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25Attention

• Machine translation is a structured prediction task

– output is not a single label
– output structure needs to be built, word by word

• Relevant information for each word prediction varies

• Human translators pay attention to different parts of the input sentence when
translating

⇒ Attention mechanism
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26Attention
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• Given what we have generated so far (decoder hidden state)

• ... which words in the input should we pay attention to (encoder states)?
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27Attention

RNN RNN RNN RNN RNN
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• Given: – the previous hidden state of the decoder si−1
– the representation of input words hj = (

←−
hj,
−→
hj)

• Predict an alignment probability a(si−1, hj) to each input word j
(modeled with with a feed-forward neural network layer)
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28Attention
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Input Context

• Normalize attention (softmax)

αij =
exp(a(si−1, hj))∑
k exp(a(si−1, hk))
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29Attention
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Input Context+ + + +

• Relevant input context: weigh input words according to attention: ci =
∑

j αijhj
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30Attention
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• Use context to predict next hidden state and output word
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31Computing Attention

• Attention mechanism in neural translation model (Bahdanau et al., 2015)

– previous hidden state si−1
– input word embedding hj
– trainable parameters b, Wa, Ua, va

a(si−1, hj) = vTa tanh(Wasi−1 + Uahj + b)

• Other ways to compute attention (Luong et al., 2015)

– Dot product: a(si−1, hj) = sTi−1hj

– Scaled dot product: a(si−1, hj) = 1√
|hj|

sTi−1hj

– General: a(si−1, hj) = sTi−1Wahj

– Local: a(si−1) =Wasi−1
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32General View of Dot-Product Attention

• Three elements

Query : decoder state
Key : encoder state
Value : encoder state

• Intuition

– given a query (the decoder state)
– we check how well it matches keys in the database (the encoder states)
– and then use the matching score to scale the retrieved value (also the encoder

state)

• Computation
Attention(Q,K, V ) = softmax(

QKT

√
dk

)V
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33General View of Dot-Product Attention

Attention(Q,K, V )
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Query

Key Key Key Key Key

Value Value Value Value Value

• Query: encoder state, Key and Value: decoder state

Attention(S,H,H)
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35Self Attention

• Finally, a very different take at attention

• Motivation so far: need for alignment between input words and output words

• Now: refine representation of input words in the encoder

– representation of an input word mostly depends on itself
– but also informed by the surrounding context
– previously: recurrent neural networks (considers left or right context)
– now: attention mechanism

• Self attention:
Which of the surrounding words is most relevant to refine representation?
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36Self Attention

Embed Embed Embed Embed Embed
Input Word 
EmbeddingExj

• Given: input word embeddings

• Task: consider how each should be refined in view of others

• Needed: how much attention to pay to others
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37Self Attention

Attentionαij

Embed Embed Embed Embed Embed
Input Word 
EmbeddingExj

• Computation of attention weights as before

– Key: word embedding (or generally: encoder state for word H)
– Query: word embedding (or generally: encoder state for word H)

• Again, multiple with weight matrices: Q=HWQ and K=HWK

• Attention weights: QKT
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38Self Attention

Attentionαij

Embed Embed Embed Embed Embed
Input Word 
EmbeddingExj

Refined Input Word 
Representation+ + + +

• Full self attention

self-attention(H) = Attention(HWQ, HWK, H)

• Resulting vector uses weighted context words
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39Multi-Head Attention

• Add redundancy

– say, 16 attention weights
– each based on its own parameters WQ

i , WK
i , WV

i

• Formally:

headi = Attention(QWQ
i ,KW

K
i , V W

V
i )

MultiHead(Q,K, V ) = Concat(head1, ...,headh)W
O

• Multi-head attention is a form of ensembling
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40Multi-Head Attention
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41Multi-Head Attention

“Many of the attention heads exhibit behaviour that seems related to the structure
of the sentence.“
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transformer
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43Self Attention: Transformer

• Self-attention in encoder

– refine word representation based on relevant context words
– relevance determined by self attention

• Self-attention in decoder

– refine output word predictions based on relevant previous output words
– relevance determined by self attention

• Also regular attention to encoder states in decoder

• Currently most successful model

(maybe only with self attention in decoder, but regular recurrent decoder)
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44Self Attention Layer

• Given: input word representations hj, packed into a matrix H = (h1, ..., hj)

• Self attention self-attention(H) = MultiHead(H,H,H)

• Shortcut connection
self-attention(hj) + hj

• Layer normalization

ĥj = layer-normalization(self-attention(hj) + hj)

• Feed-forward step with ReLU activation function

relu(Wĥj + b)

• Again, shortcut connection and layer normalization

layer-normalization(relu(Wĥj + b) + ĥj)
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45Encoder
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46Self-Attention in the Decoder

• Same idea as in the encoder

• Output words are initially encoded by word embeddings si = Eyi.

• Self attention is computed over previous output words

– association of a word si is limited to words sk (k ≤ i)
– resulting representation s̃i

self-attention(S̃) = MultiHead(S̃, S̃, S̃)
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47Attention in the Decoder

• Original intuition of attention mechanism: focus on relevant input words

• Computed with dot product S̃HT

• Compute attention between the decoder states S̃ and the final encoder states H

attention(S̃,H) = MultiHead(S̃,H,H)

• Note: attention mechanism formally mirrors self-attention
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48Full Decoder

• Self-attention self-attention(S̃) = MultiHead(S̃, S̃, S̃)

– shortcut connections
– layer normalization

• Attention attention(S̃,H) = softmaxMultiHead(S̃,H,H)

– shortcut connections
– layer normalization
– feed-forward layer

• Multiple stacked layers
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49Decoder
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Decoder computes attention-based representations of the output in several layers,
initialized with the embeddings of the previous output words
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50Multiple Layers

• Stack several transformer layers (say, D = 6)

• Encoder

– Start with input word embedding

h0,j = Exj

– Stacked layers
hd,j = self-attention-layer(hd−1,j)

• Same for decoder
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51Multiple Layers in Encoder and Decoder
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8Learning Rate

• Gradient computation gives direction of change

• Scaled by learning rate

• Weight updates

• Simplest form: fixed value

• Annealing

– start with larger value (big changes at beginning)
– reduce over time (minor adjustments to refine model)

Philipp Koehn Machine Translation: Machine Learning Tricks 8 October 2024



16Ensuring Randomness

• Typical theoretical assumption

independent and identically distributed

training examples

• Approximate this ideal

– avoid undue structure in the training data
– avoid undue structure in initial weight setting

• ML approach: Maximum entropy training

– Fit properties of training data
– Otherwise, model should be as random as possible

(i.e., has maximum entropy)
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17Shuffling the Training Data

• Typical training data in machine translation

– different types of corpora
∗ European Parliament Proceedings
∗ collection of movie subtitles

– temporal structure in each corpus
– similar sentences next too each other (e.g., same story / debate)

• Online updating: last examples matter more

• Convergence criterion: no improvement recently

→ stretch of hard examples following easy examples: prematurely stopped

⇒ randomly shuffle the training data

(maybe each epoch)
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18Weight Initialization

• Initialize weights to random values

• Values are chosen from a uniform distribution

• Ideal weights lead to node values in transition area for activation function
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19For Example: Sigmoid

• Input values in range [−1; 1]

⇒ Output values in range [0.269;0.731]

• Magic formula (n size of the previous layer)

[
− 1√

n
,

1√
n

]

• Magic formula for hidden layers

[
−

√
6√

nj + nj+1
,

√
6√

nj + nj+1

]

– nj is the size of the previous layer
– nj+1 size of next layer
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20Problem: Overconfident Models

• Predictions of the neural machine translation models are surprisingly confident

• Often almost all the probability mass is assigned to a single word
(word prediction probabilities of over 99%)

• Problem for decoding and training

– decoding: sensible alternatives get low scores, bad for beam search
– training: overfitting is more likely

• Solution: label smoothing

• Jargon notice

– in classification tasks, we predict a label
– jargon term for any output
→ here, we smooth the word predictions

Philipp Koehn Machine Translation: Machine Learning Tricks 8 October 2024



21Label Smoothing during Decoding

• Common strategy to combat peaked distributions: smooth them

• Recall

– prediction layer produces numbers for each word
– converted into probabilities using the softmax

p(yi) =
exp si∑
j exp sj

• Softmax calculation can be smoothed with so-called temperature T

p(yi) =
exp si/T∑
j exp sj/T

• Higher temperature→ distribution smoother
(i.e., less probability is given to most likely choice)
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22Label Smoothing during Training

• Root of problem: training

• Training object: assign all probability mass to single correct word

• Label smoothing

– truth gives some probability mass to other words (say, 10% of it)
– uniformly distributed over all words
– relative to unigram word probabilities

(relative counts of each word in the target side of the training data)
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adjusting the learning rate
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24Adjusting the Learning Rate

• Gradient descent training: weight update follows the gradient downhill

• Actual gradients have fairly large values, scale with a learning rate
(low number, e.g., µ = 0.001)

• Change the learning rate over time

– starting with larger updates
– refining weights with smaller updates
– adjust for other reasons

• Learning rate schedule
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25Momentum Term

• Consider case where weight value far from optimum

• Most training examples push the weight value in the same direction

• Small updates take long to accumulate

• Solution: momentum term mt

– accumulate weight updates at each time step t
– some decay rate for sum (e.g., 0.9)
– combine momentum term mt−1 with weight update value ∆wt

mt = 0.9mt−1 + ∆wt

wt = wt−1 − µ mt
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26Adapting Learning Rate per Parameter

• Common strategy: reduce the learning rate µ over time

• Initially parameters are far away from optimum→ change a lot

• Later nuanced refinements needed→ change little

• Now: different learning rate for each parameter
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27Adagrad

• Different parameters at different stages of training
→ different learning rate for each parameter

• Adagrad

– record gradients for each parameter
– accumulate their square values over time
– use this sum to reduce learning rate

• Update formula

– gradient gt = dEt
dw of error E with respect to weight w

– divide the learning rate µ by accumulated sum

∆wt =
µ√∑t
τ=1 g

2
τ

gt

• Big changes in the parameter value (corresponding to big gradients gt)
→ reduction of the learning rate of the weight parameter
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28Adam: Elements

• Combine idea of momentum term and reduce parameter update by accumulated
change

• Momentum term idea (e.g., β1 = 0.9)

mt = β1mt−1 + (1− β1)gt

• Accumulated gradients (decay with β2 = 0.999)

vt = β2vt−1 + (1− β2)g2t
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29Adam: Technical Correction

• Initially, values for mt and vt are close to initial value of 0

• Adjustment
m̂t =

mt

1− βt1
, v̂t =

vt
1− βt2

• With t→∞ this correction goes away

limt→∞
1

1− βt → 1
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30Adam

• Given

– learning rate µ
– momentum m̂t

– accumulated change v̂t

• Weight update per Adam (e.g., ε = 10−8)

∆wt =
µ√
v̂t + ε

m̂t
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31Batched Gradient Updates

• Accumulate all weight updates for all the training example→ update

(converges slowly)

• Process each training example→ update (stochastic gradient descent)

(quicker convergence, but last training disproportionately higher impact)

• Process data in batches

– compute all their gradients for individual word predictions errors
– use sum over each batch to update parameters
→ better parallelization on GPUs

• Process data on multiple compute cores

– batch processing may take different amount of time
– asynchronous training: apply updates when they arrive
– mismatch between original weights and updates may not matter much
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avoiding local optima
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33Avoiding Local Optima

• One of hardest problem for designing neural network architectures and
optimization methods

• Ensure that model converges to at least to a set of parameter values that give
results close to this optimum on unseen test data.

• There is no real solution to this problem.

• It requires experimentation and analysis that is more craft than science.

• Still, this section presents a number of methods that generally help avoiding
getting stuck in local optima.
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34Overfitting and Underfitting

• Neural machine translation models

– 100s of millions of parameters
– 100s of millions of training examples (individual word predictions)

• No hard rules for relationship between these two numbers

• Too many parameters and too few training examples→ overfitting

• Too few parameters and many training examples→ underfitting

Philipp Koehn Machine Translation: Machine Learning Tricks 8 October 2024



35Regularization

• Motivation: prefer as few parameters as possible

• Strategy: set un-needed paramters a value of 0

• Method

– adjust training objective
– add cost for any non-zero parameter
– typically done with L2 norm

• Practical impact

– derivative of L2 norm is value of parameter
– if not signal from training: reduce value of parameter
– alsp called weight decay

• Not common in deep learning, but other methods understood as regularization
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36Curriculum Learning

• Human learning

– learn simple concepts first
– learn more complex material later

• Early epochs: only easy training examples

– only short sentences
– create artificial data by extracting smaller segments

(similar to phrase pair extraction in statistical machine translation)
– Later epochs: all training data

• Not easy to callibrate
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37Dropout

• Training may get stuck in local optima

– some properties of task have been learned
– discovery of other properties would take it too far out of its comfort zone.

• Machine translation example

– model learned the language model aspects
– but cannot figure out role of input sentence

• Drop out: for each batch, eliminate some nodes
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38Dropout

• Dropout

– For each batch, different random set of nodes is removed
– Their values are set to 0 and their weights are not updated
– 10%, 20% or even 50% of all the nodes

• Why does this work?

– robustness: redundant nodes play similar nodes
– ensemble learning: different subnetworks are different models

Philipp Koehn Machine Translation: Machine Learning Tricks 8 October 2024



39Gradient Clipping

• Exploding gradients: gradients become too large during backward pass

⇒ Limit total value of gradients for a layer to threshold (τ )

• Use of L2 norm of gradient values g

L2(g) =

√∑

j

g2j

• Adjust each gradient value gi for each element i in the vector

g′i = gi ×
τ

max(τ, L2(g))
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40Layer Normalization

• During inference, average node values may become too large or too small

• Has also impact on training (gradients are multiplied with node values)

⇒ Normalize node values

• During training, learn bias layer
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41Layer Normalization: Math

• Feed-forward layer hl, weights W , computed sum sl, activation function

sl = W hl−1

hl = sigmoid(hl)

• Compute mean µl and variance σl of sum vector sl

µl =
1

H

H∑

i−1
sli

σl =

√√√√ 1

H

H∑

i−1
(sli − µl)2
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42Layer Normalization: Math

• Normalize sl

ŝl =
1

σl
(sl − µl)

• Learnable bias vectors g and b

ŝl =
g

σl
(sl − µl) + b
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43Shortcuts and Highways

• Deep learning: many layers of processing

⇒ Error propagation has to travel farther

• All parameters in processing change have to be adjusted

• Instead of always passing through all layers, add connections from first to last

• Jargon alert

– shortcuts
– residual connections
– skip connections
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44Shortcuts

• Feed-forward layer
y = f(x)

• Pass through input x
y = f(x) + x

• Note: gradient is
y′ = f ′(x) + 1

• Constant 1→ gradient is passed through unchanged
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45Highways

• Regulate how much information from f(x) and x should impact the output y

• Gate t(x) (typically computed by a feed-forward layer)

y = t(x) f(x) + (1− t(x)) x
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46Shortcuts and Highways
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