

Chapter 5 : Intermediate SQL

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Outline

- Join Expressions
- Views
- Transactions
- Integrity Constraints
- SQL Data Types and Schemas
- Index Definition in SQL
- Authorization

Joined Relations

- Join operations take two relations and return as a result another relation.
- A join operation is a Cartesian product that requires that tuples in the two relations match (under a specific condition). It also specifies attributes to be present in the result of the join
- The join operations are typically used as subquery expressions in the from clause
- Three types of joins:
 - Natural join
 - Inner join
 - Outer join

Natural Join in SQL

- Natural join matches tuples with the same values for all common attributes and retains only one copy of each of the common columns.
- List the names of students along with the course ID of the courses that they study
 - select name, course_idfrom students, takeswhere student.ID = takes.ID;
- Same query in SQL with "natural join" construct
 - select name, course_id
 from student natural join takes;

Natural Join in SQL (Cont.)

The from clause can have multiple relations combined using natural join:

```
select A_1, A_2, ... A_n
from r_1 natural join r_2 natural join .. natural join r_n
where P;
```


Student Relation

ID	name	dept_name	tot_cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110
44553	Peltier	Physics	56
45678	Levy	Physics	46
54321	Williams	Comp. Sci.	54
55739	Sanchez	Music	38
70557	Snow	Physics	0
76543	Brown	Comp. Sci.	58
76653	Aoi	Elec. Eng.	60
98765	Bourikas	Elec. Eng.	98
98988	Tanaka	Biology	120

Takes Relation

ID	course_id	sec_id	semester	year	grade
00128	CS-101	1	Fall	2017	A
00128	CS-347	1	Fall	2017	A-
12345	CS-101	1	Fall	2017	С
12345	CS-190	2	Spring	2017	A
12345	CS-315	1	Spring	2018	A
12345	CS-347	1	Fall	2017	A
19991	HIS-351	1	Spring	2018	В
23121	FI N-2 01	1	Spring	2018	C+
44553	PHY-101	1	Fall	2017	B-
45678	CS-101	1	Fall	2017	F
45678	CS-101	1	Spring	2018	B+
45678	CS-319	1	Spring	2018	В
54321	CS-101	1	Fall	2017	A-
54321	CS-190	2	Spring	2017	B+
55739	MU-199	1	Spring	2018	A-
76543	CS-101	1	Fall	2017	A
76543	CS-319	2	Spring	2018	A
76653	EE-181	1	Spring	2017	С
98765	CS-101	1	Fall	2017	C-
98765	CS-315	1	Spring	2018	В
98988	BIO-101	1	Summer	2017	A
98988	BIO-301	1	Summer	2018	null

student natural join takes

ID	name	dept_name	tot_cred	course_id	sec_id	semester	year	grade
00128	Zhang	Comp. Sci.	102	CS-101	1	Fa11	2017	A
00128	Zhang	Comp. Sci.	102	CS-347	1	Fall	2017	A-
12345	Shankar	Comp. Sci.	32	CS-101	1	Fall	2017	С
12345	Shankar	Comp. Sci.	32	CS-190	2	Spring	2017	A
12345	Shankar	Comp. Sci.	32	CS-315	1	Spring	2018	A
12345	Shankar	Comp. Sci.	32	CS-347	1	Fall	2017	A
19991	Brandt	History	80	HIS-351	1	Spring	2018	В
23121	Chavez	Finance	110	FIN-201	1	Spring	2018	C+
44553	Peltier	Physics	56	PHY-101	1	Fall	2017	B-
45678	Levy	Physics	46	CS-101	1	Fall	2017	F
45678	Levy	Physics	46	CS-101	1	Spring	2018	B+
45678	Levy	Physics	46	CS-319	1	Spring	2018	В
54321	Williams	Comp. Sci.	54	CS-101	1	Fall	2017	A-
54321	Williams	Comp. Sci.	54	CS-190	2	Spring	2017	B+
55739	Sanchez	Music	38	MU-199	1	Spring	2018	A-
76543	Brown	Comp. Sci.	58	CS-101	1	Fall	2017	A
76543	Brown	Comp. Sci.	58	CS-319	2	Spring	2018	A
76653	Aoi	Elec. Eng.	60	EE-181	1	Spring	2017	С
98765	Bourikas	Elec. Eng.	98	CS-101	1	Fa11	2017	C-
98765	Bourikas	Elec. Eng.	98	CS-315	1	Spring	2018	В
98988	Tanaka	Biology	120	BIO-101	1	Summer	2017	A
98988	Tanaka	Biology	120	BIO-301	1	Summer	2018	null

Dangerous in Natural Join

- Beware of unrelated attributes with the same name get equated incorrectly
- Example -- List the names of students along with the titles of courses that they have taken
 - Correct version

select *name*, *title* **from** *student* **natural join** *takes*, *course* **where** *takes.course_id* = *course.course_id*;

Incorrect version

select name, title from student natural join takes natural join course;

- This query omits all (student name, course title) pairs where the student takes a course in a department other than the student's own department.
- The correct version (above), correctly outputs such pairs.

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples from one relation that does not match tuples in the other relation to the result of the join.
- Uses null values.
- Three forms of outer join:
 - left outer join
 - right outer join
 - full outer join

Outer Join Examples

Relation course

course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

Relation prereq

course_id	prereg_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

Observe that
 course information is missing CS-347
 prereq information is missing CS-315

Left Outer Join

course natural left outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190 CS-315	Game Design Robotics	Comp. Sci. Comp. Sci.	- 8	CS-101 null

Right Outer Join

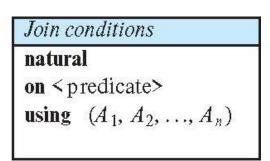
course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	515	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

In relational algebra: course ⋈ prereq

Full Outer Join

course natural full outer join prereq


course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Joined Types and Conditions

- Join operations take two relations and return as a result another relation.
- These additional operations are typically used as subquery expressions in the from clause
- Join condition defines which tuples in the two relations match.
- Join type defines how tuples in each relation that do not match any tuple in the other relation (based on the join condition) are treated.

Join types
inner join
left outer join
right outer join
full outer join

Joined Relations – Examples

course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

course full outer join prereq using (course_id)

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Joined Relations – Examples

course inner join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
	Genetics Game Design	Biology Comp. Sci.	333	BIO-101 CS-101	BIO-301 CS-190

- What is the difference between the above, and a natural join?
- course left outer join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
	선물에 가게 되어 보다 수 있는데 이 사람들이 되었다.	Biology	15	BIO-101	BIO-301
CS-190	Game Design	Comp. Sci.	4	CS-101	CS-190
CS-315	Robotics	Comp. Sci.	3	null	null

Joined Relations – Examples

course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

course full outer join prereq using (course_id)

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Views

- In some cases, it is not desirable for all users to see the entire logical model (that is, all and complete actual relations stored in the database.)
- Consider a person who needs to know an instructor's name and department, but not the salary. This person should see a relation, described in SQL, as:

select *ID*, *name*, *dept_name* **from** *instructor*

- A view provides a mechanism to hide certain data from the view of certain users.
- Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

View Definition

A view is defined using the create view statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view name is represented by *v*.

- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the same as creating a new relation by evaluating the query expression
 - Rather, a view definition causes the saving of an expression; the expression is substituted into queries using the view.

View Definition and Use

A view of instructors without their salar

```
create view faculty as
select ID, name, dept_name
from instructor
```

Find all instructors in the Biology department

```
select name
from faculty
where dept_name = 'Biology'
```

Create a view of department salary totals

```
create view departments_total_salary(dept_name, total_salary) as select dept_name, sum (salary) from instructor group by dept_name;
```


Views Defined Using Other Views

- create view physics_fall_2017 as
 select course.course_id, sec_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = 'Physics'
 and section.semester = 'Fall'
 and section.year = '2017';
- create view physics_fall_2017_watson as select course_id, room_number from physics_fall_2017 where building= 'Watson';

View Expansion

Expand the view :

```
create view physics_fall_2017_watson as select course_id, room_number from physics_fall_2017 where building= 'Watson'
```

To:

```
create view physics_fall_2017_watson as
    select course_id, room_number
    from (select course.course_id, building, room_number
        from course, section
        where course.course_id = section.course_id
            and course.dept_name = 'Physics'
            and section.semester = 'Fall'
            and section.year = '2017')
        where building= 'Watson';
```


Materialized Views

- Certain database systems allow view relations to be physically stored.
 - Physical copy created when the view is defined.
 - Such views are called Materialized views:
- If relations used in the query are updated, the materialized view result becomes out of date
 - Need to maintain the view, by updating the view whenever the underlying relations are updated.

Update of a View

Add a new tuple to faculty view which we defined earlier

insert into faculty

values ('30765', 'Green', 'Music');

- This insertion must be represented by the insertion into the instructor relation
 - Must have a value for salary.
- Two approaches
 - Reject the insert
 - Insert the tuple

('30765', 'Green', 'Music', null)

into the *instructor* relation

Some Updates Cannot be Translated Uniquely

- create view instructor_info as
 select ID, name, building
 from instructor, department
 where instructor.dept_name = department.dept_name;
- insert into instructor_infovalues ('69987', 'White', 'Taylor');
- Issues
 - Which department, if multiple departments in Taylor?
 - What if no department is in Taylor?

And Some Not at All

- create view history_instructors as select * from instructor where dept_name= 'History';
- What happens if we insert ('25566', 'Brown', 'Biology', 100000) into history_instructors?

View Updates in SQL

- Most SQL implementations allow updates only on simple views
 - The from clause has only one database relation.
 - The select clause contains only attribute names of the relation and does not have any expressions, aggregates, or distinct specifications.
 - Any attribute not listed in the select clause can be set to null
 - The query does not have a group by or having clause.

Transactions

- A transaction consists of a sequence of query and/or update statements and is a "unit" of work
- The SQL standard specifies that a transaction begins implicitly when an SQL statement is executed.
- The transaction must end with one of the following statements:
 - Commit work. The updates performed by the transaction become permanent in the database.
 - Rollback work. All the updates performed by the SQL statements in the transaction are undone.
- Atomic transaction
 - either fully executed or rolled back as if it never occurred
- Isolation from concurrent transactions

Integrity Constraints

- Integrity constraints guard against accidental damage to the database, by ensuring that authorized changes to the database do not result in a loss of data consistency.
 - A checking account must have a balance greater than \$10,000.00
 - A salary of a bank employee must be at least \$10.00 an hour
 - A customer must have a (non-null) phone number

Constraints on a Single Relation

- not null
- primary key
- unique
- **check** (P), where P is a predicate

Not Null Constraints

not null

 Declare name and budget to be not null name varchar(20) not null budget numeric(12,2) not null

Unique Constraints

- unique $(A_1, A_2, ..., A_m)$
 - The unique specification states that the attributes $A_1, A_2, ..., A_m$ form a candidate key.
 - Candidate keys are permitted to be null (in contrast to primary keys).

The check clause

- The check (P) clause specifies a predicate P that must be satisfied by every tuple in specific relation.
- Example: ensure that a semester is one of Fall, Winter, Spring, or Summer

```
create table section
(course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course_id, sec_id, semester, year),
check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))
```


Referential Integrity

- Ensures that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation.
 - Example: If "Biology" is a department name appearing in one of the tuples of the *instructor* relation, then there exists a tuple in the *department* relation for "Biology".
- Let A be a set of attributes. Let R and S be two relations that contain attributes A and where A is the primary key of S. A is said to be a foreign key of R if for any values of A appearing in R these values also appear in S.

Referential Integrity (Cont.)

 Foreign keys can be specified as part of the SQL create table statement

foreign key (dept_name) **references** department

- By default, a foreign key references the primary-key attributes of the referenced table.
- SQL allows a list of attributes of the referenced relation to be specified explicitly.

foreign key (dept_name) **references** department (dept_name)

Cascading Actions in Referential Integrity

- When a referential-integrity constraint is violated, the normal procedure is to reject the action that caused the violation.
- An alternative, in case of deletion or update is to cascade

- Instead of cascade we can use :
 - set null,
 - set default

Complex Check Conditions

 The predicate in the check clause can be an arbitrary predicate that can include a subquery.

check (time_slot_id in (select time_slot_id from time_slot))

The check condition states that the time_slot_id in each tuple in the section relation is actually the identifier of a time slot in the time_slot relation.

 The condition has to be checked not only when a tuple is inserted or modified in section, but also when the relation time_slot changes

Assertions

- An assertion is a predicate expressing a condition that we wish the database always to satisfy.
- The following constraints, can be expressed using assertions:
- For each tuple in the student relation, the value of the attribute tot_cred must equal the sum of credits of courses that the student has completed successfully.
- An instructor cannot teach in two different classrooms in a semester in the same time slot
- An assertion in SQL takes the form:

create assertion <assertion-name> check (<predicate>);

Triggers

Triggers

- A trigger is a statement that is executed automatically by the system as a side effect of a modification to the database.
- To design a trigger mechanism, we must specify:
 - the conditions under which the trigger is to be executed.
 - the actions to be taken when the trigger executes.
- Triggers introduced to SQL standard in SQL 1999, but supported even earlier using non-standard syntax by most databases.
 - Syntax illustrated here may not work exactly on your database system; check the system manuals

Trigger to Maintain credits_earned value

create trigger credits_earned after update of takes on (grade) referencing new row as nrow referencing old row as orow for each row when nrow.grade <> 'F' and nrow.grade is not null and (orow.grade = 'F' or orow.grade is null) begin atomic update student **set** tot cred= tot cred+ (**select** credits from course **where** course.course_id= nrow.course_id) **where** *student.id* = *nrow.id*; end:

Statement Level Triggers

- Instead of executing a separate action for each affected row, a single action can be executed for all rows affected by a transaction
 - Use for each statement instead of for each row
 - Use referencing old table or referencing new table to refer to temporary tables (called transition tables) containing the affected rows
 - Can be more efficient when dealing with SQL statements that update a large number of rows

Large-Object Types

- Large objects (photos, videos, CAD files, etc.) are stored as a large object.
 - blob: binary large object the object is a large collection of uninterpreted binary data (whose interpretation is left to an application outside of the database system)
 - clob: character large object the object is a large collection of character data
- When a query returns a large object, a pointer is returned rather than the large object itself.

User-Defined Types

create type construct in SQL creates a user-defined type

create type Dollars as numeric (12,2) final

Example:

create table department (dept_name varchar (20), building varchar (15), budget Dollars);

Domains

 create domain construct in SQL-92 creates user-defined domain types

create domain person_name char(20) not null

- Types and domains are similar. Domains can have constraints, such as **not null**, specified on them.
- Example:

```
create domain degree_level varchar(10)
  constraint degree_level_test
  check (value in ('Bachelors', 'Masters', 'Doctorate'));
```


Index Creation

- Many queries reference only a small proportion of tuples in a table.
- It is inefficient for the system to read every tuple to find a tuple with a particular value
- An index on an attribute of a relation is a data structure that allows the database system to find those tuples in the relation that have a specified value for that attribute efficiently, without scanning through all the tuples of the relation.
- We create an index with the create index command

create index <name> on <relation-name> (attribute);

Index Creation Example

- create table student (ID varchar (5), name varchar (20) not null, dept_name varchar (20), tot_cred numeric (3,0) default 0, primary key (ID))
- create index studentID_index on student(ID)
- The query:

```
select *
from student
where ID = '12345'
```

can be executed by using the index to find the required tuple, without looking at all tuples of *student*

Authorization

- We may assign a user several forms of authorization on parts of the database.
 - Read allows reading, but not modification of data.
 - Insert allows insertion of new data, but not modification of existing data.
 - Update allows modification, but not deletion of data.
 - Delete allows deletion of data.
- Each of these types of authorizations is called a privilege. We may authorize the user all, none, or a combination of these types of privileges on specified parts of a database, such as a relation or a view.

Authorization (Cont.)

- Forms of authorization to modify the database schema:
 - Index allows creation and deletion of indices.
 - Resources allows creation of new relations.
 - Alteration allows addition or deletion of attributes in a relation.
 - Drop allows deletion of relations.

Authorization Specification in SQL

- The grant statement is used to confer authorization
 grant <privilege list> on <relation or view > to <user list>
- <user list> is:
 - a user-id
 - public, which allows all valid users the privilege granted
- Example:
 - grant select on department to Amit, Satoshi
- Granting a privilege on a view does not imply granting any privileges on the underlying relations.
- The grantor of the privilege must already hold the privilege on the specified item (or be the database administrator).

Privileges in SQL

- select: allows read access to relation, or the ability to query using the view
 - Example: grant users U_1 , U_2 , and U_3 **select** authorization on the *instructor* relation:

grant select on instructor to U_1 , U_2 , U_3

- insert: the ability to insert tuples
- update: the ability to update using the SQL update statement
- delete: the ability to delete tuples.
- all privileges: used as a short form for all the allowable privileges

Revoking Authorization in SQL

- The revoke statement is used to revoke authorization.
 revoke <privilege list> on <relation or view> from <user list>
- Example:
 - revoke select on student from U_1 , U_2 , U_3
- <privilege-list> may be all to revoke all privileges.
- If <user-list> includes public, all users lose the privilege except those granted it explicitly.
- If the same privilege was granted twice to the same user by different grantees, the user may retain the privilege after the revocation.
- All privileges that depend on the privilege being revoked are also revoked.

End of Chapter 5