PB007 Week 07

Samuel Sabo

1 Entity-Relationship Diagram

MRS I,

2%
>
or QXSA@

e Facy,
N 7
&> /o
2 1!
4
ANA oy

S, -
TTag MASS

Entity-Relationship Diagram

— Entity-Relationship Diagram (ERD) is a data model representing
the logical structure of a database

— Its main components are:
— Entities (Entity types)
— Relations (Relation types)
— Attributes (Attribute types)

(Order iy >

& cc:sstt:::rrld] Linrciaris f L ot Roi] r::::cut:; -
AT —_— *~ customerld “ orderld El garne
address % ;:iavt: dfddress é :ﬁ:::t:ﬂd EI description
email : Y, h@ price

deliveryType

2 Entity-Relationship Diagram

T =
— =
—
e

3

Notation

Symbol

Meaning

Relationships (Cardinality and Modality)

Zero or More

Vi

One or More

One and only One

Entity-Relationship Diagram

Zero or One

4

Class diagram vs. ERD

s Class diagram

* models both data and operations

« classes relate to different types of relationships (associations,
dependencies, generalization, aggregation, composition)

 usually represent business domain concepts

s £ Ntity-relationship model

* models data only
« contains only simple relationships
* represents database tables

Entity-Relationship Diagram

T =

[I

Object-Relational Mapping (ORM)

— Object-Relational Mapping (ORM) is a technique for conversion

of data between relational database and object-oriented language.

— relational database < object-oriented language

— (persistent) class < entity type (table)

— object & entity (table row)

— class attribute & entity attribute (table column)

— association/aggregation/composition < relation (connection via foreign keys)
inheritance < 1:1 mapping, merge to superclass, propagation to subclasses

— Note:
— not all classes must be persistent

5 Entity-Relationship Diagram

T =
— =
—
o

6

Object-Relational Mapping (ORM)

Class diagram:

Customer
Nname g |
-address

Order

-email

+notify()
+updatelnfo()

ERD:

(Customer
. customerid

] name e

address
email

Entity-Relationship Diagram

-createdAt
-deliveryAddress
-deliveryType

Product

+cancel{)
+pay()

Order

. orderid

*> customerid
createdAt
deliveryAddress

deliveryType

-Nname
-description
-price

+updatelnfo()

‘

Orderltem

i Product

>

\

“ orderid
* productid
[z] amount

. productid
name
description

h

u price

ORM - Inheritance - 1:1 mapping

— Each class becomes a table
— An attribute (TrainType) differentiates the subclass type

— One object instance in multiple tables
— more difficult data access

Train
-weight
-gauge
FreightTrain PassengerTrain
-maxlLoad -maxPassengers

7 Entity-Relationship Diagram

f Train

| ID integer(10)
Weight integer(1)
Sauge integer(12)

TrainType warchan255)

FreightTrain B 'r PassengerTrain

ID

] integer(10) || 1D integer(10)
MaxLoad integen*0) MaxPassengers integer(10)
/

T =

[I

8

ORM - Inheritance - Merge to superclass

— All attributes in one table

— Some attributes will have NULL value
— breaks 4.NF

— Suitable for "big parents, small children”

— superclasses with many attributes
— only a few subclasses with only a few attributes

Train
-weight - Train2 ™
Rl /D integer(10)
weight integer(10)
% % gauge integen(10)
FreightTrain PassengerTrain MWaxLoad integen(10) [ﬂ
-maxLoad -maxPassengers L MaxPassengers integen(10) [Lf]}J

Entity-Relationship Diagram

T =

[I

9

ORM - Inheritance - Propagation to

subclasses

— Superclass attributes are copied to subclass tables
— many similar tables

— Suitable for "small parents, big children"

— superclasses with only a few attributes
— many subclasses with many attributes

Train
—“neight
-gauge
FreightTrain PassengerTrain

-max oad

-maxPassengers

Entity-Relationship Diagram

([reightTrain2 \ (FasssngerTrain2 W
| ID integer(10) | D integer(10)
Weight nteger{10) Weight integen10)
Gauge nteger(10) Gauge integen 10)
WaxLoad nteger(10) Max-assengers integer(10)

T =

[I

Normal forms

— Normal forms are used to achieve good database design.
— They help with:

— elimitnation of repetitive data

— reduce table complexity
— prevent anomalies (for update, insert, delete)

10 Entity-Relationship Diagram

T =

[I

1NF

— Each attribute is atomic
— Problem: composed attributes

(PersonGood)
11D integer(10)
PersonBad W Name varchar(255)

1D integer(10) T
g = :

Name varchar(259)
Email
' Email varchar(255)
™ PersonGoodID integer(10)

L IEmi AR EEEL)

11 Entity-Relationship Diagram

T =

[I

2NF

— Satisfies 1. NF
— No partial dependency

— each non-key attribute is fully dependent on every candidate key
— Problem: inferring non-key attributes

from only a part of candidate key

(StudentGradeGood \
I StudentIiD integer(10)

" CourseCode integer(10)
Grade integer(10)

2
Course
E Grade integer(10) IID integer(10)

CourseCode integer(10)
[l CourseName varchar(255)

StudentGradeBad
I StudentiD Integer(10

12 Entity-Relationship Diagram

T =

[I

3NF

— Satisfies 2. NF
— No transitive dependency

— each non-key attribute is dependent on candidate keys only

— =>non-key attributes are mutually independent
— Problem: inferring non-key attributes

from each other

TournamentWinnerGood \
I Tournament varchar(255) |

‘l.; Year integer(10)
TournamentWinnerBad iil CompetitorID integer(10)
" Tournament varchar(255) # &
. Year integer(10) L
E (Competitor W
H D integer(10) |
CompetitorName varchar(255) |
k DateOfBirth date

13 Entity-Relationship Diagram

T =

[I

Activity: Game

— Link: source code
— Draw entity/entities for assigned class(es)

14 Entity-Relationship Diagram

T =

[I

Task for this week

— Review the analytical class diagrams from the previous session.
Fix any problem.

— Create Entity-Relationship Diagram

— Update use case diagram

— Submit this week's report in homework vault week07 in format
surname1-surname2-surname3.pdf

15 Entity-Relationship Diagram

=
— =

