
www.db-book.com

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 4: Introduction to SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 7th Edition

Outline

▪ Overview of The SQL Query Language

▪ SQL Data Definition

▪ Basic Query Structure of SQL Queries

▪ Additional Basic Operations

▪ Set Operations

▪ Null Values

▪ Aggregate Functions

▪ Nested Subqueries

▪ Modification of the Database

©Silberschatz, Korth and Sudarshan3.3Database System Concepts - 7th Edition

History

▪ IBM Sequel language developed as part of System R project at the IBM

San Jose Research Laboratory

▪ Renamed Structured Query Language (SQL)

▪ ANSI and ISO standard SQL:

• SQL-86

• SQL-89

• SQL-92

• SQL:1999 (language name became Y2K compliant!)

• SQL:2003

▪ Commercial systems offer most, if not all, SQL-92 features, plus varying

feature sets from later standards and special proprietary features.

• Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 7th Edition

SQL Parts

▪ DML -- provides the ability to query information from the database and to

insert tuples into, delete tuples from, and modify tuples in the database.

▪ integrity – the DDL includes commands for specifying integrity

constraints.

▪ View definition -- The DDL includes commands for defining views.

▪ Transaction control –includes commands for specifying the beginning and

ending of transactions.

▪ Embedded SQL and dynamic SQL -- define how SQL statements can

be embedded within general-purpose programming languages.

▪ Authorization – includes commands for specifying access rights to

relations and views.

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 7th Edition

Data Definition Language

▪ The schema for each relation.

▪ The type of values associated with each attribute.

▪ The Integrity constraints

▪ The set of indices to be maintained for each relation.

▪ Security and authorization information for each relation.

▪ The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the specification of

information about relations, including:

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 7th Edition

Domain Types in SQL

▪ char(n). Fixed length character string, with user-specified length n.

▪ varchar(n). Variable length character strings, with user-specified
maximum length n.

▪ int. Integer (a finite subset of the integers that is machine-dependent).

▪ smallint. Small integer (a machine-dependent subset of the integer
domain type).

▪ numeric(p,d). Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point. (ex., numeric(3,1), allows
44.5 to be stores exactly, but not 444.5 or 0.32)

▪ real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

▪ float(n). Floating point number, with user-specified precision of at least n
digits.

▪ More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 7th Edition

Create Table Construct

▪ An SQL relation is defined using the create table command:

 create table r

 (A1 D1, A2 D2, ..., An Dn,

 (integrity-constraint1),

 ...,

 (integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

▪ Example:

 create table instructor (

 ID char(5),

 name varchar(20),

 dept_name varchar(20),

 salary numeric(8,2))

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 7th Edition

Integrity Constraints in Create Table

▪ Types of integrity constraints

• primary key (A1, ..., An)

• foreign key (Am, ..., An) references r

• not null

▪ SQL prevents any update to the database that violates an integrity

constraint.

▪ Example:

 create table instructor (

 ID char(5),

 name varchar(20) not null,

 dept_name varchar(20),

 salary numeric(8,2),

 primary key (ID),

 foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 7th Edition

And a Few More Relation Definitions

▪ create table student (
 ID varchar(5),
 name varchar(20) not null,
 dept_name varchar(20),
 tot_cred numeric(3,0),
 primary key (ID),

 foreign key (dept_name) references department);

▪ create table takes (
 ID varchar(5),
 course_id varchar(8),
 sec_id varchar(8),
 semester varchar(6),
 year numeric(4,0),
 grade varchar(2),

 primary key (ID, course_id, sec_id, semester, year) ,
 foreign key (ID) references student,

 foreign key (course_id, sec_id, semester, year) references section);

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 7th Edition

And more still

▪ create table course (

 course_id varchar(8),

 title varchar(50),

 dept_name varchar(20),

 credits numeric(2,0),

 primary key (course_id),

 foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 7th Edition

Updates to tables

▪ Insert

• insert into instructor values ('10211', 'Smith', 'Biology', 66000);

▪ Delete

• Remove all tuples from the student relation

▪ delete from student

▪ Drop Table

• drop table r

▪ Alter

• alter table r add A D

▪ where A is the name of the attribute to be added to relation r and
D is the domain type of A.

▪ All existing tuples in the relation are assigned null as the value for
the new attribute.

• alter table r drop A

▪ where A is the name of an attribute of relation r

▪ Dropping of attributes not supported by many databases.

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 7th Edition

Basic Query Structure

▪ A typical SQL query has the form:

 select A1, A2, ..., An

 from r1, r2, ..., rm

 where P

• Ai represents an attribute

• ri represents a relation

• P is a predicate.

▪ The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 7th Edition

The select Clause

▪ The select clause lists the attributes desired in the result of a query

• corresponds to the projection operation of the relational algebra

▪ Example: find the names of all instructors:

 select name

 from instructor

▪ NOTE: SQL names (keywords) are case insensitive (i.e., you may use

upper- or lower-case letters.)

• E.g., Name ≡ NAME ≡ name

• Some people use upper case wherever we use bold font.

▪ Convention: table and column names - lowercase

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 7th Edition

The select Clause (Cont.)

▪ SQL allows duplicates in relations as well as in query results.

▪ To force the elimination of duplicates, insert the keyword distinct after

select.

▪ Find the department names of all instructors, and remove duplicates

 select distinct dept_name

 from instructor

▪ The keyword all specifies that duplicates should not be removed.

 select all dept_name

 from instructor

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 7th Edition

The select Clause (Cont.)

▪ An asterisk in the select clause denotes “all attributes”

 select *

 from instructor

▪ An attribute can be a literal with no from clause

 select '437'

• Results is a table with one column and a single row with value “437”

• Can give the column a name using:

 select '437' as FOO

▪ An attribute can be a literal with from clause

 select 'A'

 from instructor

• Result is a table with one column and N rows (number of tuples in

the instructors table), each row with value “A”

©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 7th Edition

The select Clause (Cont.)

▪ The select clause can contain arithmetic expressions involving the

operation, +, –, , and /, and operating on constants or attributes of

tuples.

• The query:

 select ID, name, salary/12

 from instructor

 would return a relation that is the same as the instructor relation,

except that the value of the attribute salary is divided by 12.

• Can rename “salary/12” using the as clause:

 select ID, name, salary/12 as monthly_salary

©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 7th Edition

The where Clause

▪ The where clause specifies conditions that the result must satisfy

• Corresponds to the selection predicate of the relational algebra.

▪ To find all instructors in Comp. Sci. dept

 select name

 from instructor

 where dept_name = 'Comp. Sci.'

▪ SQL allows the use of the logical connectives and, or, and not

▪ The operands of the logical connectives can be expressions involving the

comparison operators <, <=, >, >=, =, and <>.

▪ Comparisons can be applied to results of arithmetic expressions

▪ To find all instructors in Comp. Sci. dept with salary > 70000

 select name

from instructor

where dept_name = 'Comp. Sci.' and salary > 70000

©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 7th Edition

The from Clause

▪ The from clause lists the relations involved in the query

• Corresponds to the Cartesian product operation of the relational

algebra.

▪ Find the Cartesian product instructor X teaches

 select 

 from instructor, teaches

• generates every possible instructor – teaches pair, with all attributes

from both relations.

• For common attributes (e.g., ID), the attributes in the resulting table

are renamed using the relation name (e.g., instructor.ID)

▪ Cartesian product not very useful directly, but useful combined with

where-clause condition (selection operation in relational algebra).

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 7th Edition

Examples

▪ Find the names of all instructors who have

taught some course and the course_id

• select name, course_id

from instructor , teaches

where instructor.ID = teaches.ID

▪ Find the names of all instructors in the Art

department who have taught some course

and the course_id

• select name, course_id

from instructor , teaches

where instructor.ID = teaches.ID

 and instructor. dept_name = 'Art'

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 7th Edition

The Rename Operation

▪ The SQL allows renaming relations and attributes using the as clause:

 old-name as new-name

▪ Find the names of all instructors who have a higher salary than

some instructor in 'Comp. Sci'.

• select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = 'Comp. Sci.’

▪ Keyword as is optional and may be omitted

 instructor as T ≡ instructor T

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 7th Edition

String Operations

▪ SQL includes a string-matching operator for comparisons on character

strings. The operator like uses patterns that are described using two

special characters:

• percent (%). The % character matches any substring.

• underscore (_). The _ character matches any character.

▪ Find the names of all instructors whose name includes the substring “dar”.

 select name

 from instructor

 where name like '%dar%'

▪ Match the string “100%”

 like '100 \%' escape '\'

 in that above we use backslash (\) as the escape character.

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 7th Edition

String Operations (Cont.)

▪ Patterns are case sensitive.

▪ Pattern matching examples:

• 'Intro%' matches any string beginning with “Intro”.

• '%Comp%' matches any string containing “Comp” as a substring.

• '_ _ _' matches any string of exactly three characters.

• '_ _ _ %' matches any string of at least three characters.

▪ SQL supports a variety of string operations such as

• concatenation (using “||”)

• converting from upper to lower case (and vice versa)

• finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 7th Edition

Ordering the Display of Tuples

▪ List in alphabetic order the names of all instructors

 select distinct name

 from instructor

 order by name

▪ We may specify desc for descending order or asc for ascending order,

for each attribute; ascending order is the default.

• Example: order by name desc

▪ Can sort on multiple attributes

• Example: order by dept_name, name

©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 7th Edition

Where Clause Predicates

▪ SQL includes a between comparison operator

▪ Example: Find the names of all instructors with salary between $90,000

and $100,000 (that is,  $90,000 and  $100,000)

• select name

from instructor

where salary between 90000 and 100000

▪ Tuple comparison

• select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, 'Biology');

©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 7th Edition

Set Operations

▪ Find courses that ran in Fall 2017 or in Spring 2018

 (select course_id from section where sem = 'Fall' and year = 2017)

 union

 (select course_id from section where sem = 'Spring' and year = 2018)

▪ Find courses that ran in Fall 2017 and in Spring 2018

 (select course_id from section where sem = 'Fall' and year = 2017)

 intersect

 (select course_id from section where sem = 'Spring' and year = 2018)

▪ Find courses that ran in Fall 2017 but not in Spring 2018

 (select course_id from section where sem = 'Fall' and year = 2017)

 except

 (select course_id from section where sem = 'Spring' and year = 2018)

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 7th Edition

Set Operations (Cont.)

▪ Set operations union, intersect, and except

• Each of the above operations automatically eliminates duplicates

▪ To retain all duplicates use the

• union all,

• intersect all

• except all.

©Silberschatz, Korth and Sudarshan3.27Database System Concepts - 7th Edition

Null Values

▪ It is possible for tuples to have a null value, denoted by null, for some of

their attributes

▪ null signifies an unknown value or that a value does not exist.

▪ The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

▪ The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.

 select name

 from instructor

 where salary is null

▪ The predicate is not null succeeds if the value on which it is applied is

not null.

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 7th Edition

Null Values (Cont.)

▪ SQL treats as unknown the result of any comparison involving a null

value (other than predicates is null and is not null).

• Example: 5 < null or null <> null or null = null

▪ The predicate in a where clause can involve Boolean operations (and,

or, not); thus the definitions of the Boolean operations need to be

extended to deal with the value unknown.

• and : (true and unknown) = unknown,

 (false and unknown) = false,

 (unknown and unknown) = unknown

• or: (unknown or true) = true,

 (unknown or false) = unknown

 (unknown or unknown) = unknown

▪ Result of where clause predicate is treated as false if it evaluates to

unknown

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 7th Edition

Aggregate Functions

▪ These functions operate on the multiset of values of a column of a

relation, and return a value

 avg: average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 7th Edition

Aggregate Functions Examples

▪ Find the average salary of instructors in the Computer Science department

• select avg (salary)

from instructor

where dept_name= 'Comp. Sci.';

▪ Find the total number of instructors who teach a course in the Spring 2018

semester

• select count (distinct ID)

from teaches

where semester = 'Spring' and year = 2018;

▪ Find the number of tuples in the course relation

• select count (*)

from course;

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 7th Edition

Aggregate Functions – Group By

▪ Find the average salary of instructors in each department

• select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 7th Edition

Aggregation (Cont.)

▪ Attributes in select clause outside of aggregate functions must appear in

group by list

• /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 7th Edition

Aggregate Functions – Having Clause

▪ Find the names and average salaries of all departments whose average

salary is greater than 42000

▪ Note: predicates in the having clause are applied after the formation of

groups whereas predicates in the where clause are applied before forming

groups

select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name

having avg (salary) > 42000;

©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 7th Edition

Nested Subqueries

▪ SQL provides a mechanism for the nesting of subqueries. A subquery is

a select-from-where expression that is nested within another query.

▪ The nesting can be done in the following SQL query

 select A1, A2, ..., An

 from r1, r2, ..., rm

 where P

as follows:

• From clause: ri can be replaced by any valid subquery

• Where clause: P can be replaced with an expression of the form:

 B <operation> (subquery)

 B is an attribute and <operation> to be defined later.

• Select clause:

Ai can be replaced be a subquery that generates a single value.

©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 7th Edition

Set Membership

©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 7th Edition

Set Membership

▪ Find courses offered in Fall 2017 and in Spring 2018

▪ Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id

from section

where semester = 'Fall' and year= 2017 and

 course_id in (select course_id

 from section

 where semester = 'Spring' and year= 2018);

select distinct course_id

from section

where semester = 'Fall' and year= 2017 and

 course_id not in (select course_id

 from section

 where semester = 'Spring' and year= 2018);

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 7th Edition

Set Membership (Cont.)

▪ Name all instructors whose name is neither “Mozart” nor Einstein”

 select distinct name

 from instructor

 where name not in ('Mozart', 'Einstein')

▪ Find the total number of (distinct) students who have taken course

sections taught by the instructor with ID 10101

▪ Note: Above query can be written in a much simpler manner.

The formulation above is simply to illustrate SQL features

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

 (select course_id, sec_id, semester, year

 from teaches

 where teaches.ID= 10101);

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 7th Edition

Set Comparison

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 7th Edition

Set Comparison – “some” Clause

▪ Find names of instructors with salary greater than that of some (at least

one) instructor in the Biology department.

▪ Same query using > some clause

select name

from instructor

where salary > some (select salary

 from instructor

 where dept name = 'Biology');

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = 'Biology';

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 7th Edition

Definition of “some” Clause

▪ F <comp> some r   t  r such that (F <comp> t)

Where <comp> can be:    = 

0
5

6

(5 < some) = true

0
5

0

) = false

5

0
5(5  some) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some)  in

However, ( some)  not in

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 7th Edition

Set Comparison – “all” Clause

▪ Find the names of all instructors whose salary is greater than the salary of

all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

 from instructor

 where dept name = 'Biology');

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 7th Edition

Definition of “all” Clause

▪ F <comp> all r   t  r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6(5  all) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

( all)  not in

However, (= all)  in

©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 7th Edition

Test for Empty Relations

▪ The exists construct returns the value true if the argument subquery is

nonempty.

▪ exists r  r  Ø

▪ not exists r  r = Ø

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 7th Edition

Use of “exists” Clause

▪ Yet another way of specifying the query “Find all courses taught in both the

Fall 2017 semester and in the Spring 2018 semester”

 select course_id

 from section as S

 where semester = 'Fall' and year = 2017 and

 exists (select *

 from section as T

 where semester = 'Spring' and year= 2018

 and S.course_id = T.course_id);

▪ Correlation name – variable S in the outer query

▪ Correlated subquery – the inner query

©Silberschatz, Korth and Sudarshan3.45Database System Concepts - 7th Edition

Test for Absence of Duplicate Tuples

▪ The unique construct tests whether a subquery has any duplicate tuples

in its result.

▪ The unique construct evaluates to “true” if a given subquery contains no

duplicates .

▪ Find all courses that were offered at most once in 2017

 select T.course_id

from course as T

where unique (select R.course_id

 from section as R

 where T.course_id= R.course_id

 and R.year = 2017);

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 7th Edition

Subqueries in the From Clause

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 7th Edition

Subqueries in the Form Clause

▪ SQL allows a subquery expression to be used in the from clause

▪ Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.”

 select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

 from instructor

 group by dept_name)

where avg_salary > 42000;

▪ Note that we do not need to use the having clause

▪ Another way to write above query

 select dept_name, avg_salary

from (select dept_name, avg (salary)

 from instructor

 group by dept_name)

 as dept_avg (dept_name, avg_salary)

 where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan3.48Database System Concepts - 7th Edition

With Clause

▪ The with clause provides a way of defining a temporary relation whose

definition is available only to the query in which the with clause occurs.

▪ Find all departments with the maximum budget

 with max_budget (value) as

 (select max(budget)

 from department)

 select department.name

 from department, max_budget

 where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan3.49Database System Concepts - 7th Edition

Complex Queries using With Clause

▪ Find all departments where the total salary is greater than the average of

the total salary at all departments

with dept _total (dept_name, value) as

 (select dept_name, sum(salary)

 from instructor

 group by dept_name),

dept_total_avg(value) as

 (select avg(value)

 from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value > dept_total_avg.value;

©Silberschatz, Korth and Sudarshan3.50Database System Concepts - 7th Edition

Scalar Subquery

▪ Scalar subquery is one which is used where a single value is expected

▪ List all departments along with the number of instructors in each

department

 select dept_name,

 (select count(*)

 from instructor

 where department.dept_name = instructor.dept_name)

 as num_instructors

from department;

▪ Runtime error if subquery returns more than one result tuple

©Silberschatz, Korth and Sudarshan3.51Database System Concepts - 7th Edition

Modification of the Database

▪ Deletion of tuples from a given relation.

▪ Insertion of new tuples into a given relation

▪ Updating of values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan3.52Database System Concepts - 7th Edition

Deletion

▪ Delete all instructors

 delete from instructor

▪ Delete all instructors from the Finance department

 delete from instructor

 where dept_name= 'Finance’;

▪ Delete all tuples in the instructor relation for those instructors associated

with a department located in the Watson building.

 delete from instructor

 where dept name in (select dept name

 from department

 where building = 'Watson');

©Silberschatz, Korth and Sudarshan3.53Database System Concepts - 7th Edition

Deletion (Cont.)

▪ Delete all instructors whose salary is less than the average salary of

instructors

• Problem: as we delete tuples from instructor, the average salary

changes

• Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

delete from instructor

where salary < (select avg (salary)

 from instructor);

©Silberschatz, Korth and Sudarshan3.54Database System Concepts - 7th Edition

Insertion

▪ Add a new tuple to course

 insert into course

 values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

▪ or equivalently

 insert into course (course_id, title, dept_name, credits)

 values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

▪ Add a new tuple to student with tot_creds set to null

 insert into student

 values ('3003', 'Green', 'Finance', null);

©Silberschatz, Korth and Sudarshan3.55Database System Concepts - 7th Edition

Insertion (Cont.)

▪ Make each student in the Music department who has earned more than

144 credit hours an instructor in the Music department with a salary of

$18,000.

 insert into instructor

 select ID, name, dept_name, 18000

 from student

 where dept_name = 'Music' and total_cred > 144;

▪ The select from where statement is evaluated fully before any of its

results are inserted into the relation.

 Otherwise queries like

 insert into table1 select * from table1

 would cause problem

©Silberschatz, Korth and Sudarshan3.56Database System Concepts - 7th Edition

Updates

▪ Give a 5% salary raise to all instructors

 update instructor

 set salary = salary * 1.05

▪ Give a 5% salary raise to those instructors who earn less than 70000

 update instructor

 set salary = salary * 1.05

 where salary < 70000;

▪ Give a 5% salary raise to instructors whose salary is less than average

 update instructor

 set salary = salary * 1.05

 where salary < (select avg (salary)

 from instructor);

©Silberschatz, Korth and Sudarshan3.57Database System Concepts - 7th Edition

Updates (Cont.)

▪ Increase salaries of instructors whose salary is over $100,000 by 3%, and

all others by a 5%

• Write two update statements:

 update instructor

 set salary = salary * 1.03

 where salary > 100000;

 update instructor

 set salary = salary * 1.05

 where salary <= 100000;

• The order is important

• Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.58Database System Concepts - 7th Edition

Case Statement for Conditional Updates

▪ Same query as before but with case statement

 update instructor

 set salary = case

 when salary <= 100000 then salary * 1.05

 else salary * 1.03

 end

©Silberschatz, Korth and Sudarshan3.59Database System Concepts - 7th Edition

Updates with Scalar Subqueries

▪ Recompute and update tot_creds value for all students

 update student S

 set tot_cred = (select sum(credits)

 from takes, course

 where takes.course_id = course.course_id and

 S.ID= takes.ID.and

 takes.grade <> 'F' and

 takes.grade is not null);

▪ Sets tot_creds to null for students who have not taken any course

▪ Instead of sum(credits), use:

 case

 when sum(credits) is not null then sum(credits)

 else 0

 end

©Silberschatz, Korth and Sudarshan3.60Database System Concepts - 7th Edition

End of Chapter 4

	Snímek 1: Chapter 4: Introduction to SQL
	Snímek 2: Outline
	Snímek 3: History
	Snímek 4: SQL Parts
	Snímek 5: Data Definition Language
	Snímek 6: Domain Types in SQL
	Snímek 7: Create Table Construct
	Snímek 8: Integrity Constraints in Create Table
	Snímek 9: And a Few More Relation Definitions
	Snímek 10: And more still
	Snímek 11: Updates to tables
	Snímek 12: Basic Query Structure
	Snímek 13: The select Clause
	Snímek 14: The select Clause (Cont.)
	Snímek 15: The select Clause (Cont.)
	Snímek 16: The select Clause (Cont.)
	Snímek 17: The where Clause
	Snímek 18: The from Clause
	Snímek 19: Examples
	Snímek 20: The Rename Operation
	Snímek 21: String Operations
	Snímek 22: String Operations (Cont.)
	Snímek 23: Ordering the Display of Tuples
	Snímek 24: Where Clause Predicates
	Snímek 25: Set Operations
	Snímek 26: Set Operations (Cont.)
	Snímek 27: Null Values
	Snímek 28: Null Values (Cont.)
	Snímek 29: Aggregate Functions
	Snímek 30: Aggregate Functions Examples
	Snímek 31: Aggregate Functions – Group By
	Snímek 32: Aggregation (Cont.)
	Snímek 33: Aggregate Functions – Having Clause
	Snímek 34: Nested Subqueries
	Snímek 35: Set Membership
	Snímek 36: Set Membership
	Snímek 37: Set Membership (Cont.)
	Snímek 38: Set Comparison
	Snímek 39: Set Comparison – “some” Clause
	Snímek 40: Definition of “some” Clause
	Snímek 41: Set Comparison – “all” Clause
	Snímek 42: Definition of “all” Clause
	Snímek 43: Test for Empty Relations
	Snímek 44: Use of “exists” Clause
	Snímek 45: Test for Absence of Duplicate Tuples
	Snímek 46: Subqueries in the From Clause
	Snímek 47: Subqueries in the Form Clause
	Snímek 48: With Clause
	Snímek 49: Complex Queries using With Clause
	Snímek 50: Scalar Subquery
	Snímek 51: Modification of the Database
	Snímek 52: Deletion
	Snímek 53: Deletion (Cont.)
	Snímek 54: Insertion
	Snímek 55: Insertion (Cont.)
	Snímek 56: Updates
	Snímek 57: Updates (Cont.)
	Snímek 58: Case Statement for Conditional Updates
	Snímek 59: Updates with Scalar Subqueries
	Snímek 60: End of Chapter 4

