
SIMD + NativeAOT +
Dynamic PGO

Jiří Činčura (engineer, x̄ size) | Karel Zikmund (manager, tall)

A Modern Processor

SISD

• Single Instruction Single Data

• Instruction Level Parallelism (ILP)

• Parallel processing

SIMD

• Single Instruction Multiple Data

SIMD

SIMD

NativeAOT

• Ahead-of-Time compilation
• JIT, startup time, memory/working set
• Benefits

• Faster startup time
• Smaller memory footprint
• Self-contained executable
• Restricted environments (i.e. iOS)

• Limitations
• No dynamic loading
• No runtime code gen (System.Reflection.Emit, limited reflection)
• Bigger application binary

C# -> IL -> CPU

• C# code is compiled into IL (MSIL, CIL)
• Stack based
• Object oriented

• C# -> IL = Roslyn compiler (C# compiler)
• IL -> CPU = RyuJIT (JIT)
• Straightforward assembly code is not the fastest one
• JIT must generate great code and do it fast

•

PGO

• Profile Guided Optimization
• Static

• Collect data from representative run and store along the executable
• Is the data up-to-date?

• Dynamic
• In-proc, no training or special builds
• Uses Tiered Compilation by instrumenting code in initial tiers
• Collected data used later for better or more optimization

Benefits

• About 15% or up

Key Optimizations

• Guarded Devirtualization (GDV)
• At virtual and interface call sites, introduce tests for specific types
• If the test succeeds, we know exactly which method will be called

• Also try and inline the method
• If the method is on a value class, inline the unboxing stub and the method

• If source is a box attempt to optimize away the box too

• If the test fails, just do the normal virtual / interface call

• .NET 8: extends GDV to handle some delegate invokes as well
• Opt-in: Multiple guesses GDV

GDV void RegisterUser(IUserService service, User user)
{

 service.Register(user); // virtual call
}

void RegisterUser(IUserService service, User user)
{

 CORINFO_HELP_CLASSPROFILE32(service.GetType());
 service.Register(user);

}

void RegisterUser(IUserService service, User user)
{

 if (service is UserServiceImpl impl)
 impl.Register(user); // direct call, can be inlined

 else
 service.Register(); // still virtual (fallback)

}

GDV void RegisterUser(IUserService service, User user)
{

 service.Register(user); // virtual call
}

void RegisterUser(IUserService service, User user)
{
 CORINFO_HELP_CLASSPROFILE32(user.GetType());
 service.Register(user);
}

void RegisterUser(IUserService service, User user)
{

 if (service is UserServiceImpl impl)
 impl.Register(user);

 else if (service is GenericUserService1<User> impl)
 impl.Register(user);

 else if (service is GenericUserService2<User> impl)
 impl.Register(user);

 else
 service.Register();

}

Profile-Driven Inlining

• Use profile data to ensure key methods are inlined
• Relaxed thresholds for IL size and number of basic blocks
• Waste less energy on (semi-) cold call sites

Profile-Driven Inlining
bool IsPrimitiveType(Type type) =>
 type == typeof(bool) ||
 type == typeof(char) ||
 type == typeof(sbyte) ||
 type == typeof(byte) ||
 type == typeof(short) ||
 type == typeof(ushort) ||
 type == typeof(int) ||
 type == typeof(uint) ||
 type == typeof(long) ||
 type == typeof(ulong) ||
 type == typeof(float) ||
 type == typeof(double) ||
 type == typeof(nint) ||
 type == typeof(nuint);

Profile-Driven Inlining
for (int i = 0; i < 100; i++)
{
 Test<int, float>();
 Thread.Sleep(16);
}

[MethodImpl(MethodImplOptions.NoInlining)]
static bool Test<T1, T2>() =>
 IsPrimitiveType(typeof(T1)) &&
 IsPrimitiveType(typeof(T2));

static bool IsPrimitiveType(Type type) =>
 type == typeof(bool) ||
 type == typeof(char) ||
 type == typeof(sbyte) ||
 type == typeof(byte) ||
 type == typeof(short) ||
 type == typeof(ushort) ||
 type == typeof(int) ||
 type == typeof(uint) ||
 type == typeof(long) ||
 type == typeof(ulong) ||
 type == typeof(float) ||
 type == typeof(double) ||
 type == typeof(nint) ||
 type == typeof(nuint);

; Assembly listing for method Program:Test[int,float]():bool
; Tier-1 compilation
; No PGO data

sub rsp, 40
mov rcx, 0x11B802000B8 ; 'System.Int32'
call [Program:IsPrimitiveType(System.Type):bool]
test eax, eax
je SHORT G_M27198_IG05
mov rcx, 0x11B80205090 ; 'System.Single'
call [Program:IsPrimitiveType(System.Type):bool]
nop
add rsp, 40
ret

G_M27198_IG05:
xor eax, eax
add rsp, 40
ret

; Total bytes of code 53

Inliner: too many IL bytes

Profile-Driven Inlining
for (int i = 0; i < 100; i++)
{
 Test<int, float>();
 Thread.Sleep(16);
}

[MethodImpl(MethodImplOptions.NoInlining)]
static bool Test<T1, T2>() =>
 IsPrimitiveType(typeof(T1)) &&
 IsPrimitiveType(typeof(T2));

static bool IsPrimitiveType(Type type) =>
 type == typeof(bool) ||
 type == typeof(char) ||
 type == typeof(sbyte) ||
 type == typeof(byte) ||
 type == typeof(short) ||
 type == typeof(ushort) ||
 type == typeof(int) ||
 type == typeof(uint) ||
 type == typeof(long) ||
 type == typeof(ulong) ||
 type == typeof(float) ||
 type == typeof(double) ||
 type == typeof(nint) ||
 type == typeof(nuint);

; Assembly listing for method Program:Test[int,float]():bool
; Tier-1 compilation
; Optimized with Dynamic PGO

mov eax, 1
ret

; Total bytes of code 6

Inliner:
• Inline candidate has 13 foldable branches.
• Inline has 28 foldable intrinsics.
• Callsite has profile data: 1.0.

Instrumentation Overhead

• Dynamic PGO startup improvements in NET 8 · Issue #76969
• Sparse , scalable edge profiles enabled for all methods
• GDV random state now in TLS
• Scalable profile mode
• More cases where we bypass instrumentation
• Enable intrinsic expansion in Tier0

https://github.com/dotnet/runtime/issues/76969

Class and Method Profiles

• Reservoir sampling used to create approximate histograms of
target classes (for virtual/interface calls) and target methods (for
indirect/delegate calls)
• Fixed-sized table per site (currently 32 entries (was 8))

• One global table per site
• Each call adds entry to table, until table is full, then

• Each call may randomly replace some table entry, with probability
• This also keeps contention low

• When optimizing, this data is used to drive GDV, testing for the
most likely outcome(s)

Profiling Blocks

Dense
• Each block

gets a counter
• Quite a bit of

redundancy
• Simple

diamond:
four blocks,
two
independent
counts

Sparse
• Subset of

edges get
counters
• Need to add

in pseudo-
edges

• Block counts
reconstructed
via “simple”
math

Scalable Counters

• Pre .NET 8, instrumentation was using a shared counter for the
sparse edge counts, and not interlocking (“racy”) updates.
• When app is heavily multithreaded:

• Heavy contention on some counters (very slow Tier0-instr code)
• Poor accuracy as many updates are lost due to races

• Interlocked adds fix the accuracy issue, but contention is even worse
• Not feasible to shard the counters (i.e., TLS) both because of the space

required and the need to aggregate across shards

Blue and red lines show the ratio of a “racy” contended counter’s value to the true value.
Note it can lose upwards of 90% of the counts (this was on a 12 core machine)

Scalable Counters

• .NET 8 introduces scalable counters
• Use interlocked add for first 2N counts
• Add randomly after that…

• Add by 2 with probability ½ for count in (2N, 2N+1]
• Then by 4 with probability ¼ for count in (2N+1, 2N+2]

• With suitable threshold (N=13) count value is very likely within 2%
of true value

• Number of writes to “hot” (potentially contended) counters drops
dramatically

Scalable Counters

Deviation of
scalable
counter from
true value.

Counts
exactly up to
8192, then
randomly for
higher values

5-95 spread
about +/- 2%

Scalable Counters

Tier0

Tier0 + Instr

Tier1

Impact of improvements to instrumentation on
Tech Empower RPS / Latency

Randomness

• Instrumentation relies quite a bit on randomness
• GDV profiles use randomness for Reservoir Sampling to build

approximate histograms
• Count profiles use randomness to improve scalability

• PGO data will likely not be the same from one run to the next
• But typically, there are enough observations that the overall behavior is

still stable and repeatable
• There is already a fair amount of non-determinism when running code,

but now the jitted codegen depends on it in a fundamental way.

• If you suspect a bug, try running with DOTNET_TieredPGO=0

PGO, BDN & PerfView

You can get ETL traces from BDN via -p ETW (on windows) and view these with PerfView.

Note the same method now appears as two entries. From the time chart we can see that the
QuickJitted (Tier0) version ran early on, and then the Tier1 version took over.

Make sure to filter the profile to just the time that BDN is actually making measurements.

PGO, BDN & PerfView

Open the events view,
select BD’s
WorkloadActual events,
verify the intervals show
consistent times, pick one
and set the time limits on
your profile view. Here:
3582..3837

	Intro
	Slide 1: SIMD + NativeAOT + Dynamic PGO

	SIMD
	Slide 2: A Modern Processor
	Slide 3: SISD
	Slide 4: SIMD
	Slide 5: SIMD
	Slide 6: SIMD

	NativeAOT
	Slide 7: NativeAOT

	Dynamic PGO
	Slide 8: C# -> IL -> CPU
	Slide 9: PGO
	Slide 10: Benefits
	Slide 11: Key Optimizations
	Slide 12: GDV
	Slide 13: GDV
	Slide 14: Profile-Driven Inlining
	Slide 15: Profile-Driven Inlining
	Slide 16: Profile-Driven Inlining
	Slide 17: Profile-Driven Inlining
	Slide 18: Instrumentation Overhead
	Slide 19: Class and Method Profiles
	Slide 20: Profiling Blocks
	Slide 21: Scalable Counters
	Slide 22
	Slide 23: Scalable Counters
	Slide 24: Scalable Counters
	Slide 25: Impact of improvements to instrumentation on Tech Empower RPS / Latency
	Slide 26: Randomness
	Slide 27: PGO, BDN & PerfView
	Slide 28: PGO, BDN & PerfView

	Outro
	Slide 29

