i
— =
—
e

PB007 Week 08

Samuel Sabo

1 Design Class Diagram

2

Class diagram types

memmel Analysis class diagram

» only basic classes representing key system entities, related to requirements
* no implementation details

* helps to identify key domain elements

 should remain readable and easy to understand

« limited number of classes, attributes, methods...

mmd Design class diagram

- all classes

» adds implementation details
* helps to program the system
* language specific constructs

» can have exteremely large number of classes (attributes, methods...)

Design Class Diagram

T =

[I

Implementation details

—H visibility

— types

| _|arguments and

3 Design Class Diagram

visibility

\ J

(A

return types

analysis

BankAccount

design

name
number
balance

BankAccount

deposit()
withdraw()
calculatelnterest()

—name : String
~number : String
—balance : double = 0

\ J
(D'
getters,
setters,
constructors...
_ J

+BankAccount(name:String, number:String)
+deposit(m:double) : void

+withdraw(m:double) : boolean
+calculatelnterest() : double

+getName() : String

+setName(n:String) : void

+getAddress() : String

+setAddress (a:String) : void

+getBalance() : double

T =
— =

4

Interfaces

— Define public methods, attributes and relationships

— Without implementation™
— Class implementing the interface must implement defined methods

— Often used to implement generalization
— If we do not need to inherit implementation but only define what classes s

Design Class Diagram

<<|nterface>>

Personalinfo
+getName() : string
+setName(name : string) void

FFFFF -L-----‘|

Salesman

-name : string

+Salesman()

hould provide

Customer

-name : string
-emall : string
-contact : string

+Customerf()

+getEmail() : string
+setEmail(email * string) - void
+getContact() . string

+setContact(contact : string) : void

—

TUNI
|

Tl

5

Manger classes

UsersManager

— Classes to manage objects

— to provide basic (CRUD) functionality

— to provide access to objects for classes that do not have links to them
— to provide methods users can call from GUI

— single instance

+UsersManager()

+addTeacher(typ : TeacherType, nam...
+«remTeacher(lector : Teacher) : void |,
+findTeacher(name : string) : Teacher
+addStudent(name : string, street : stri...
+remStudent(student : Student) : void
+findStudent({name : string) : Student

s+oginUser(login : string, password : st... |

+logoutUser(user : User)

— Simplification for this course
— in practice replaced with classes dependent on specific system architecture

Design Class Diagram

T =
— =
—
e

Association specification

— Specify chosen associations

— aggregation vs composition
— only when it makes sense
— sometimes not easy to decide

— Decompose bidirectional associations to one-way
— Decompose association classes
— Decompose M:N associations

6 Design Class Diagram

T =

[I

7

Aggregation

— Aggregation is a whole-part type of relationship.

— The whole may or may not exist without its parts

— Parts can usually exist independently from the whole

— The whole is in a sense incomplete if some parts are missing
— Part can be shared by multiple whole classes

— Aggregation is transitive and asymmetrical (without cycles)

Ship 0..1 Seaman

Design Class Diagram

T =

[I

8

Composition

— Composition is a stronger form of aggregation

— The part belongs to exactly one whole in the given time
— The whole is responsible for the lifecycle of its parts
— The part cannot exist without the whole

— When deleting, the whole must take care of its parts
delete or transfer them to another whole

— Composition is transitive and asymmetrical (without cycles)

Ship 1 Salil

Design Class Diagram

T =

[I

Comparison

Aggregation Composition

public class public class

{ private _engine; { private
public (Engine engine) public ()
{ o o { o
_engine = engine; _engine =
} }
} }

9 Design Class Diagram

_engine;

new

();

Activity: Association or composition?

Add multiplicity and association type

Customer5

Product5

Question

1 Hum Leg
2 AnimalManager Turtle
3 Book Library

10 Design Class Diagram

MUNI
F 1

Association decomposition

Bidirectional

— Someone must "own" it

1
P>
1

0.*

N

11 Design Class Diagram

0.*

T =

[I

Association decomposition

M:N
— AnalySiS Job 0. Machine
0.+
. Job2 1 Allocation2 | 0..* Machine2
— Design < -

— decompose if there is

e . AllocationManager
a need for additional attributes A

— someone must "own" it 1
-]
Job3 1 Allocation3 | 0.." Machine3
<> <
0.* 1
12 Design Class Diagram I\II U I\I I
F 1

Association decomposition

M:N
. Job Q.+ Machine
* Analysis
U”*
Job2 1 Allocation2 | 0..* Machine?2
4
0.* 1
. |]
Des I g n AllocationManager
« decompose if there is
a need for additional attributes - t1
« someone must "own" it Job3 1 Allocation3 | 0.* Machine3
<> < 1
0.*

13 Design Class Diagram

MUNI
F 1

Task for this week

— Review the entity-relationship diagram from the previous
session. Fix any problem.

— Create Design Class diagram

— Submit this week's report in homework vault week08 in format
surname1-surname2-surname3.pdf

14 Design Class Diagram

T =

[I

