Alternative Architectures

Philipp Koehn

10 October 2024

attention

- Machine translation is a structured prediction task
 - output is not a single label
 - output structure needs to be built, word by word
- Relevant information for each word prediction varies
- Human translators pay attention to different parts of the input sentence when translating
- \Rightarrow Attention mechanism

- Given what we have generated so far (decoder hidden state)
- ... which words in the input should we pay attention to (encoder states)?

- Given: the previous hidden state of the decoder s_{i-1} – the representation of input words $h_j = (\overleftarrow{h_j}, \overrightarrow{h_j})$
- Predict an alignment probability $a(s_{i-1}, h_j)$ to each input word j (modeled with with a feed-forward neural network layer)

• Normalize attention (softmax)

$$\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))}$$

• Relevant input context: weigh input words according to attention: $c_i = \sum_j \alpha_{ij} h_j$

• Use context to predict next hidden state and output word

Computing Attention

- Attention mechanism in neural translation model (Bahdanau et al., 2015)
 - previous hidden state s_{i-1}
 - input word embedding h_j
 - trainable parameters b, W_a , U_a , v_a

 $a(s_{i-1}, h_j) = v_a^T \tanh(W_a s_{i-1} + U_a h_j + b)$

- Other ways to compute attention (Luong et al., 2015)
 - Dot product: $a(s_{i-1}, h_j) = s_{i-1}^T h_j$
 - Scaled dot product: $a(s_{i-1}, h_j) = \frac{1}{\sqrt{|h_j|}} s_{i-1}^T h_j$
 - General: $a(s_{i-1}, h_j) = s_{i-1}^T W_a h_j$
 - Local: $a(s_{i-1}) = W_a s_{i-1}$

General View of Dot-Product Attention

• Three elements

Query : decoder state Key : encoder state Value : encoder state

- Intuition
 - given a query (the decoder state)
 - we check how well it matches keys in the database (the encoder states)
 - and then use the matching score to scale the retrieved value (also the encoder state)
- Computation

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

General View of Dot-Product Attention

$\operatorname{Attention}(Q, K, V)$

• Query: encoder state, Key and Value: decoder state

 $\operatorname{Attention}(S, H, H)$

- Finally, a very different take at attention
- Motivation so far: need for alignment between input words and output words
- Now: refine representation of input words in the encoder
 - representation of an input word mostly depends on itself
 - but also informed by the surrounding context
 - previously: recurrent neural networks (considers left or right context)
 - now: attention mechanism
- Self attention:

Which of the surrounding words is most relevant to refine representation?

- Given: input word embeddings
- Task: consider how each should be refined in view of others
- Needed: how much attention to pay to others

- Computation of attention weights as before
 - Key: word embedding (or generally: encoder state for word *H*)
 - Query: word embedding (or generally: encoder state for word *H*)
- Again, multiple with weight matrices: $Q=HW^Q$ and $K=HW^K$
- Attention weights: QK^T

• Full self attention

 $\operatorname{self-attention}(H) = \operatorname{Attention}(HW^Q, HW^K, H)$

• Resulting vector uses weighted context words

Multi-Head Attention

- Add redundancy
 - say, 16 attention weights
 - each based on its own parameters W_i^Q , W_i^K , W_i^V
- Formally:

 $\begin{aligned} \text{head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \\ \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O \end{aligned}$

• Multi-head attention is a form of ensembling

Multi-Head Attention

Multi-Head Attention

"Many of the attention heads exhibit behaviour that seems related to the structure of the sentence."

transformer

Self Attention: Transformer

- Self-attention in encoder
 - refine word representation based on relevant context words
 - relevance determined by self attention
- Self-attention in decoder
 - refine output word predictions based on relevant previous output words
 - relevance determined by self attention
- Also regular attention to encoder states in decoder
- Currently most successful model (maybe only with self attention in decoder, but regular recurrent decoder)

Self Attention Layer

- Given: input word representations h_j , packed into a matrix $H = (h_1, ..., h_j)$
- Self attention self-attention(H) = MultiHead(H, H, H)
- Shortcut connection

self-attention $(h_j) + h_j$

• Layer normalization

 $\hat{h}_j = \text{layer-normalization}(\text{self-attention}(h_j) + h_j)$

• Feed-forward step with ReLU activation function

 $\operatorname{relu}(W\hat{h}_j+b)$

• Again, shortcut connection and layer normalization

layer-normalization(relu($W\hat{h}_j + b$) + \hat{h}_j)

Encoder

Sequence of self-attention layers

Self-Attention in the Decoder

- Same idea as in the encoder
- Output words are initially encoded by word embeddings $s_i = Ey_i$.
- Self attention is computed over previous output words
 - association of a word s_i is limited to words s_k ($k \leq i$)
 - resulting representation $\tilde{s_i}$

 $\textbf{self-attention}(\tilde{S}) = \textbf{MultiHead}(\tilde{S}, \tilde{S}, \tilde{S})$

Attention in the Decoder

- Original intuition of attention mechanism: focus on relevant input words
- Computed with dot product $\tilde{S}H^T$
- Compute attention between the decoder states \tilde{S} and the final encoder states Hattention $(\tilde{S}, H) = MultiHead(\tilde{S}, H, H)$
- Note: attention mechanism formally mirrors self-attention

Full Decoder

• Self-attention

self-attention $(\tilde{S}) =$ MultiHead $(\tilde{S}, \tilde{S}, \tilde{S})$

- shortcut connections
- layer normalization
- Attention $attention(\tilde{S}, H) = softmaxMultiHead(\tilde{S}, H, H)$
 - shortcut connections
 - layer normalization
 - feed-forward layer
- Multiple stacked layers

Decoder

Decoder computes attention-based representations of the output in several layers, initialized with the embeddings of the previous output words

Multiple Layers

- Stack several transformer layers (say, D = 6)
- Encoder
 - Start with input word embedding

$$h_{0,j} = Ex_j$$

– Stacked layers

 $h_{d,j} =$ self-attention-layer $(h_{d-1,j})$

• Same for decoder

Learning Rate

- Gradient computation gives direction of change
- Scaled by learning rate
- Weight updates
- Simplest form: fixed value
- Annealing
 - start with larger value (big changes at beginning)
 - reduce over time (minor adjustments to refine model)

Ensuring Randomness

• Typical theoretical assumption

independent and identically distributed

training examples

- Approximate this ideal
 - avoid undue structure in the training data
 - avoid undue structure in initial weight setting
- ML approach: Maximum entropy training
 - Fit properties of training data
 - Otherwise, model should be as random as possible (i.e., has maximum entropy)

Shuffling the Training Data

- Typical training data in machine translation
 - different types of corpora
 - * European Parliament Proceedings
 - * collection of movie subtitles
 - temporal structure in each corpus
 - similar sentences next too each other (e.g., same story / debate)
- Online updating: last examples matter more
- Convergence criterion: no improvement recently
 → stretch of hard examples following easy examples: prematurely stopped
- ⇒ randomly shuffle the training data (maybe each epoch)

Weight Initialization

- Initialize weights to random values
- Values are chosen from a uniform distribution
- Ideal weights lead to node values in transition area for activation function

For Example: Sigmoid

- \Rightarrow Output values in range [0.269;0.731]
 - Magic formula (*n* size of the previous layer)

$$\big[-\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}}\big]\blacksquare$$

• Magic formula for hidden layers

$$\left[-\frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}\right]$$

- n_j is the size of the previous layer
- n_{j+1} size of next layer

Problem: Overconfident Models

- Predictions of the neural machine translation models are surprisingly confident
- Often almost all the probability mass is assigned to a single word (word prediction probabilities of over 99%)
- Problem for decoding and training
 - decoding: sensible alternatives get low scores, bad for beam search
 - training: overfitting is more likely
- Solution: label smoothing
- Jargon notice
 - in classification tasks, we predict a *label*
 - jargon term for any output
 - \rightarrow here, we smooth the word predictions

Label Smoothing during Decoding

- Common strategy to combat peaked distributions: smooth them
- Recall
 - prediction layer produces numbers for each word
 - converted into probabilities using the softmax

$$p(y_i) = \frac{\exp s_i}{\sum_j \exp s_j}$$

• Softmax calculation can be smoothed with so-called **temperature** T

$$p(y_i) = \frac{\exp s_i/T}{\sum_j \exp s_j/T}$$

 Higher temperature → distribution smoother (i.e., less probability is given to most likely choice)

Label Smoothing during Training

- Root of problem: training
- Training object: assign all probability mass to single correct word
- Label smoothing
 - truth gives some probability mass to other words (say, 10% of it)
 - uniformly distributed over all words
 - relative to unigram word probabilities
 (relative counts of each word in the target side of the training data)

adjusting the learning rate

Adjusting the Learning Rate

- Gradient descent training: weight update follows the gradient downhill
- Actual gradients have fairly large values, scale with a learning rate (low number, e.g., $\mu = 0.001$)
- Change the learning rate over time
 - starting with larger updates
 - refining weights with smaller updates
 - adjust for other reasons
- Learning rate schedule

Momentum Term

- Consider case where weight value far from optimum
- Most training examples push the weight value in the same direction
- Small updates take long to accumulate
- Solution: momentum term m_t
 - accumulate weight updates at each time step t
 - some decay rate for sum (e.g., 0.9)
 - combine momentum term m_{t-1} with weight update value Δw_t

$$m_t = 0.9m_{t-1} + \Delta w_t$$
$$w_t = w_{t-1} - \mu \ m_t$$

Adapting Learning Rate per Parameter

- Common strategy: reduce the learning rate μ over time
- Initially parameters are far away from optimum \rightarrow change a lot
- Later nuanced refinements needed \rightarrow change little
- Now: different learning rate for each parameter

Adagrad

- Different parameters at different stages of training
 → different learning rate for each parameter
- Adagrad
 - record gradients for each parameter
 - accumulate their square values over time
 - use this sum to reduce learning rate
- Update formula
 - gradient $g_t = \frac{dE_t}{dw}$ of error *E* with respect to weight *w*
 - divide the learning rate μ by accumulated sum

$$\Delta w_t = \frac{\mu}{\sqrt{\sum_{\tau=1}^t g_\tau^2}} g_t$$

Big changes in the parameter value (corresponding to big gradients *g_t*) → reduction of the learning rate of the weight parameter

Adam: Elements

- Combine idea of momentum term and reduce parameter update by accumulated change
- Momentum term idea (e.g., $\beta_1 = 0.9$)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

• Accumulated gradients (decay with $\beta_2 = 0.999$)

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Adam: Technical Correction

- Initially, values for m_t and v_t are close to initial value of 0
- Adjustment

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \qquad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

• With $t \to \infty$ this correction goes away

$$\lim_{t\to\infty}\frac{1}{1-\beta^t}\to 1$$

Adam

- Given
 - learning rate μ
 - momentum \hat{m}_t
 - accumulated change \hat{v}_t
- Weight update per Adam (e.g., $\epsilon = 10^{-8}$)

$$\Delta w_t = \frac{\mu}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Batched Gradient Updates

- Accumulate all weight updates for all the training example → update (converges slowly)
- Process each training example → update (stochastic gradient descent) (quicker convergence, but last training disproportionately higher impact)
- Process data in batches
 - compute all their gradients for individual word predictions errors
 - use sum over each batch to update parameters
 - \rightarrow better parallelization on GPUs
- Process data on multiple compute cores
 - batch processing may take different amount of time
 - asynchronous training: apply updates when they arrive
 - mismatch between original weights and updates may not matter much

avoiding local optima

Avoiding Local Optima

- One of hardest problem for designing neural network architectures and optimization methods
- Ensure that model converges to at least to a set of parameter values that give results close to this optimum on unseen test data.
- There is no real solution to this problem.
- It requires experimentation and analysis that is more craft than science.
- Still, this section presents a number of methods that generally help avoiding getting stuck in local optima.

Overfitting and Underfitting

- Neural machine translation models
 - 100s of millions of parameters
 - 100s of millions of training examples (individual word predictions)
- No hard rules for relationship between these two numbers
- Too many parameters and too few training examples \rightarrow overfitting
- Too few parameters and many training examples \rightarrow underfitting

Regularization

- Motivation: prefer as few parameters as possible
- Strategy: set un-needed paramters a value of 0
- Method
 - adjust training objective
 - add cost for any non-zero parameter
 - typically done with L2 norm
- Practical impact
 - derivative of L2 norm is value of parameter
 - if not signal from training: reduce value of parameter
 - alsp called weight decay
- Not common in deep learning, but other methods understood as regularization

Curriculum Learning

- Human learning
 - learn simple concepts first
 - learn more complex material later
- Early epochs: only easy training examples
 - only short sentences
 - create artificial data by extracting smaller segments
 (similar to phrase pair extraction in statistical machine translation)
 - Later epochs: all training data
- Not easy to callibrate

Dropout

- Training may get stuck in local optima
 - some properties of task have been learned
 - discovery of other properties would take it too far out of its comfort zone.
- Machine translation example
 - model learned the language model aspects
 - but cannot figure out role of input sentence
- Drop out: for each batch, eliminate some nodes

Dropout

- Dropout
 - For each batch, different random set of nodes is removed
 - Their values are set to 0 and their weights are not updated
 - **–** 10%, 20% or even 50% of all the nodes
- Why does this work?
 - robustness: redundant nodes play similar nodes
 - ensemble learning: different subnetworks are different models

Gradient Clipping

- Exploding gradients: gradients become too large during backward pass
- \Rightarrow Limit total value of gradients for a layer to threshold (τ)
 - Use of L2 norm of gradient values *g*

$$L2(g) = \sqrt{\sum_j g_j^2}$$

• Adjust each gradient value g_i for each element i in the vector

$$g'_i = g_i \times \frac{\tau}{\max(\tau, L2(g))}$$

Layer Normalization

- During inference, average node values may become too large or too small
- Has also impact on training (gradients are multiplied with node values)
- \Rightarrow Normalize node values
 - During training, learn bias layer

Layer Normalization: Math

• Feed-forward layer h^l , weights W, computed sum s^l , activation function

$$s^{l} = W h^{l-1}$$

 $h^{l} = \text{sigmoid}(h^{l})$

• Compute mean μ^l and variance σ^l of sum vector s^l

$$\mu^l = \frac{1}{H} \sum_{i=1}^H s_i^l$$
$$\sigma^l = \sqrt{\frac{1}{H} \sum_{i=1}^H (s_i^l - \mu^l)^2}$$

Layer Normalization: Math

• Normalize s^l

$$\hat{s^l} = \frac{1}{\sigma^l} (s^l - \mu^l)$$

• Learnable bias vectors *g* and *b*

$$\hat{s^l} = \frac{g}{\sigma^l}(s^l - \mu^l) + b$$

Shortcuts and Highways

- Deep learning: many layers of processing
- \Rightarrow Error propagation has to travel farther
 - All parameters in processing change have to be adjusted
 - Instead of always passing through all layers, add connections from first to last
 - Jargon alert
 - shortcuts
 - residual connections
 - skip connections

Shortcuts

• Feed-forward layer

$$y = f(x)$$

• Pass through input *x*

$$y = f(x) + x$$

• Note: gradient is

y' = f'(x) + 1

• Constant $1 \rightarrow$ gradient is passed through unchanged

- Regulate how much information from f(x) and x should impact the output y
- Gate t(x) (typically computed by a feed-forward layer)

y = t(x) f(x) + (1 - t(x)) x

Shortcuts and Highways

