
Use Case Diagram + System 

Requirements
PB007 Software Engineering I

Jakub Levčík

536336@mail.muni.cz

1 PB007 Software Engineering I – Use Case Diagram + System Requirements

mailto:daubner@mail.muni.cz


Project recap

• Customer: IT company Mice in Black (MIB)

• Desktop application (mainly for Windows)

• Target users: company workers, 

managers, accountants (company

evidence system)

• Expectations
• plan for future extensions:

company will decide 

based on our work

2 PB007 Software Engineering I – Use Case Diagram + System Requirements



Today‘s goals

Find out what the system requirements for the project are

Based on the requirements – create an initial use case 

diagram

3 PB007 Software Engineering I – Use Case Diagram + System Requirements



Requirements – why first?

We need to know what is expected from us – represented 

by requirements

4 PB007 Software Engineering I – Use Case Diagram + System Requirements



5 PB007 Software Engineering I – Use Case Diagram + System Requirements

Functional requirements
What the system usage

• Describe and influence the system’s functionality

• A functional requirement tells you WHAT the system 

should (or should not) do

• Common format: <id><system><function>

<id><who><does what>

• Examples (EasyFood recipe app)
• 01. The EasyFood app sends a notification to the user when a competition ends

• 02. The EasyFood app allows the user to create and manage ingredients

• 03. The EasyFood app allows user to import and export their stored recipes



6 PB007 Software Engineering I – Use Case Diagram + System Requirements

Non-functional requirements
How the system should meet functional requirements

• Non-functional requirement is a constraint imposed on the system

• Often related to qualitative attributes like performance, security, 

availability… or environment and regulations

• Can be used to further specify functional requirements

• Testability is a must

• Examples (EasyFood recipe app)
• 01. The EasyFood app will be programmed in Java

• 02. The EasyFood app will use H2 database as persistent storage.

• 03. The EasyFood app will import/export data in asynchronous mode

• Influence system architecture



7 PB007 Software Engineering I – Use Case Diagram + System Requirements

Activity: (Non)Functional requirements

Quiz time



8 PB007 Software Engineering I – Use Case Diagram + System Requirements

Use case diagram

• Graphical representation of functional
requirements

• Simple and understandable

• Consists of:

• System boundary + name (Zeppelin rental)

• Actors (human icons)

• Use cases (ovals with verbs)

• Relationships (lines/arrows)



9 PB007 Software Engineering I – Use Case Diagram + System Requirements

Use case diagram
Actor

• A role representing an external entity

• External with respect to system

• Communicates directly with the system

• Not a single person

• A specific person can act as multiple actors, 
which could change over time

• Can be also another system, time…

• Primary actor (triggers an action, "active") 
vs. secondary actor (becomes involved
without triggering an action, "passive")

• Must have a clear name, should have a 
description



10 PB007 Software Engineering I – Use Case Diagram + System Requirements

Use case diagram
Use case

• An action describing interaction of the 

external actor with the system

• Always begins with an action triggered by a 

primary actor

• Other (secondary) actors may join during 

the interaction

• Described from actors' point of view

(not as requirements written from

system point of view)

• Name should represent the activity

• Use cases can have preconditions



11 PB007 Software Engineering I – Use Case Diagram + System Requirements

Generalization - inheritance
• To simplify the diagram

• Actor generalization
• Should be used when multiple actors share use cases

• Children inherit all roles from their parent and can trigger all use 

cases of their parent

• Use case generalization
• Used when use cases share the same logic – they vary only in 

details

• specialized use cases inherit all properties from their parent,

but add new features, can override the inherited properties

(they cannot override the parents’ extension points)

• Often, parents are abstract



12 PB007 Software Engineering I – Use Case Diagram + System Requirements

Actor generalization



13 PB007 Software Engineering I – Use Case Diagram + System Requirements

Use case generalization



14 PB007 Software Engineering I – Use Case Diagram + System Requirements

Include
• Extracts repetitive steps of 

multiple use cases into a 

separate use case

• A use case refers to another 

use case that will be executed 

afterwards

• Syntax:

A -> C = A includes C

= C is included in A



15 PB007 Software Engineering I – Use Case Diagram + System Requirements

Extend
• Allows insertion of additional behaviour into base use 

case

• extension points = EP – specifically defined place where the behavior 

is inserted

• If a condition defined in the EP is met, the extended UC is executed

• Syntax:

A -> B = A extends B

= B is extended by A

• The base does not know 

about its extensions

• There can be multiple EP

for one UC or multiple UC for one EP



16 PB007 Software Engineering I – Use Case Diagram + System Requirements

Activity – What’s wrong here?



Task for this week
You gotta do what you gotta do

• Create a list of requirements – 10+ functional, 5+ non-
functional

• Create a use case diagram according to your 

requirements (use at least one include and generalization

instance)

• Submit reports until Wednesday (9th Oct) 8:00 am

17 PB007 Software Engineering I – Use Case Diagram + System Requirements


