.7 Signavio

To Microservices and
Beyond

Richard Vsiansky; Nodar Pylypyshak, SAP
November 07, 2024

Public

MUNI

Agenda

1. Microservices

2. Microservices vs Monolith

3. Microservices disadvantages

4. Microservices communication patterns
5. Logging

6. Testing

7. Scalable deployment

Public
Public

Microservices introduction

Microservice architecture allows developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an HTTP API.

It allows to distribute responsibilities of different parts of a product across multiple services

-

DB 4 Tronslation Service

r
APL gateway MFE 1 MFE 2
1. request validation R
2. authV/z FE Application
) 3, Include/Exclude list ppre or
DB B Maps service 4. Protocol translation MFE 3 MFE 4
5. ete...
A

(
BE ¢ . Slnop service
_

Public
Public

Microservices introduction

Note: Monolith implementation might require communication with 3rd party services (OAuth for
example), but it does not make it microservice architecture

Public
Public

Little bit of history

1960s - Large-Scale Software Challenges: Issues with large-scale software development began
surfacing, leading to a need for new design methods and structures.

1970s - Rise of Software Design Research
1980s - Early mentions of software architecture began
1990s - Foundation of Component-Based Software Engineering (CBSE)

Early 2000s - Service-Oriented Computing (SOC): aimed at managing the complexity of distributed
systems and using message-passing for service communication.

Today - Microservices Emergence: As a streamlined successor to SOA, microservices focused on
creating simple, single-function services to reduce complexity.

Public
Public

Public

Comparison of microservice and monolith architectures

Public

Smaller codebase

Microservices bring team the autonomy and its own lifecycle.
you need to deploy multiple times a day? Good, you can do it

Microservice approach preferring that a team should own a product over its full lifetime.
“you build, you run it”, development team takes full responsibility for the software in production.

Microservices bring clear domain boundaries (but of course, you can mess everything)

With microservices its easier to introduce new library or any other dependency (just make sure
that library is compliant with company policies)

Microservices disadvantages

Meme: https://knowyourmeme.com/memes/pepe-silvia

Public
Public

https://knowyourmeme.com/memes/pepe-silvia

Microservices disadvantages

1. More complex maintenance

2. Increased security complexity

3. Data consistency and transaction
4. Local setup

5. Issue tracing becomes much more difficult with big amount of services

Public
Public

Things to consider

1. Design to handle failures
2. Monitoring and alerting

3. Communication

Public
Public

Public

Design to handle failures

A consequence of using microservices is that
applications need to be designed so that they can
tolerate the failure of other services. Any service
call could fail due to unavailability, the client has
to respond to this as gracefully as possible.

Public

d)
Microservice 4
e _
]
| :
g tmemt K | HTTP GET
v
4)
Microservice B
_ _J

10

Public

Monitoring and alerting

Since services can fail at any time, it's important to
be able to detect the failures quickly by using:

1.

2.

Public

Metrics: Prometheus and Grafana

Centralized logging: Elasticsearch, Logstash
and Kibana

Error tracking: Sentry

Tracing: Jaeger and Zipkin

Grafana

A\ SENTRY

‘V'JAEGEQ

Grafana logo https://grafana.com/docs/grafana/latest/
Kibana logo https://www.elastic.co/kibana

Jaeger logo https://www.jaegertracing.io/

Sentry logo https://sentry.io/branding/

kibana

11

https://grafana.com/docs/grafana/latest/
https://www.elastic.co/kibana
https://www.jaegertracing.io/
https://sentry.io/branding/

Grafana

Process CPU Usage Event Loop Lag

20ms
1.5ms
1.0ms

500 ps

21:00 On

21:05 21:10 21:15 21:20
min max it

0.0072% 0.0716% 0.0256% 0.0128%
0.0747%

. . S
ST L R~ 2O 2025 2030 2035 2040 2045 2050 2055 2100 2105 21:10

mir max
20Tpys 1.85ms
220 s 950 us

- User CPU
- User CPU -

Process Memory Usage

76 MiB mir nax av
640MiB 713MB 69.4MB
638MiB 71.7MB 69.3MiB
306 MiB 341MB 322MB
306 MiB 341MiB 322MB
258MiB 288MiB 274MiB
255MiB 293MiB 274MiB 29.2MiB

36 KiB 260 KiB 168 KiB 76 KiB

cur
70.9 MiB
71.4 MiB
34.1 MiB
341 MiB
28.7 MiB

- Process Memory -

57 MiB = Process Memory -
- Heap Total -
38 MiB

- Heap Total
Heap Used
Heap Used
Extemnal Memory - 1
21:20 e = = —
Heap Used Detail

19 MiB

- Active Handler -

8080
- Active Handler -

20:25 20:30 20:35 40 20:45 20:50 21:05 21:10 21115

Heap Total Detail

20:55 21:00

19 MiB 19GiB

14 MiB 14GiB

10MiB 954 MiB

5MiB 477 MiB

0B

0B
20:25 2025 2022

Heap Used -

Heap Used -7

Heap Used -~
— Heap Used -

L 2025 20:30 20:35 2 20:55 21:00 21:05 21110 215
nt min max nt
- Heap Used - 2080 - code 817 KiB 933 KiB 888 KiB 933 KiB
- Heap Used - D80 - large_object 8.08 MiB 8.08 MiB 8.08 MiB 8.08 MiB
- Heap Used - * 080 - map 1007 KiB 1.02 MiB 1.00 MiB 1.02 MiB

20:30 20:35 20:40 20145 20:50 20:55 21:00 2120

2105 21110 21115 21:20

1.00 MiB
9.38 MiB
2.01 MiB

1.00 MiB
9.38 MiB
2.01 MiB

1.00 MiB
9.38 MiB
2.01 MiB

-code 1.00 MiB
9.38 MiB

2.01 MiB

- Heap Total
- Heap Total - large_object

- Heap Total - J-map

Grafana example: https://grafana.com/grafana/dashboards/11159-nodejs-application-dashboard/

Public
Public

21:15

21:20

2035

vg cui
273us 228ps

267us 232ps

20:40

25 20330 20:35 20:40 2045 2050 2055 21:00 2105 21110 21

Node.js Version

v10.15.3

Process Restart Times

Active Handlers/Requests Total

a5 21:20

min nt

2200
22.00

2200 2200
2200 2200

22.00
22.00

Heap Available Detail

20:45 20:50

- code

- large_object

20:55 21:00
12 KiB

1.389 GiB
968 KiB
5KiB

21:05
154 KiB

1.392 GiB
1010 KiB
935KiB

21:10 2115 21120
14 KiB 12KiB

1.390GiB 1.389GiB
989 KiB 968 KiB
477 KiB 326 KiB

12

https://grafana.com/grafana/dashboards/11159-nodejs-application-dashboard/

Kibana

Q Find apps, content, and more. Ex: Discover

Discover Options New Open Alerts Share Inspect

logs* v ® © QU cluster_block_exception & v C Refresh
log.level: error
QU Search field names ~ 3,391 hits Field statistics seTa D ©
Filter by type 0 v
v Selected fields 3 @ .
7 18 19 2 2 22 23 a 01), 1 6 7
9 @timestamp o 4un16,202
Jun 15, 2022 @ 17:00:00.000 - Jun 16, 2022 @ 17:24:57.284 (interval: Auto - 30 minutes)
k loglevel
7l messogs = Columns ¢ 1field sorted ©
L @timestamp (© v log.level “ message v
\ Available fields 39) L . L -
Jun 15, 2022 © 22:43:87.584 error failed to publish events: 503 Service Unavailable: {"error”:{"root_cause’:[{"type":"cluster_block_exception”,"reason":"blocked by:
_id [SERVICE_UNAVAILABLE/2/no master];"}], "type":"cluster_block_exception”,"reason”:“blocked by: [SERVICE_UNAVAILABLE/2/no
master];"}, “status”:503}
_index
Jun 15, 2022 © 22:43:86.480 error failed to perform any bulk index operations: 503 Service Unavailable: {"error”:{"root_cause":
| ~sc0re: [{"type":"cluster_block_exception”, “reason”:"blocked by: [SERVICE_UNAVAILABLE/2/no
% agent.ephemeral_id master];"}], "type":"cluster_block_exception”, "reason”:"blocked by: [SERVICE_UNAVAILABLE/2/no master];"},"status":503}
¥] agentid 7 Jun 15, 2022 © 22:42:26.861 error failed to publish events: temporary bulk send failure
& agent.name] Jun 15, 2022 © 22:42:26.899 error failed to publish events: temporary bulk send failure
k agent.type 7 Jun 15, 2022 © 22:42:25.963 error failed to publish events: temporary bulk send failure
k agent.version s Jun 15, 20822 @ 22:42:25.568 error failed to publish events: temporary bulk send failure
) St atrenmudtaset Jun 15, 2022 @ 22:42:25.513 error failed to publish events: temporary bulk send failure
k data_stream.namespace
Jun 15, 2022 © 22:42:25.452 error failed to publish events: temporary bulk send failure
k data_stream.type
Jun 15, 2022 @ 22:42:25.094 error failed to publish events: temporary bulk send failure
k ecs.version
Jun 15, 2022 © 22:42:24.830 error failed to publish events: temporary bulk send failure
K elastic_agent.id
Jun 15, 2022 © 22:42:24.523 error failed to publish events: temporary bulk send failure
@ elastic_agent.snapshot
B slasia agentvarion Jun 15, 2022 © 22:42:24.259 error failed to publish events: temporary bulk send failure
8 Add a field Rows per page: 100 v 123 45 »

Kibana example https://www.elastic.co/kibana

Public
Public

https://www.elastic.co/kibana

Jaeger tracing

laeger Ul Dependencies
Find Traces s .
B0Oms & .
Service a . . . L . . ® .
600ms
frontend -
400ms
all - 200ms
Time
. .
Tags 0%:12:00am 0%:12:02am 09:12:04 am 09:12:06 am 09:12:08am 0%:12:10am
Lookback 12 Traces Sort Most Recent 4
Last Hour s
Min Duration Max Duration frontend: HTTP GET /dispatch 704.53ms
50spans cstomertt) | arver() | frontendza) | mrsaity | resisizn) | routetso) 09:12:10 am (a few seconds ago)
Limit Results frontend: HTTP GET /dispatch 930.01ms
20 50 spans astomertt) | frontercizl | misaly | redisiza) | routetion 09:12:09 am (a few seconds ago)
Find Traces frontend: HTTP GET /dispatch 750.02ms
49 spans astomertt) | fomenciz | misaly | redis(z3) || rouietzon 09:12:09 am (a few seconds ago)
frontend: HTTP GET /dispatch 713.74ms
50 spans astomertt) | fontenstz) | misalt | redis(ta) || routetion 09:12:09 am (a few seconds ago)
frontend: HTTP GET /dispatch 748.84ms
50 spans astomer(t) | ariver(t) | frontend2) | mysaitt) | resisisn) | rovtetto) 09:12:08 am (a few seconds ago)
frontend: HTTP GET /dispatch 758.7ms
51 spans customar(y) | arveriny | toncenaza) | mvsai | resssiza) || routeto) 09:12:08 am (a few seconds ago)
frontend: HTTP GET /dispatch 743.08ms
50spans customer 1) driver (1) l frontend (24) ' mysal {1 redis (13) route {10) 09:12:07 am (a few seconds ago)
frontend: HTTP GET /dispatch 718.63ms
51spans astomertt) | arver(ty | frontena2) | mvsalin) route (10) 09:12:06 am (a few seconds ago)
frontend: HTTP GET /dispatch 798.45ms
50 spans astomertt) | arver(ty | frontendzer | mrsaitty | resisisn) | rowtetso) 09:12:05 am (a few seconds ago)

Jaeger example https://www.jaegertracing.io/docs/1.62/

Public
Public

https://www.jaegertracing.io/docs/1.62/

Public

Sentry

Public

Issues

For Review Regressed Escalating Archived

components/Checkout.js (7] in call at line 568:17 @

53 1,

54 }).catch((err) => {

55 return { ok: false, status: 560 };
56 H

57 if (!response.ok) {

throw new Error(

|—‘ Error & 0 Open this line in GitHub ‘P Openin Codecov

500 - In

59 ‘ [response.status, response.statusText ||
New

60 vt

61)

62 i

Sentry example hitps://sentry.io/welcome/

6.4k

'Internal Server Error'].join(

5.4k

15

https://sentry.io/welcome/

Do you really need all of this? Let us tell you a short story

@

User request

Moin BE service

automatic

call every T

User request

Service user request

N\ a

Access riah'ts h

J

-

ﬂ . (
Service user request
. Service which will
Access rights ~
cess 0y - le,a\o(to disaster
J I have no idea who you are ‘talking, about
1os \
there is no need to call access rights service
N '
User request ”
. Service which wi
A Wt =
ceess ngnts lead to disaster
J 3ood 200

Service which will
|lead to disaster

Public
Public

-

16

Public

Communication types

1.

2.

Public

Synchronous Communication — direct communication, client waits for server to respond

Asynchronous Communication — client doesn't wait for the response

17

Public

How microservices communicate between each other?

1. HTTP/HTTPS

2. Messaging queues (RabbitMQ, Apache Kafka)
1. Send message to a queue, specific service will consume it
2. Example: Order Service sends a message to a queue and Shipping Service receives it

3. RPC (gRPC) - remove procedure calls
1. Allows to call another service endpoint as it is local method

4. Event streaming
1. Populate message to all services
2. Example: order was made so notification service, shipping service and other services got a message

Public

18

Public

Public

Communication and central logging demo

19

Public

Do you really need microservices?

Well, lets start from one important thing, what microservices bring in general?

“Microservices are more about the organisational structure than about organisation of your code” -
DHH, creator of Ruby on Rails

1. “Don't have more microservices than users”.
« Sometimes you need to start small just one repo and nothing else

2. How much time it will take to split a monolith into smaller services?

3. What benefit it will bring you in the end?

Public 20

Our experience

Our part of product started to grow and we decided to split

our domain

Monolith f Monolith Microservice
(r N [= separate table (7 ~N) s N
some all Some
entities Metrics k entities y - [Metrics
other K_/ migroction of codebase to kotlin 4) .
Tech = other tech Punctions other Tables
\ Punctions ‘ m‘.gf‘a“b?on scr‘ip't \ y >
Var‘-‘;aue,s (VMI&B'&S
T_?;S;s access rights
o, 2 ——

— Q‘\ separate table N\ ﬂ/

one table with 2 ‘type,s of ol-:.\‘]e_c‘ts
(can be e_xpano!e,d in the future)

Public 21

Public

Public

Things to consider before migration to microservices

1.

2.

3.

Public

Do you need to transform existing data before migration?

How you will migrate the data to a new database
You need to create a migration script to migrate all data

Make sure that you have proper logging and metrics during the whole process to not loose any data
You should be able to rollback the whole migration in case or error

You might need to run old implementation of monolith together with a new microservice to
have a synced data (still, it's a very tricky part)

22

Vertical scaling

Vertical scaling — upgrading hardware (CPU, RAM, SSD, etc..) for existing services/instances

1 CPU Dual-Core CPU Quad-Core CPU
8 GB RAM 16 GB RAM 32 GB RAM
1 TB SSD 3 TB SSD 5 TB SSD

Picture from https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

Public
Public

23

https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

Public

Horizontal scaling

Horizontal scaling — increase the number of instances (buying more servers or increasing number
of virtual machines®

Pool of servers that
One server distribute the load

1 CPU 3 CPU
8 GB RAM 24 GB RAM
1TB SSD 3 TB SSD

Picture from https://www.cloudzero.com/bloo/horizontal-vs-vertical-scaling/

Public

24

https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

Public

Key points of vertical and horizontal scaling

1. Limitations
1. Vertical scaling is limited
2. For horizontal scaling you can add as many machines or virtual machines as you want

2. Costs
1. Vertical scaling is cheaper as you need to upgrade just one component
2. Horizontal scaling has high costs initially

3. Complexity of maintenance
1. Vertical scaling has low complexity
2. Horizontal scaling is more difficult to maintain

4. Failure resilience
1. Horizontal scaling has high resilience, because other servers will provide backup
2. Vertical has low resilience because there is only one point for access

Public

25

MicrOfrontendS Source control Build and test pipeline Production

Micro frontend A —_— —_— Three apps composed
into one in production

- An approach to bring Microservices o frontend & g—.m—.-_, -D-
architecture to Frontend side

. . Micro frontend C E—bm—r-/
- Microservice team usually develop

a|SO a miCI’Ofrontend application C. Jackson, https://martinfowler.com/articles/micro-frontends.html

- Teams can use different frameworks, not blocked by others, code is separated
- Enable independent releases
- One client (shell) consists of several Ul microfrontend applications

- Downsides
- Using different frameworks is not scalable (sharing components, knowledge, programmers)
- Frontend parts usually interact a lot with each other
- Serving different applications can increase application size

Public 26
Public

https://martinfowler.com/articles/micro-frontends.html

Header Notifications

= SAP Signavio Process Intelligence Q [a)
) Process Data Pipelines / SAP ERP F WP v
D SAP ERP Procure-to-Pay Run ETL
. 8 Overview Connections Source Data Data Views Process Data Model Schedule
Client
. . Pip logs c d

(host application)

.

e I ® © f
AP ER f

Dashboard

ipeline logs Current | Related All

Mistory with the Last 10 pipetine executions. For more detalls, ciick a log entry

Public * https://www.signavio.com/products/process-intelligence/, lllustrative image 27

Public

https://www.signavio.com/products/process-intelligence/

Team ~ owns
Micro frontend ~

Forms

Validation |

Team B owns
Micro frontend B

Forme
Vldaon

Team C owns

Micro frontend C

3 product-oriented, "vertical" teams ¢

Public
Public

AN

Avoid "horizontal"
teams like this @

28

https://martinfowler.com/articles/micro-frontends.html

Testing

Public

End-to-end
tests

Component
tests

Integration tests

Unit tests

29

Testing

- Usually on level of class or a group of related
classes

- Tests expected behaviour

- Can serve as a documentation, explain what
a class/function does

- Consider costs of maintenance for having a
larger number of tests

Unit tests

Public 30
Public

Public

Testing

Public

Integration tests

To verify the communication paths and
interactions between components

On level of service layers

Example - test between a service, a data
store and a cache

Use unit testing and contract testing to
validate both sides of the communication

31

Public

Testing

Public

Component
tests

A component is well-encapsulated, coherent
and independently replaceable part of a
system = a service itself

Acceptance tests
Provides controlled testing behaviour

Usage of network interaction / in-memory
doubles

- Network interaction — more reliable
- In-memory doubles - faster

A shim = APIl/network interceptor

32

Public

Testing

Public

End-to-end
tests

Verifies that a system meets external
requirements and achieves its goals

Check correctness of messages
between services and also checks
network infrastructure

Tested using exposed GUIs/APls

Reliability problems outside of team’s
control and asynchronous processes
lead to flaky tests

33

. Manual
Testing testing

Slower
More effort End-to-end
tests
More integration
Component
tests

Integration tests

Faster

Unit tests Low effort
More isolation

—
Test quantity

Public 34

E2E test example

Live / video

Public

35

Public

Contract testing

An integration contract test verifies that the services meets the contract expected by a
consuming service

Checks only inputs and outputs

Allows to make safe changes

Written by consumers and ran by producers , \

Public

36

Another types of testing

Load testing
« Testing high volume traffic

Resiliency testing
« What happens if one service is down? _/O

Smoke testing
» Is application running?

» health_check endpoints are usually integrated in all services

Security
« To discover exploit areas
« Static code analysis can be used (SonarQube, CodeqQl, ...)

Performance
» Measuring performance metrics

Public 37
Public

Public

Deployment

Traditional deployment
» Application code is built and deployed on a server/hardware
« Companies need to maintain the infrastructure
» Developer and server environments has to be compatible

Public

Application

Operating system

Hardware

38

Container Deployment

- A container includes all the code, runtime, libraries that an application needs to run

- Benefits
» Speed
« Agility and flexibility
» Resource utilization and optimization

* Run anywhere

Traditional Deployment Virtualized Deployment Container Deployment

https://medium.com/@goyalarchanal7/why-containerised-deployment-6b0a87c68f1e

- Docker, Podman
« Build image of your application (containing all you need to run the application)
« Run container of the application (one instance of your application)

- Docker Compose
« Allows to combine multiple Docker images to one (Application + Database example)

Public 39
Public

https://medium.com/@goyalarchana17/why-containerised-deployment-6b0a87c68f1e

Public

DockerFile of a simple Node Application
image to build, in this case latest Node.js LTS version
FROM node:lts-alpine

Change to the application directory
WORKDIR /app

Copy whole projecty
COPY..

Install dependencies

RUN yarn install --production

Run the application
CMD ["node", "src/index.js"

Expose the port the app runs on
EXPOSE 3000

Public

40

Public

Kubernetes (K8s)

Open-source container-orchestration system for automating application deployment,
scaling and management

Kubernetes Cluster

Kés API

Containers synchronization .

Handles services crashes and errors Node Poot

Pod - smallest deployable units of computing -

* —runs container L
Node - virtual or physical machine — multiple pods = W ' W W

Cluster — a group of nodes or machines

Deployments
« Specify your desired state hitps: mbridgesemantics.com/anzo/v5.4/userdoc/k8s-concepts.htm

Public 41

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/k8s-concepts.htm

Public

Public

A

Ctrl Plane-1,2...n l

“

controller
manager .

kube

apiserver

m

P—

Node 1
Pods <
{ cortaivecrurtine |
o -
System Services
Node 1
... N ‘
' | Container Runtime
N oo [
System Services

Cloud

Provider
Network Edge

Load
Balancer

ce2

End Users

42

https://docs.docker.com/get-started/workshop/02_our_app/

Public

Public

1 apiVersion: apps/vi

2 kind: Deployment
3 metadata:
4 name: frontend
5 spec:
selector:
matchlLabels:
app: guestbook
tier: frontend
replicas: 3
template:
metadata:

labels:
app: guestbook
tier: frontend

spec:

containers:

- name: php-redis
image: gcr.io/google-samples/gh-frontend:vé4
resources:

requests:
cpu: 100m
memory: 100Mi
env:
- name: GET_HOSTS_FROM
value: dns

ports:
- containerPort:

43

https://github.com/kubernetes/examples/blob/master/guestbook/frontend-deployment.yaml

Public

Infrastructure as a Service

Cloud Computing Platforms allows to develop, run and manage applications without building
and maintaining the infrastructure

Vendor provides computing resources and backend infrastructure
» Storage, servers, network, virtualization,
» Security is shared responsibility between vendor and customer

O\ AAzu re
1i'amazon))
' O Google Cloud Alibaba Cloud

Public

44

Platform as a Service (PaaS)

- Vendor provides and manages backend infrastructure, but also provides software and tools
needed for application development

- Configuration as Code approach on bremise -
a Service Service Service

J

e

Applications Applications Applications Applications

g IHIIEHHI

Jopuap Ag paBeuey

Data

Managed by You

J

Managed by You

Middleware Middleware Middleware

Managed by You
r

Virtualization Virtualization

sopuap Ag paBeuey

sopuap Ag paBeuely

LS

Storage Storage Storage Storage

MNetworking

https://hazelcast.com/glossary/platform-as-a-service-paas/

MNetworking

[
\
\

Public
Public

https://hazelcast.com/glossary/platform-as-a-service-paas/

Public

Summary

Public

Microservices enables independent development and deployment
Both Backend and Frontend applications can follow the pattern
They are not suitable for all applications and situations

Can be easily monitored and deployed

Testing across multiple levels to ensure quality

Ecosystems exist to facilitate microservice development

46

Thank you.

Contact information:

Richard VSiansky; Nodar Pylypyshak
richard.vsiansky@sap.com; nodar.pylypyshak@sap.com

=07 Bring out your best.

© 2024 SAP SE oran SAP affiliate company. All rights reserved. See Legal Notice on www.s ap.com/legal-notice for use terms, disclaimers, disclosures, orrestrictions related to this material.

Public

Resources

Public

Fowler M., Microservice Testing, https://martinfowler.com/articles/microservice-testing/

History of microservices,
https://www.researchgate.net/publication/315664446_Microservices_yesterday_today_and_to
MOorrow

More about microservices, https://blogs.newardassociates.com/blog/2023/you-want-modules-
not-microservices.html

VMWare, Container Deployment, https://www.vmware.com/topics/container-deployment

Vertical/Horizontal scaling, https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

Microservices according to DHH, https://www.youtube.com/watch?v=rkXGSLf-rvVQ

48

https://martinfowler.com/articles/microservice-testing/
https://www.researchgate.net/publication/315664446_Microservices_yesterday_today_and_tomorrow
https://www.researchgate.net/publication/315664446_Microservices_yesterday_today_and_tomorrow
https://blogs.newardassociates.com/blog/2023/you-want-modules-not-microservices.html
https://blogs.newardassociates.com/blog/2023/you-want-modules-not-microservices.html
https://www.vmware.com/topics/container-deployment
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/
https://www.youtube.com/watch?v=rkXGSLf-rVQ

	Slide 1: To Microservices and Beyond
	Slide 2: Agenda
	Slide 3: Microservices introduction
	Slide 4: Microservices introduction
	Slide 5: Little bit of history
	Slide 6: Comparison of microservice and monolith architectures
	Slide 7: Microservices disadvantages
	Slide 8: Microservices disadvantages
	Slide 9: Things to consider
	Slide 10: Design to handle failures
	Slide 11: Monitoring and alerting
	Slide 12: Grafana
	Slide 13: Kibana
	Slide 14: Jaeger tracing
	Slide 15: Sentry
	Slide 16: Do you really need all of this? Let us tell you a short story
	Slide 17: Communication types
	Slide 18: How microservices communicate between each other?
	Slide 19: Communication and central logging demo
	Slide 20: Do you really need microservices?
	Slide 21: Our experience
	Slide 22: Things to consider before migration to microservices
	Slide 23: Vertical scaling
	Slide 24: Horizontal scaling
	Slide 25: Key points of vertical and horizontal scaling
	Slide 26: Microfrontends
	Slide 27
	Slide 28
	Slide 29: Testing
	Slide 30: Testing
	Slide 31: Testing
	Slide 32: Testing
	Slide 33: Testing
	Slide 34: Testing
	Slide 35: E2E test example
	Slide 36: Contract testing
	Slide 37: Another types of testing
	Slide 38: Deployment
	Slide 39: Container Deployment
	Slide 40
	Slide 41: Kubernetes (K8s)
	Slide 42
	Slide 43
	Slide 44: Infrastructure as a Service
	Slide 45: Platform as a Service (PaaS)
	Slide 46: Summary
	Slide 47: Thank you.
	Slide 48: Resources

