Neural Machine Translation

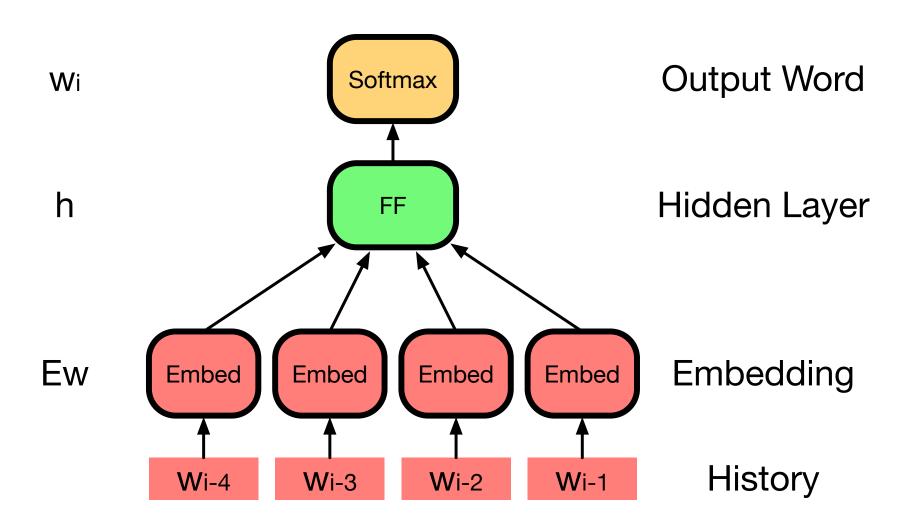
Philipp Koehn

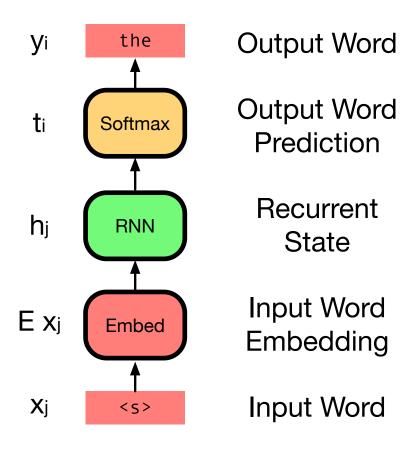
1 October 2024

Language Models

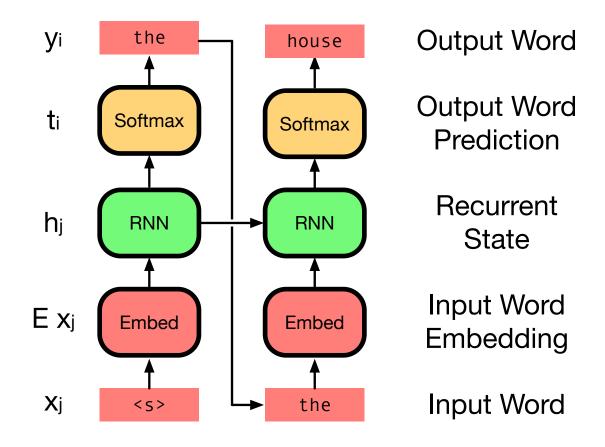
- Modeling variants
 - feed-forward neural network
 - recurrent neural network
 - long short term memory neural network
- May include input context

Feed Forward Neural Language Model

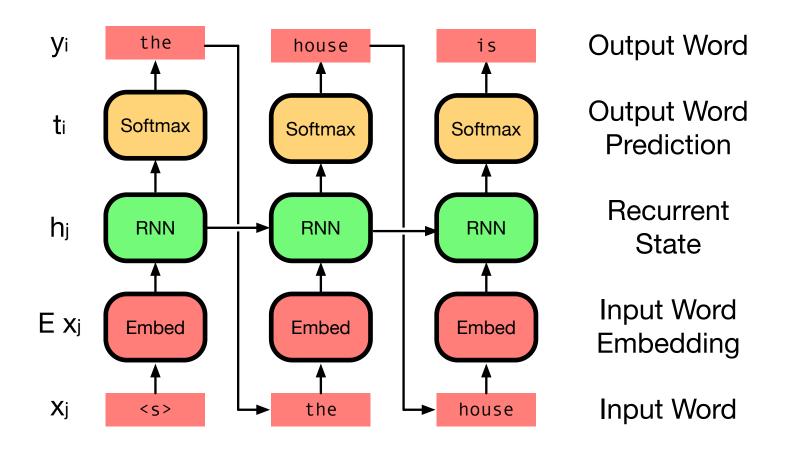




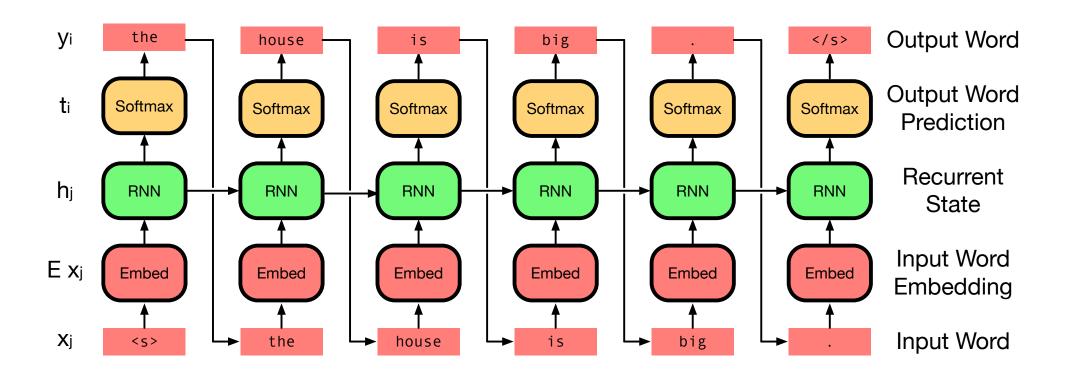
Predict the first word of a sentence



Predict the second word of a sentence Re-use hidden state from first word prediction



Predict the third word of a sentence ... and so on

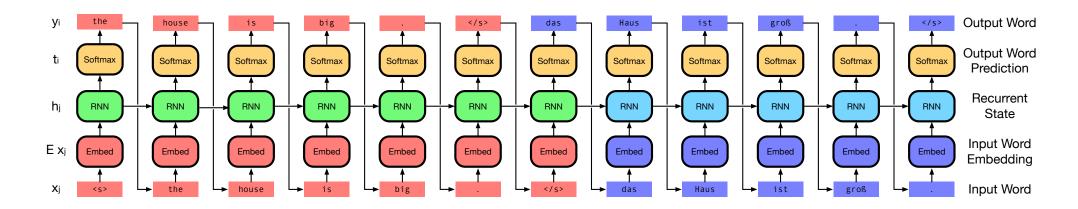


Recurrent Neural Translation Model

• We predicted the words of a sentence

• Why not also predict their translations?

Encoder-Decoder Model



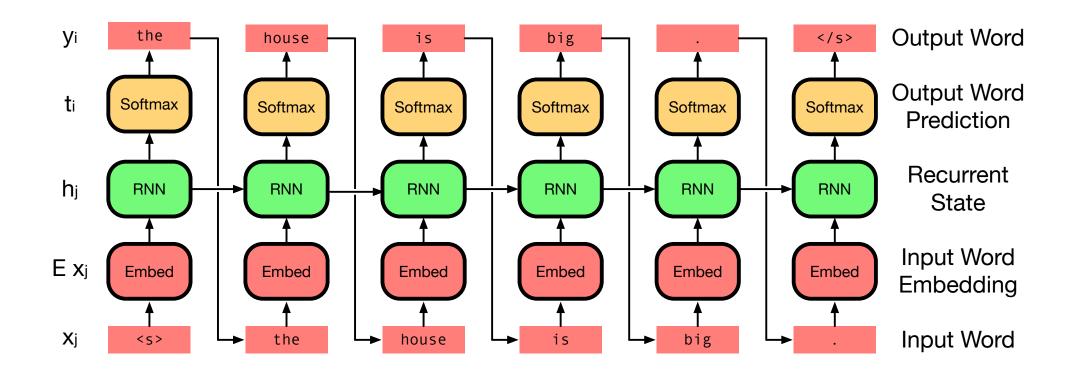
- Obviously madness
- Proposed by Google (Sutskever et al. 2014)

What is Missing?

- Alignment of input words to output words
- ⇒ Solution: attention mechanism

neural translation model with attention

Input Encoding



• Inspiration: recurrent neural network language model on the input side

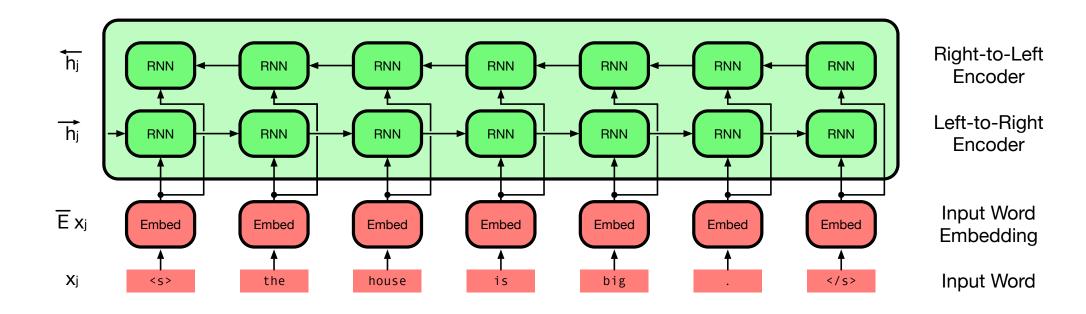
Hidden Language Model States

This gives us the hidden states

These encode left context for each word

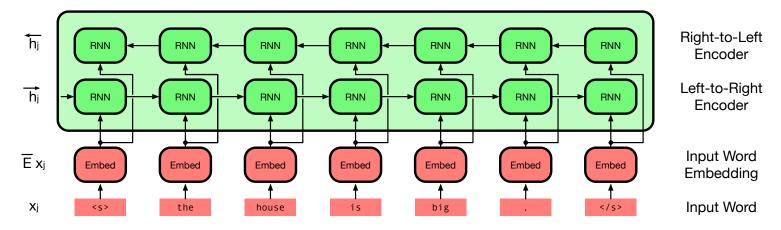
• Same process in reverse: right context for each word

Input Encoder



- Input encoder: concatenate bidrectional RNN states
- Each word representation includes full left and right sentence context

Encoder: Math

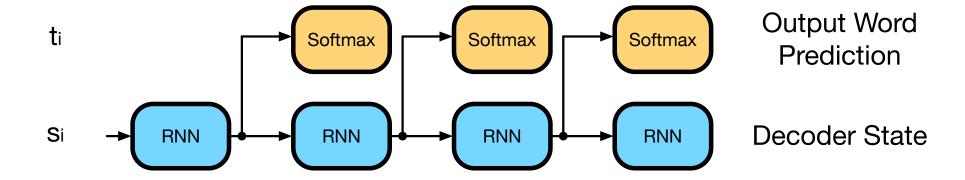


- Input is sequence of words x_j , mapped into embedding space \bar{E} x_j
- Bidirectional recurrent neural networks

• Various choices for the function f(): feed-forward layer, GRU, LSTM, ...

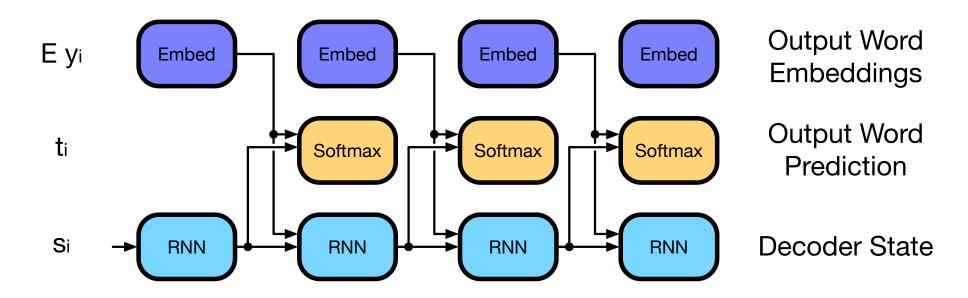
Decoder

• We want to have a recurrent neural network predicting output words



Decoder

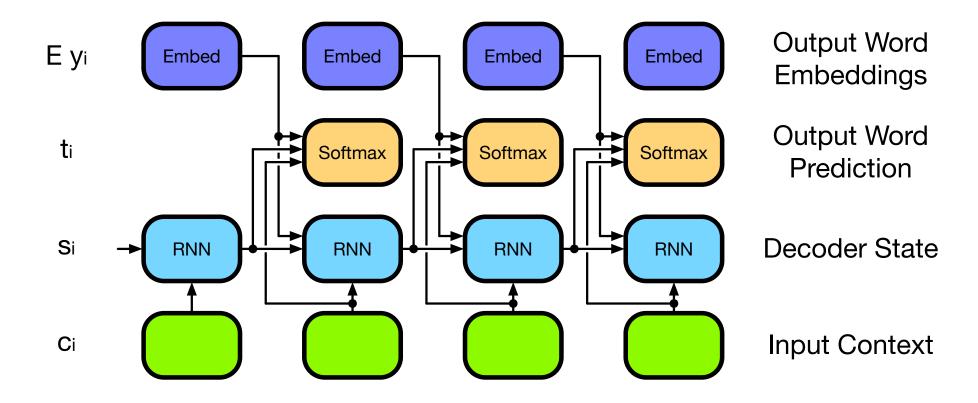
We want to have a recurrent neural network predicting output words



• We feed decisions on output words back into the decoder state

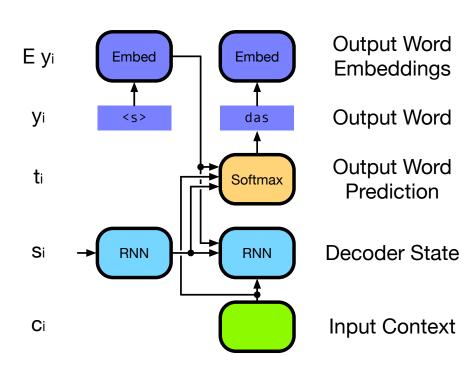
Decoder

We want to have a recurrent neural network predicting output words



- We feed decisions on output words back into the decoder state
- Decoder state is also informed by the input context

More Detail



• Decoder is also recurrent neural network over sequence of hidden states s_i

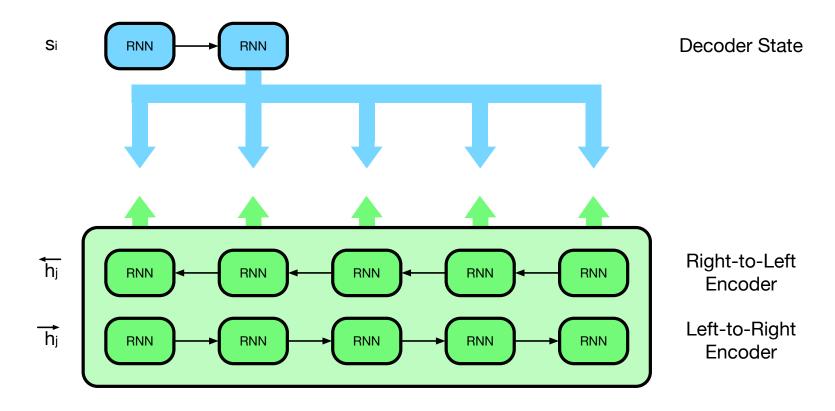
$$s_i = f(s_{i-1}, Ey_{-1}, c_i)$$

- Again, various choices for the function f(): feed-forward layer, GRU, LSTM, ...
- Output word y_i is selected by computing a vector t_i (same size as vocabulary)

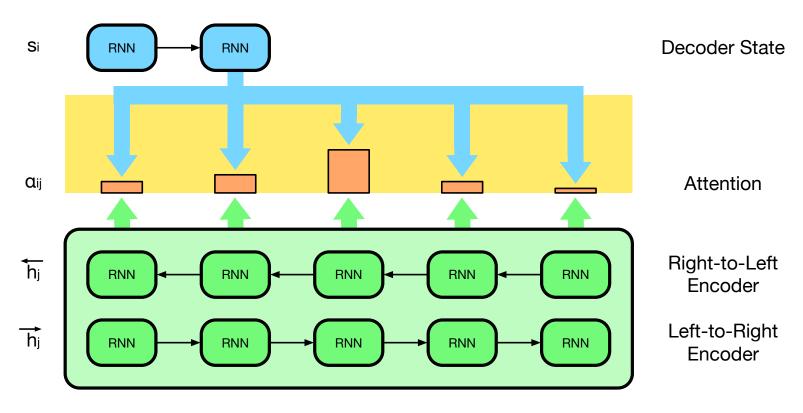
$$t_i = W(Us_{i-1} + VEy_{i-1} + Cc_i)$$

then finding the highest value in vector t_i

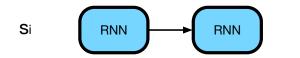
- If we normalize t_i , we can view it as a probability distribution over words
- Ey_i is the embedding of the output word y_i



- Given what we have generated so far (decoder hidden state)
- ... which words in the input should we pay attention to (encoder states)?

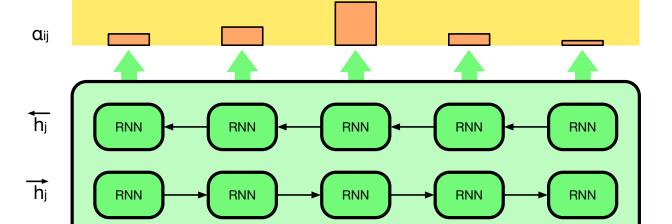


- Given: the previous hidden state of the decoder s_{i-1} the representation of input words $h_j=(\overleftarrow{h_j}, \overleftarrow{h_j})$
- Predict an alignment probability $a(s_{i-1}, h_j)$ to each input word j (modeled with with a feed-forward neural network layer)



Decoder State

Input Context



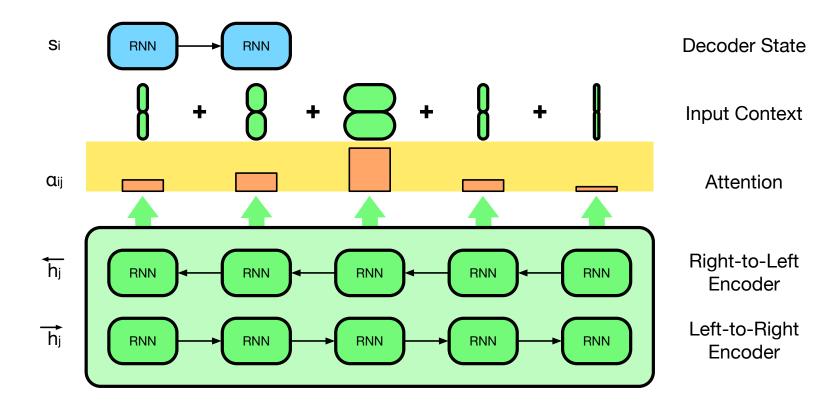
Attention

Right-to-Left Encoder

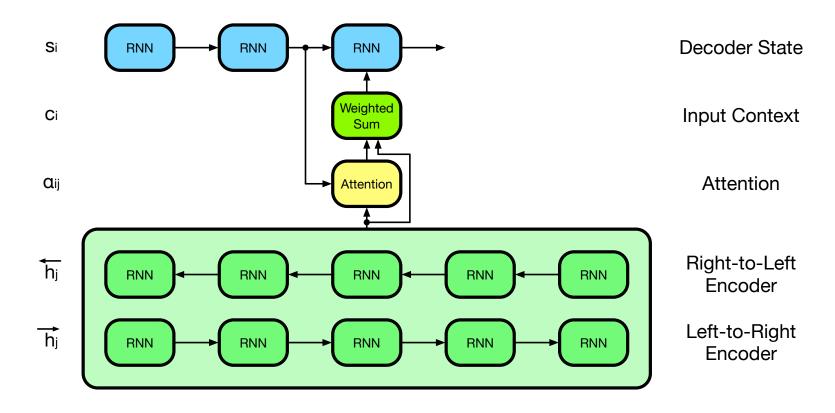
Left-to-Right Encoder

• Normalize attention (softmax)

$$\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))}$$



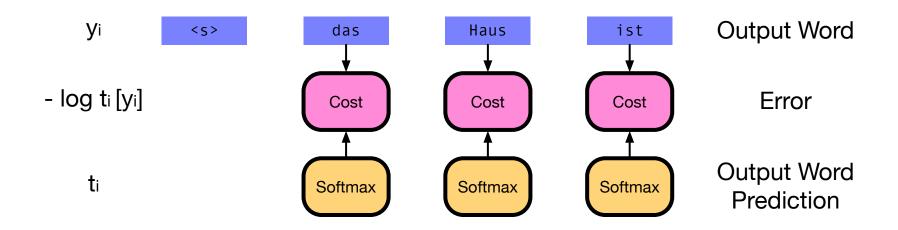
• Relevant input context: weigh input words according to attention: $c_i = \sum_j \alpha_{ij} h_j$



• Use context to predict next hidden state and output word

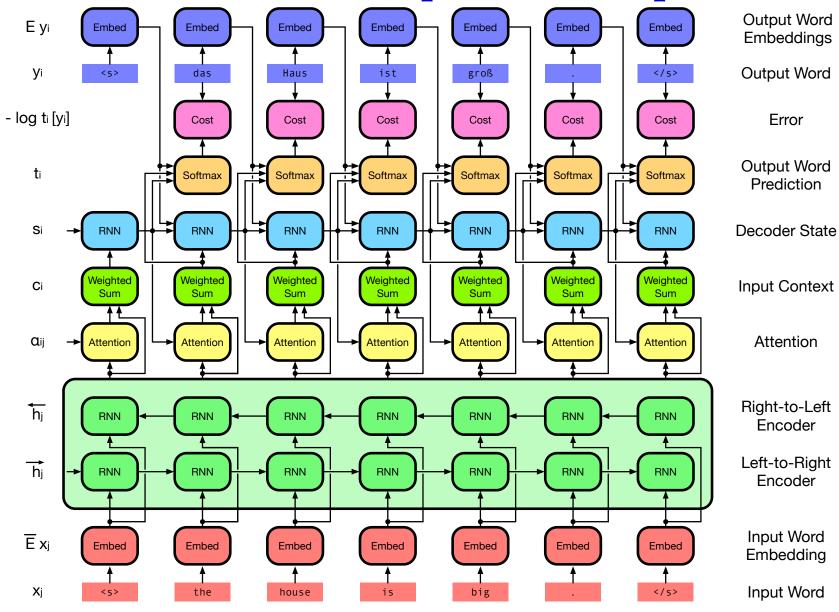
training

Comparing Prediction to Correct Word



- Current model gives some probability $t_i[y_i]$ to correct word y_i
- We turn this into an error by computing cross-entropy: $-\log t_i[y_i]$

Unrolled Computation Graph

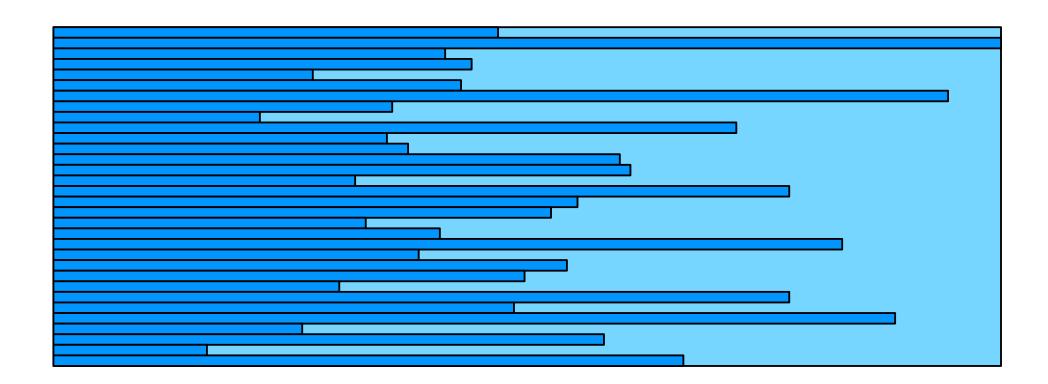


Batching

- Already large degree of parallelism
 - most computations on vectors, matrices
 - efficient implementations for CPU and GPU
- Further parallelism by batching
 - processing several sentence pairs at once
 - scalar operation → vector operation
 - vector operation \rightarrow matrix operation
 - matrix operation → 3d tensor operation
- Typical batch sizes 50–100 sentence pairs

Batches

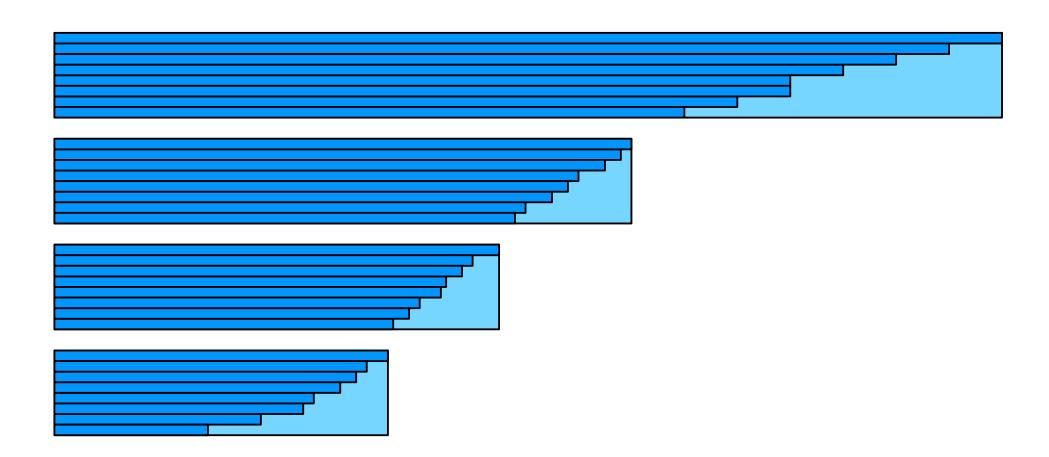
- Sentences have different length
- When batching, fill up unneeded cells in tensors



 \Rightarrow A lot of wasted computations

Mini-Batches

• Sort sentences by length, break up into mini-batches



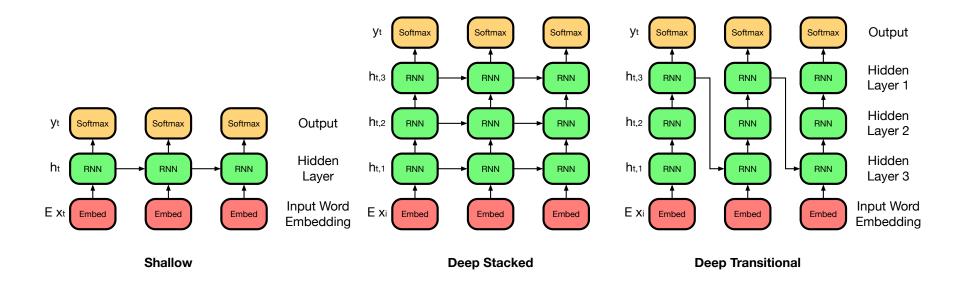
• Example: Maxi-batch 1600 sentence pairs, mini-batch 80 sentence pairs

Overall Organization of Training

- Shuffle corpus
- Break into maxi-batches
- Break up each maxi-batch into mini-batches
- Process mini-batch, update parameters
- Once done, repeat
- Typically 5-15 epochs needed (passes through entire training corpus)

Deeper Models

- Encoder and decoder are recurrent neural networks
- We can add additional layers for each step
- Recall shallow and deep language models



• Adding residual connections (short-cuts through deep layers) help