), 1− ε, 1 + ε
))

source: Schulman et al.: Proximal Policy Optimization Algorithms
224/294

Advantage estimation in PPO

PPO uses generalized advantage estimation = an actor-critic framework using λ-return to

estimate the q-value.

Formally, the advantage estimator is built on a value network Vη : S ×Θ→ R.

Let τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . . be a trajectory. An n-step advantage from time step

t is the quantity

At:t+n
η (τ) = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnVη(st+n)− Vη(st).

For a parameter λ ∈ [0, 1], the generalized advantage estimate at time t is

GAE (λ,t)
η (τ) =

T−t∑
n=1

λn · At:t+n
η (τ).

For a trajectory τ , PPO puts Aη(τ, t) = GAEλ,t
η (τ).

225/294

PPO loss extension

Apart from LCLIP
π , PPO loss consist of two additional terms:

1. The value network Vη and policy network πθ might share parameters (e.g. the same feature

extraction layers). In this case, η and θ should be trained together: for a sampled trajectory

τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ., the PPO loss will incorporate the empirical value loss

LV (η′) =
T∑
t=0

(Vη′(st)− Gt(τ)︸ ︷︷ ︸
target

)2

(instead of sample return, the training target might be e.g. TD(0), or Aη(τ, t) + Vη(st): note

that η in the target (current value of the parameter) is a constant).

2. Original PPO also used entropy regularization, adding sample entropy loss:

Lentropy (π′) = − 1

T

T−1∑
t=0

∑
a

π′(a|st) · log π′(a|st)

226/294

Total PPO loss

Given a sampled trajectory τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, . . ., the current reference policy

π, and hyperparameters β1, β2 ∈ R+, the canonical PPO loss is:

LPPO
τ (θ′, η′) = LCLIP

π (π′)− β1 · LV (η′) + β2 · Lentropy (π′)

=
T∑
t=0

min

(
Aη(τ, t) · rt(π, π′) , Aη(τ, t) · CLIP

(
rt(π, π

′), 1− ε, 1 + ε
))

− β1 ·
T∑
t=0

(Vη′(st)− Gt(τ)︸ ︷︷ ︸
target

)2 + β2 · −
1

T

T−1∑
t=0

∑
a

π′(a|st) · log π′(a|st).

Important note: the advantage estimates Aη in LCLIP are evaluated before the loss is

constructed and are treated as constants inside LCLIP! The value network parameters are only

considered variable inside the value loss.

Usually, a batch of τ is sampled and average loss 1
|batch| ·

∑
τ∈batch LPPO

τ (θ′, η′) is optimized

using gradient-based optimizer (eg., ADAM) to yield a policy update. 227/294

PPO high-level pseudocode

Algorithm 12: PPO

Input: policy network πθ, value network Vη, hyperparameters λ, |B|, β1, β2,. . .

initialize θ, η;

repeat

sample a batch B of trajectories from policy π = πθ;

foreach τ ∈ B do

foreach 0 ≤ t ≤ T − 1 do

at(τ)← GAEλ,t
η (τ);

define LCLIP
τ (π′) =

∑T
t=0 min

(
at(τ) · rt(π, π′) , at(τ) · CLIP(rt(π, π′), 1− ε, 1 + ε)

)
;

define LPPO
τ (θ′, η′) = LCLIP

π,τ (π′)− β1 · LV (η′) + β2 · Lentropy (π′)

define LPPO(θ′, η′) = 1
|B| ·

∑
τ∈B LPPO

τ (θ′, η′);

use ADAM or other optimizer to find θ′, η′ approximately maximizing LPPO(θ′, η′);

θ ← θ′; η ← η′

until timeout;
228/294

Exploration vs. Exploitation:

A Systematic Approach

EvE dilemma

When you see a good move, look for a better one.

Emanuel Lasker (1868-1941), 2nd World Chess Champion

• In RL, the algorithms often need to balance exploration of the MDP state space with

exploitation: focusing on behavior that worked well in the past.

• Typical RL algorithms ensure exploration by ε-greediness, with ε-possibly annealed towards

zero over the training. (Other options: noisy nets, entropy regularization,. . .)

• These are rather ad-hoc approaches: the setting of hyperparameters (annealing rate,

entropy coefficient) is often highly domain-dependent.

• EvE dilemma also appears in domains that are not typically modeled as MDPs:

recommender systems, disease treatment plans, or games.

• The EvE dilemma is systematically studied using the formalism of multi-armed bandits

(MABs).

229/294

One-armed bandit

230/294

Multi-armed bandit (MAB)

re
w
ar
d

µ(a)

arm a

µ(b)

arm b

µ(c)

arm c

A MAB is given by:

• a finite set of arms

A;

• for each arm a a

reward distribution

Da with mean µ(a)

• the Da and µ(a) are

unknown to the

player!

For simplicity, we will as-

sume that rewards are

from the interval [0,1].

231/294

Dynamics of multi-armed bandits

• Interaction proceeds in discrete time steps 1, 2, 3, . . . ,T , where T is a termination time

which might or might not be known to the player.

• In each time step t, we choose some arm at ∈ A to pull and receive reward rt ∼ Dat .

= like a one-state MDP with stochastic rewards, but we do not known the reward distributions

Di in advance.

Our goal is to maximize the expected accumulated reward E[
∑T

t=1 rt] =
∑T

t=1 E[rt].

Clearly, the expected reward is maximized by pulling, in each step t, the arm a∗ with maximal

mean reward µ∗ (we assume all arms have different mean rewards):

µ∗ = max
a∈A

µ(a)

a∗ = argmax
a∈A

µ(a)

However, since we do not know Da’s and µ(a)’s, we cannot a priori determine which arm is

optimal! We need to learn something about the reward distributions by exploring individual

arms, while trying to maximize the accumulated returns.
232/294

Policies in MABs

Definition 58: MAB policy

A policy in a multi-armed bandit problem is a function π which to each history

a1, r1, a2, r2, . . . , at , rt of actions and resulting rewards assigns a distribution over arms.

The policies we will work with typically based their decisions on the following statistics of the

history: for each arm a we keep:

• Nt(a) – the number of times the arm a was pulled by time t

• Rt(a) =
∑

1≤i≤t rt · I(ai = a) – the total reward accumulated by pulling arm a up to time t

• µ̂t(a) =
Rt(a)
Nt(a)

– the empirical mean return of arm a

Node that if Nt(a)→∞ as t →∞, then µ̂t(a)→ µ(a).

233/294

Example: ε-greedy policy

Given ε ∈ [0, 1], an ε-greedy policy selects arm at+1, for any t ≥ 0, as follows:

• with probability ε it selects an arm uniformly at random

• with probability 1− ε it selects an arm a such that

a = argmax
b∈A

µ̂t(b)

Intuitively, this is sub-optimal policy: even for large t, when all µ̂t(b) should be relatively good

approximations of true mean rewards, the policy still selects sub-optimal arms at a constant

rate. How to formalize this issue?

234/294

Regret

The regret of a policy at time T is the difference between the expected return of the policy and

the return we would get by always pulling the optimal arm. Formally

Definition 59: Regret

The regret of a policy π at time T is the quantity

Regretπ(T) = T · µ∗ − Eπ[
T∑
t=1

rt].

Another form of writing the regret:

Regretπ(T) = T · µ∗ −
∑
a∈A

µ(a) · Eπ[NT (a)].

235/294

Lower bound on the regret of ε-greedy policy

We will show that ε-greedy policy has regret linear in T , i.e. asymptotically the worst possible

one.

Let b be any sub-optimal action. Denote ∆b = µ∗ − µb > 0.

Since b has probability at least ε of being pulled in every step, the expected number of times b

is pulled in T steps is at least T · ε.

Hence,

Regretε-greedy(T) = T · µ∗ −
∑
a∈A

µ(a) · Eε-greedy[NT (a)]

=
∑
a∈A

Eε-greedy[NT (a)] · µ∗ −
∑
a∈A

µ(a) · Eε-greedy[NT (a)]

=
∑
a∈A

Eε-greedy[NT (a)] · (µ∗ − µ(a)) ≥ Eε-greedy[NT (a)] ·∆b ≥ T · ε ·∆b.

236/294

Logarithmic regret

We will now demonstrate a simple policy achieving logarithmic regret.

The policy π we will construct requires the advance knowledge of the termination time T and

of the the gap between the optimal and second-best arm:

∆min = min
b ̸=a∗

(
µ∗ − µ(b)

)
Policy π proceeds in two phases:

• Phase 1 (exploration): in the first T1 =
⌈ log(T)·|A|·4

∆2
min

⌉
steps it deterministically cycles

through all arms. I.e., if A = {a1, a2, . . . , ak}, then in step i it plays arm aj where j = i

(mod k) + 1.

• Phase 2 (exploitation) at timestep T1 + 1, π identifies action a with maximal empirical

mean µ̂T1(a) and keeps playing this action for the remaining T2 = T − T1 steps.

237/294

Upper-bounding the regret

The total regret of π can be decomposed into regrets accumulated in the two phases:

Regretπ(T) = T · µ∗ −
T∑
t=1

Eπ[rt]

= T1 · µ∗ −
T1∑
t=1

Eπ[rt]︸ ︷︷ ︸
R1, exploration regret

+ T2 · µ∗ −
T∑

t=T1+1

Eπ[rt]︸ ︷︷ ︸
R2, exploitation regret

Clearly R1 ≤ 1 · T1 ∈ O(log(T)).

R2 depends on whether π correctly classifies the optimal arm at timestep T1 + 1.

• If yes, then R2 = 0.

• If no, then R2 ≤ T2 ≤ T ∈ O(T).

238/294

Bounding the probability of misclassification

We have

R2 ≤ T · Pπ[Mis],

where Mis is the event that a∗ does not have the maximal empirical mean after T1 steps.

By union bound

Pπ[Mis] ≤
∑
b ̸=a∗

Pπ[µ̂T1(b) ≥ µ̂T1(a
∗)].

Clearly, the second-best action, call it ã, has the highest likelihood of achieving higher empirical

mean than a∗. I.e.,

Pπ[Mis] ≤ (|A| − 1) · Pπ[µ̂T1(ã) ≥ µ̂T1(a
∗)].

It thus suffices to bound the probability of ã overtaking a∗ in empirical mean.

239/294

Probability of empirical deviation

µ(ã)

ã

µ∗

a∗

For ã to overtake a∗, at least one of the arms

must have empirical mean after T1 steps at least
∆min

2 -away from their true mean.

Hence, it suffices to bound the probability that

an empirical mean deviates too much from the

true mean.

240/294

Hoeffding’s inequality for large deviations

Theorem 60: Hoeffding’s inequality

Let D be a distribution taking values in [0, 1]. Let µ be the mean of D and let µ̂n =∑n
i=1 xi , where each xi is an independent sample from D. Then, for any n ∈ N+ and

any δ > 0:

P
[
|µ̂n − µ| ≥ δ

]
≤ 2e−2nδ2

Recall T1 ≈ log(T)·|A|·4
∆2

min
. Then, e.g. for a∗:

Pπ
[
|µT1(a

∗)− µ∗| ≥ ∆min

2

]
≤ 2e−2

T1
|A|

∆2
min
4 ≈ 2e−2 log(T) =

2

T 2
.

Hence, Pπ[Mis] ≤ C · 1
T 2 for some constant C .

It follows that the exploitation regret R2 is ≤ T · Pπ[Mis] = C ′ · 1
T for some constant C ′.

241/294

Final bound on regret of π

The total regret of π is:

Regretπ(T) = R1(T)︸ ︷︷ ︸
∈O(log(T))

+R2(T)︸ ︷︷ ︸
∈O(1)

∈ O(log(T)).

The logarithmic regret is the best possible:

Theorem 61: Lai and Robbins (”Asymptotically efficient adaptive allocation rules”, 1985)

Any policy has regret in Ω(log(T)).

The disadvantage of π is that it needs to know both T and ∆min in advance.

Knowledge of T can be discarded by using ε-greedy policies with adaptive ε: if

εt = min{1, |A|
∆2

min·t
}, then the regret is logarithmic (see David Silver’s slides).

But there is actually a policy yielding logarithmic regret without the advance knowledge of

either T or ∆min.
242/294

Optimism in the face of uncertainty

The idea is that under-explored arms should be explored more: they could be better than we

currently think (and if not, exploring them should disprove that).

We will seek optimistic estimates of µ(a) in the form of upper confidence bounds: we seek an

empirical quantity Ut(a) such that with high probability

µ(a) ≤ µ̂t(a) + Ut(a)︸ ︷︷ ︸
UCBt(a)

.

The policy will always pick action maximizing UCB t .

Moreover, Ut(a) should be as tight as possi-

ble given available information. In particular,

it should hold that if Nt(a) ≤ Nt(b), then

Ut(a) ≤ Ut(b).

µ(a)

a

µ(b)

b 243/294

One-sided Hoeffding’s inequality

Theorem 62: Hoeffding’s inequality (one-sided)

Let D be a distribution taking values in [0, 1]. Let µ be the mean of D and let µ̂n =∑n
i=1 xi , where each xi is an independent sample from D. Then, for any n ∈ N+ and

any δ > 0:

P
[
µ− µ̂n ≥ δ

]
≤ e−2nδ2 .

Let 1− p be some required confidence level. We want to find “tight” Ut(a) such that

µ∗ ≥ µ̂t(a) + Ut(a) with probability at most p, i.e.

P
[
µ∗ − µ̂t(a) ≥ Ut(a)

]
≤ p.

By (one-sided) Hoeffding:

P
[
µ∗ − µ̂t(a) ≥ Ut(a)

]
≤ e−2Nt(a)U

2
t (a).

244/294

Deriving UCB formula

From the previous we have:

P
[
µ∗ − µ̂t(a) ≥ Ut(a)

]
≤ e−2Nt(a)U

2
t (a).

Performing substitution p = e−2Nt(a)U
2
t (a) we derive the expression for Ut(a):

Ut(a) =

√
log(1/p)

2Nt(a)

For this Ut(a), it holds P[µ∗ − µt(a) ≥ Ut(a)] ≤ p, i.e.

P
[
µ∗ ≤ µ̂t(a) + Ut(a)

]
≥ 1− p.

We want to increase the confidence over time, i.e. p should be a function of t with p → 0 as

t →∞. The standard approach is to put p = 1
tc for a suitable constant c . Then

Ut(a) =

√
log(1/p)

2Nt(a)
=

√
c log(t)

2Nt(a)
=

√
c

2

√
log t

Nt(a)
= C ·

√
log t

Nt(a) 245/294

Summary of UCB policy

In each step t, the UCB policy selects the arm with the highest upper confidence bound, i.e.

arm a such that

a = argmax
a∈A

UCB t(a) = argmax
a∈A

(
µ̂t(a) + C ·

√
log t

Nt(a)

)
,

where C is a hyperparameter known as exploration constant. It can be shown that for

[0, 1]-valued rewards, choosing C =
√
2 suffices to achieve logarithmic regret

Theorem 63

When the reward distributions are over the interval [0, 1], then for C =
√
2 it holds

RegretUCB(T) ∈ O(logT).

Proof in optional reading: Auer, Cesa-Bianchi, Fischer: Finite-time Analysis of the Multiarmed

Bandit Problem. In Machine Learning (47), 2002. 246/294

Concluding remarks on MABs

• UCB-like algorithms with logarithmic regret were developed also for more general cases

(e.g. distributions with unbounded support, where typically some shape of the distribution

or a known bound on its variance is known).

• The MAB model introduced here can be generalized in many ways (Bayesian bandits,

contextual bandits, adversarial bandits) - rich area of research and applications.

Optional reading: Slivkins: Introduction to Multi-Armed Bandits (arXiv).

• UCB-like approaches can be used also in RL, e.g. instead of ε-greedy policies use

π(s) = argmax
a∈A(s)

(
Q(s, a) + C ·

√
logN(s)

N(s, a)

)
.

• Most prominently, this idea is applied in the context of Monte-Carlo tree search algorithms.

247/294

Monte Carlo Tree Search

Tree? What tree?

1
2 :2

1
2 :0

1
3 :1

2
3 :-3

......

......

......

......

......

......

......

......

......

• Rooted tree with alternating state

nodes and action nodes.

• Action nodes equipped with rewards

and probability distributions over

children. We denote p(a) the

probability distribution over children of

a.

• Policy π in the tree assigns to each

state node a distribution over its

children.

• For simplicity, we consider discount

factor γ = 1.

248/294

Trees vs. MDPs

The trees we will consider can be considered as special type of MDPs. Due to lack of cycles,

all policies can be considered memoryless in the tree.

However, the tree MDPs capture full generality of MDPs due to MDP unfolding.

Definition 64: Unfolding of MDP

For an MDP M = (S,A, p, r), the unfolding of M is a (possibly infinite) tree-shaped

MDP Unfold(M) such that:

• the states nodes of Unfold(M) are the histories of M (=trajectory prefixes);

• if a is an action node that is a child of state node corresponding to history h, then

in Unfold(M) the probability of child h, a, s of a is equal to p(s|last(h), a);
• the reward function lifted similarly: rUnfold(M)(h, a, (h, a, s)) = rM(last(h), a, s)

249/294

Advantage of tree representation

The tree unfolding of an MDP implicitly carries, in each node, the information about the whole

history up to the reaching of that node. This can be advantageous when dealing with

tasks/environments where the knowledge of history is important, e.g.:

• partially observable environments (cf. Atari)

• tasks with more complex objectives than maximizing the expected discounted return

• adversarial environments (games) - requires distinguishing between player 1 and player 2

nodes (we will see later)

In what follows, we will consider trees encoding episodic MDP tasks: the tree is potentially

infinite, but the probability of all infinite branches is zero. (For the sake of concreteness,

imagine chess where our opponent is playing some fixed known, possibly randomized, strategy.)

250/294

MCTS requirements

The tree in which MCTS operates can be either given explicitly (if finite and small enough) or

represented by some black-box model which allows for the following:

• given a state node node, return a list of all action-node children of node;

• given an action node anode, return a sample from p(anode), i.e. sample a child of anode

according to the probability distribution specified by the tree;

• given an action node anode and its child node, return the reward labeling the edge

between the two nodes.

The black-box can have a form of a finite explicitly represented MDP, or (in turn) of the

sampling-model of such an MDP (as in classical RL).

251/294

Monte Carlo tree search – high-level properties

Monte Carlo tree search (MCTS) is an online algorithm for solving (=maximizing the expected

return in) tree-shaped MDPs.

Online = it does not compute a complete policy for the whole MDP; instead given the current

node = (current state and the history of states and actions visited so far,) the algorithm

computes the (approximately) best action to play in the current step.

Terminology: one step of MCTS = performing a computation to determine the best

action given the current situation.

MCTS can be employed over multiple steps, until a whole trajectory is generated. Thus, MCTS

can be seen as an algorithmic representation of a policy.

MCTS iteratively builds a structure called search tree, which is a finite sub-tree of the

original (possibly infinite) MDP tree. The search tree is a global data structure shared

across the steps. 252/294

MCTS master loop

Algorithm 13: MCTS master loop

Input: Tree-shaped MDP M with root s0
node ← s0
T ← tree with single node (root) s0 and all

its child action nodes

while node is not terminal do

BuildTree(T) // Modifies T
a← ActualSelect(T)

node′ ∼ p(a)

node ← node′

T ← sub-tree of T rooted in node

// If node not in T , this is a

single-node tree with node as

root.

253/294

Building the search tree

Building the search tree also involves sampling trajectories from the environment. This is

standard in RL: the algorithms we have seen so far were sampling from the environment to

compute policies, and the policies themselves can be seen as prescriptions for interacting with

(=sampling from) the environment.

In contrast, planning/MCTS literature often differentiates between

• the actual online actions played by the algorithm when interacting with the “true”

environment, i.e. outcomes of ActualSelect function (e.g. moving a chess piece on

physical a board); and

• simulated actions performed when building the tree (e.g. imagining outcomes of various

chess moves when thinking about the next move)

The reason for the distinction is that in practice, we might want the simulated actions to be

performed in a virtual model of the environment (for sake of sample efficiency), while the

actual actions in the “true” environment.

We will stick to the nomenclature simulated/actual action to distinguish between actions

played during/at the end of individual steps. 254/294

Search tree statistics

The BuildTree function maintains several statistics of each node node of the tree (both state

and action node):

• N(node) – the visit count of node how many times has the node been visited during the

run of the algorithm

• R(node) – the total return achieved from that node during the run of the algorithm

(counting only rewards collected on the paths from node to a leaf)

• V (node) = R(node)
V (node) – the estimated value of the node (i.e., the estimate of best expected

return achievable from the node; for action nodes this includes the immediate reward of

that action).

Like the whole search tree T , these statistics are global to the whole MCTS algorithm, and are

typically not reset between BuildTree calls.

The ActualSelect function also uses these statistics.

Invariant: all state nodes in T have all there child action nodes also in T
255/294

Building the search three: four phases

Input: Tree-shaped MDP M with root s0
node ← s0
T ← tree with single state node (root) s0
and all its (action node) children

while node is not terminal do

BuildTree(T)

a← ActualSelect(T)

node′ ∼ p(a)

node ← node′

T ← sub-tree of T rooted in node

// If node not in T , this is a

single-node tree with node

as root.

Tree building proceeds by repeatedly perform-

ing these 4 phases:

1. Search.

2. Expansion.

3. Rollout.

4. Backup.

The phases are repeated until a predeter-

mined timeout.

256/294

Tree building

Algorithm 14: Tree building

Procedure BuildTree(T):

repeat

(node, anode)← Search(T) // Traverse top-down to the ‘‘best’’ node

// not in T .

Expand(T , node, anode) // Add the discovered node to T .

(R, a)← Rollout(node) // MC estimate of node’s value

// via default policy.

Backup(T ,R, a) // Update statistics on branch from root to node.

until timeout

257/294

Search phase

• Traverse T from the root to the most promising

action leaf. Then sample a state node child of

this leaf (not yet in tree).

• Traverse = in each state node, select an action

and in each action node, sample a successor state

node from the transition function of the

environment.

• Hence on each level, we also need to select

“most promising” action in the current node.

• Most promising = with best value estimate, but

we also take exploration/exploitation dilemma

into account.

258/294

Search phase 2

• We treat the decision in each concrete node as a

separate multi-armed bandit problem. That is,

when traversing a state node s, we select an

action node a such that

a = argmax
a child of s

(
V (a) + C ·

√
logN(s)

N(a)

)
,

where C is an exploration constant.

• I.e., when sampling, while in the tree we follow a

UCB behavior policy. This approach is called

upper confidence bound on trees (UCT), first

proposed in optional reading: Kocsis, Szepesvári:

Bandit-Based Monte Carlo Planning. In

proceedings of ECML 2006.

259/294

Search phase: pseudocode

Algorithm 15: Search phase

Function Search(T):

node ← root of T
repeat

anode ← argmax
a child of node

V (a) + C ·

√
logN(node)

N(a)

node ∼ p(anode)

until anode is a leaf

return node, anode

260/294

Expansion phase

Algorithm 16: Expansion phase

Procedure Expand(T , node, anode):

add node to T as a child of anode

N(node)← 0

R(node)← 0

V (node)← 0

// Add all action-node children of node

foreach child a of node do

add a to T as a child of node

N(a)← 0

R(a)← 0

V (a)← 0

(Same initialization used in root.)

261/294

Rollout phase

• Perform a Monte Carlo sample of the rest of the

trajectory from the newly added node. Record the

return obtained.

• Since we are now outside of the tree, UCT cannot

be used (no statistics). Instead, we follow some

fixed behavior policy called default policy.

• Typical choice of default policy: in each node,

select uniformly from all actions.

• Domain knowledge can be used to craft more

intricate default policies.

262/294

Rollout phase: pseudocode

anode

Algorithm 17: Rollout with uniform default policy

Function Rollout(node):

R ← 0

while node not terminal do

sample a uniformly from all children of node

if this is the first iteration of the loop then
anode ← a

node′ ∼ p(a)

R ← R + r(node, a, node′)

node ← node′

return R, anode

263/294

Backup phase

R

anode

For all nodes currently in T traversed in the previous

phases, update their statistics using the rollout outcome:

Algorithm 18: Backup

Procedure Backup(T , anode,R):

n← anode

while true do

N(n)← N(n) + 1

R(n)← R(n) + R

V (n)← R(n)/N(n)

if n is the root then break

if n is a state node then
R ← R + the reward of the edge

connecting n to its parent

n← parent(n)

264/294

MCTS Tree building summary

Procedure BuildTree(T):

repeat

(node, anode)← Search(T)

Expand(T , node, anode)

(R, a)← Rollout(node)

Backup(T ,R, a)

until timeout

265/294

MCTS: Actual action selection

Input: Tree-shaped MDP M with root s0
node ← s0
T ← tree with single state node (root) s0
and all its (action node) children

while node is not terminal do

BuildTree(T)

a← ActualSelect(T)

node′ ∼ p(a)

node ← node′

T ← sub-tree of T rooted in node

// If node not in T , this is a

single-node tree with node

as root.

• Usually just greedy according to value

estimates in the root:

a = argmax
a child of root(T)

V (a)

.

• Alternative: according to visit count:

a = argmax
a child of root(T)

N(a), or

a ∼ softmax(Na)a child of root(T)

(both used in AlphaZero).

266/294

MCTS with Function

Approximators:

AlphaZero

Towards AlphaZero

• AlphaGo Lee (2016): uses lots of domain knowledge, won 4-1 over 9-dan Go champion

Lee Sedol

• AlphaGo Zero (2017): zero domain knowledge

• AlphaZero (2017-2018): general game-playing (and MDP solving) algorithm
267/294

AlphaZero literature

AlphaGo Zero:

Silver et al.: Mastering the game of Go without human knowledge. In Nature, vol. 550

(2017).

• Focuses on Go, but has a rich methodology section explaining design details.

AlphaZero:

Silver et al.: A general reinforcement learning algorithm that masters chess, shogi, and

Go through self-play. In Science, vol. 362 (2018).

• More general, but many designed choices already explained in the AlphaGo paper

not covered: need to look into code for details.

268/294

MDP vs. game trees

1
2 :2

1
2 :0

1
3 :1

2
3 :-3

......

......

......

......

......

......

......

......

......

• State nodes alternate between

maximizer and minimizer nodes.

Maximizer/minimizer player wants to

maximize/minimize the expected

return achieved in its subtree.

For chess-type games, targeted by Alp-

haZero, simpler models suffice:

• Rewards only in terminal states

(-1,0,+1).

• Deterministic action, each action

node has only one successor.

In figures, we will sometimes omit action

nodes, but pseudocodes will refer to the

most general formulation.

269/294

AlphaZero actual play

s

s ′

s ′′

......

......

......

......

• We are in some state node (game

position) s.

• We call AlphaZero to suggest an action

to play.

• We play the action in the game and

observe the next state s ′.

• We wait for the oponent to play an action

in his state and observe the next state s ′′.

• Repeat.

270/294

AlphaZero agent

......

......

......

......

Algorithm 19: AlphaZero single game

Input: Game tree with root s0, param’s θ

Function AlphaZeroAgent(s0, θ):

node ← s0
T ← tree with single node (root) s0
and all its child action nodes

while node is not terminal do

BuildTree(T , θ) // Modifies

T
a← ActualSelect(T)

node′ ∼ p(a)

oponent responds by playing a′

node′′ ∼ p(a)

node ← node′′

T ← sub-tree of T rooted in node
271/294

AlphaZero = MCTS + function approximation

• The BuildTree() function of AlphaZero replaces rollouts with an evaluation of newly

discovered nodes via a function approximator.

• The function approximator is trained on data generate by repeated plays in the actual

environment (i.e., repeated calls of the AlphaZeroAgent() procedure.)

AlphaZeroAgent(s0, θ)

play

Train(θ, τ)

generate trajectory τ

updated θ

Slightly inaccurate AlphaZero training diagram (see later).

272/294

AlphaZero tree & approximator

Search tree of AlphaZero differs from plain MCTS in that each action node anode carries an

additional attribute: prior probability Pr(anode).

Given a state node node, AlphaZero’s approximator predicts these quantities:

• πθ(node) ∈ R|A|: the prior probability vector, assigning a probability to each action in

node;

• vθ(node): the value estimate of node

The training will push θ so that

• πθ better approximates the policy played by AlphaZero in the actual game;

• vθ better approximates the expected return of AlphaZero in the actual game.

However, AlphaZero does not play according to πθ: it uses the MCTS mechanism to improve

upon πθ. Hence, AlphaZero is often presented as a MCTS-based policy improvement scheme.

273/294

AlphaZero: Tree building

Procedure BuildTree(T , θ):

AddNoise(T)

repeat

(node, anode)← Search(T) // Search phase

R ← ExpandPredict(T , node, anode, θ) // Expansion + prediction

Backup(T ,R, node)

until timeout

πθ, vθ
274/294

AlphaZero: Search phase (theory)

Algorithm 20: Search phase

Function Search(T):

repeat

if node is maximizer’s then sgn← 1

else sgn← −1
node ← root of T

anode ← argmax
a child of node

V (a)·sgn+C ·Pr(a)·

√
logN(node)

N(a)

node ∼ p(anode)

until anode is a leaf

return node, anode

Note the self-play implemented by sgn and the modulation of explo-

ration via prior probabilities.

275/294

AlphaZero: Search phase (DeepMind implementation)

Algorithm 21: Search phase

Function Search(T):

repeat

if node is maximizer’s then sgn← 1

else sgn← −1
node ← root of T

anode ← argmax
a child of node

V (a)·sgn+C (node)·Pr(a)·
√
N(node)

N(a) + 1

node ∼ p(anode)

until anode is a leaf

return node, anode

where C (node) = log
((+N(node)+cbase

cbase

)
+ cinit with cinit = 1.25 and

cbase = 19652.

276/294

AlphaZero: Expansion & Prediction

πθ, vθ

Algorithm 22: Expansion phase

Procedure ExpandPredict(T , node, anode, θ):

add node to T as a child of anode

N(node)← 0

R(node)← 0

V (node)← 0

// Add all action-node children of node

foreach child a of node do

add a to T as a child of node

N(a)← 0

R(a)← 0

V (a)← 0

Pr(a)← πθ(a)

return vθ(node)

(Same initialization used in root.) 277/294

AlphaZero: Backup

R

For all nodes currently in T traversed

in the previous phases, update their

statistics using the predicted outcome:

Algorithm 23: Backup

Procedure Backup(T ,R, node):

n← node

while true do

N(n)← N(n) + 1

R(n)← R(n) + R

V (n)← R(n)/N(n)

if n is the root then break

if n is a state node then
R ← R + the reward of the edge

connecting n to its parent

n← parent(n)
278/294

Dirichlet noise for root exploration

Procedure BuildTree(T , θ):

AddNoise(T)

repeat

(node, anode)← Search(T) // Search phase

R ← ExpandPredict(T , node, anode, θ) // Expansion + prediction

Backup(T ,R, node)

until timeout

Before simulations start, we add Dirichlet noise to prior probabilities in the root node,

encouraging exploration. (Dirichlet distribution = a “distribution over discrete distributions”).

I.e., if the root has k child action nodes, we sample a vector ν ∼ Dirichlet(α⃗) and for each

action child a of root we perform:

Pr(a)← (1− ε) · Pr(a) + ε · ν(a),

where α⃗ ∈ Rk
>0 and ε ∈ (0, 1) are hyperparameters. 279/294

AlphaZero: Actual action selection

Algorithm 24: AlphaZero single game

Input: Game tree with root s0, param’s θ

Function AlphaZeroAgent(s0, θ):

node ← s0
T ← tree with single node (root) s0
and all its child action nodes

while node is not terminal do

BuildTree(T , θ) // Modifies

T
a← ActualSelect(T)

node′ ∼ p(a)

oponent responds by playing a′

node′′ ∼ p(a)

node ← node′′

T ← sub-tree of T rooted in node

Action in actual play determined by visit count:

a = argmax
a child of root(T)

N(a), or

a ∼ softmax(Na)a child of root(T).

The first (greedy) approach typically used in

deployment (e.g. competitive play) or later in

training, while softmax typically used early in

training (with temperature annealed over time

to decrease exploration).

280/294

AlphaZero training

AlphaZeroAgent(s0, θ)

play

Train(θ, τ)

generate trajectory τ

updated θ

Slightly inaccurate AlphaZero training diagram (see later).

AlphaZeroAgent(s ′0, θ)

AlphaZeroAgent(s0, θ)

play Buffer Train(θ,B)

generate trajectory τ

updated θ

experience

minibatch

But getting training data from real deployment (e.g. from games against humans) is slow.

Solution: simulated self-training. For the second agent, the roles of maximizer and minimizer

are switched, e.g. switch color of chess pieces and flip board orientation.)

Such training is often implemented asynchronously. Part of available compute executes

self-plays and fills the buffer, a second part pulls minibatches from the buffer and performs

parameter updates.

281/294

AlphaZero training details

AlphaZeroAgent(s ′0, θ)

AlphaZeroAgent(s0, θ)

play

Produces play s0, a0, r1, s1, a1, . . . , rT , sT
For each st we also store its statistics

and statistics of its child action nodes.

• For each timestep t:

• Compute total return Gt =
∑T

i=t+1 ri

• Compute the target policy πt s.t. πt(a) =
N(a)∑

b child of s N(b)

• if st is maximizer state, add (st , πt ,Gt) to buffer

• if st is minimizer state, add (st , πt ,−Gt) to buffer

• Given sampled experience e = (s, π, g), θ is updated so as to minimize the loss

L(θ, e) = (vθ(s)− g)2 +
∑
a

πt(a) · log πθ(a) + c · ||θ||2.

We typically perform minibatch updates akin to DQNs (average updates over a number of

sampled experiences). 282/294

State representation: chess example

The function approximator consists of feature extraction layers followed by value and policy

heads. The approximator is fed certain information carried by each state node.

For chess, each node contains k last positions along its history. Each position is represented as

a set of 8× 8 feature planes. Most of them represent the position of pieces, with one plane for

each type of pieces of a concrete player.

0Z0Z0Z0Z
ZkZpZnZ0
0ZpZ0Z0Z
Z0O0Z0Z0
0Z0O0Z0Z
ZBZ0Z0Z0
KZ0Z0Z0Z
Z0Z0Z0Z0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

K

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

B

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

p

Additional planes encode castlings, repetitions, en-passant availability etc.

283/294

Action representation: chess example

The policy head outputs 4, 672 action logits from which we derive the distribution over moves

by applying softmax.

Each move determined by:

• position of the moved piece (8 · 8 = 64 possibilities)

• 73 possibilities of what to do with the piece:

• 7 · 8 = 56 “standard moves”: choice of 8 directions (N, NW, W, . . . , NE) and advancing by

1–7 fields in the chosen direction

• 8 “knight jumps”: one of 8 possible L-shaped jumps

• 9 possibilities for pawn underpromotion (knight, bishop, rook; each either via forward move

or diagonal capture)

Total 64 · 73 = 4, 672 moves. Illegal moves are masked out and the remaining ones

renormalized.

284/294

AlphaZero approximator architecture for chess

Body + value and policy heads. Body:

• Initial convolutional layer with ReLU nonlinearity and batch normalization.

• Followed by 19 residual blocks, each block with 2 convolutional layers (again with ReLU

and batch norm.) and a skip connection around them.

• All the above conv. layers apply 256 filters with 3× 3 kernel size and stride 1.

Policy head:

• Single-filter unit-kernel conv. layer with

stride 1 (+ ReLU and batch norm.)

• Then ReLU with 256 neurons.

• Then fully connected layer.

• Then final tanh layer of size 1.

Policy head:

• One more conv. layer as above (inlc.

ReLU and batch norm).

• Then a final conv. layer of 73

unit-kernel(?) filters.

285/294

AlphaZero experiments (from Silver et al. Science paper)

AZ trained for 700, 000 steps, ∼ 8 hours for chess on 5000 TPUs.

Note: this was 2018 version of Stockfish without NN evaluation. Modern version of Stockfish

use NN evaluation and typically outperform open-source AlphaZero-based chess agents (e.g.

LeelaChessZero).
286/294

Limitations of AlphaZero

• MCTS simulations need a (software) simulator of the environment (at least, we need to be

able to perform sampling from an arbitrary given state). Such simulator might not always

be available. (Actual environment too complex, dynamics unknown (Atari), . . .).

• Moreover, AlphaZero is most suited for ”discrete enough” domains (such as chess).

Working with frame-like states of Atari is impractical. (E.g. how to check whether a given

frame is already included in the search tree?)

The MuZero algorithm solves both issues by learning a deep model of the environment,

including a suitable encoding of states.

Schrittwieser et al: Mastering Atari, Go, chess and shogi by planning with a learned

model. In Nature, vol 588 (2020).

287/294

MuZero: Main idea

Original MuZero works only for deterministic environments.

The high-level structure is similar to AlphaZero. However, the nodes in MCTS simulations are

formed by elements of a fixed latent space LS (Typically some low-dimensional vector space.)

From the actual plays, the algorithm trains the following networks:

• The representation function gθ : S → LS

• The dynamic dunction hθ : LS ×A→ LS × R

• The value and policy approximators vθ : LS → R and πθ : LS → D(A) (same role as in

AlphaZero).

288/294

MuZero: High-level picture

Apart from training (see next slide for intuition), the “master loop” of a MuZero agent looks

similar to AlphaZero. During actual play:

• In a current state, perform MCTS simulations to determine the best action.

• Play the action.

• Observe reward and new state in the actual environment.

• Repeat.

The major difference is in the “MCTS simulation” part, which is performed in the latent space.

289/294

MuZero training intuition (slide by Richard Schwarz)

290/294

MCTS in latent space

Given the current actual state s:

• Embed s into latent space to get latent state s̃ = gθ(s).

• Using the dynamics function hθ, build the MCTS search tree from s̃ using the usual UCT

approach. The nodes of the tree are elements of the latent space! (The approximators

vθ, πθ are also used during the build, as in normal AlphaZero.)

• Use statistics of the root to select the best action to play in actual game.

291/294

MuZero experiments

source: Schrittwieser et al: Mastering Atari, Go, chess and shogi by planning with a learned model

292/294

Further developments of MuZero and MCTS

• extension to stochastic environments:

Antonoglou, Schrittwieser, Ozair, Hubert, Silver: Planning in Stochastic Environ-

ments with a Learned Model. In proceedings of ICLR 2022.

• Tricks to increase sample efficiency (e.g. GumbelZero).

• . . .

MCTS has formed a basis for practical algorithms in various domains, e.g.:

• AlphaChip

• AlphaGeometry

293/294

Glimpse of the future

294/294

	Organizational Information
	Reinforcement Learning: What, Why, When, How, & Other Questions
	Mathematical Foundations of Sequential Decision-Making
	Exact Planning with Known Model: Value & Policy Iteration
	Tabular Methods for Model-Free Reinforcement Learning
	Monte Carlo Methods
	Temporal Difference Methods
	Between Monte Carlo and TD: n -Step and -Returns
	First Steps Towards Deep RL: Value-Based On-Policy Methods
	Value-Based Off-Policy Control with Approximators: DQNs and Friends
	Policy Gradient Methods
	Taming Unstable Gradients with Trust Regions: TRPO, PPO
	Exploration vs. Exploitation: A Systematic Approach
	Monte Carlo Tree Search
	MCTS with Function Approximators: AlphaZero

