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Agenda

1. Microservices

2. Microservices vs Monolith

3. Microservices disadvantages

4. Microservices communication patterns
5. Logging
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Microservices introduction

Microservice architecture allows developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an HTTP API.

It allows to distribute responsibilities of different parts of a product across multiple services
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Microservices introduction

Note: Monolith implementation might require communication with 3rd party services (OAuth for
example), but it does not make it microservice architecture
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Little bit of history

1960s - Large-Scale Software Challenges: Issues with large-scale software development began
surfacing, leading to a need for new design methods and structures.

1970s - Rise of Software Design Research
1980s - Early mentions of software architecture began
1990s - Foundation of Component-Based Software Engineering (CBSE)

Early 2000s - Service-Oriented Computing (SOC): aimed at managing the complexity of distributed
systems and using message-passing for service communication.

Today - Microservices Emergence: As a streamlined successor to SOA, microservices focused on
creating simple, single-function services to reduce complexity.
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Public



Public

Comparison of microservice and monolith architectures

Public

Smaller codebase

Microservices bring team the autonomy and its own lifecycle.
you need to deploy multiple times a day? Good, you can do it

Microservice approach preferring that a team should own a product over its full lifetime.
“you build, you run it”, development team takes full responsibility for the software in production.

Microservices bring clear domain boundaries (but of course, you can mess everything)

With microservices its easier to introduce new library or any other dependency (just make sure
that library is compliant with company policies)



Microservices disadvantages

Meme: https://knowyourmeme.com/memes/pepe-silvia
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Microservices disadvantages

1.  More complex maintenance

2. Increased security complexity

3. Data consistency and transaction
4. Local setup

5. Issue tracing becomes much more difficult with big amount of services
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Things to consider

1. Design to handle failures
2. Monitoring and alerting

3. Communication

Public
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Design to handle failures

A consequence of using microservices is that
applications need to be designed so that they can
tolerate the failure of other services. Any service
call could fail due to unavailability, the client has
to respond to this as gracefully as possible.

Public
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Monitoring and alerting

Since services can fail at any time, it's important to
be able to detect the failures quickly by using:

1.

2.

Public

Metrics: Prometheus and Grafana

Centralized logging: Elasticsearch, Logstash
and Kibana

Error tracking: Sentry

Tracing: Jaeger and Zipkin

Grafana

A\ SENTRY

‘V'JAEGEQ

Grafana logo https://grafana.com/docs/grafana/latest/
Kibana logo https://www.elastic.co/kibana

Jaeger logo https://www.jaegertracing.io/

Sentry logo https://sentry.io/branding/

kibana
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Grafana
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Grafana example: https://grafana.com/grafana/dashboards/11159-nodejs-application-dashboard/
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Kibana

Q Find apps, content, and more. Ex: Discover

Discover Options New Open Alerts Share  Inspect

logs* v ® © QU cluster_block_exception & v C Refresh
log.level: error
QU Search field names ~ 3,391 hits Field statistics seTa D ©
Filter by type 0 v
v Selected fields 3 @ .
7 18 19 2 2 22 23 a 01 ), 1 6 7
9 @timestamp o 4un16,202
Jun 15, 2022 @ 17:00:00.000 - Jun 16, 2022 @ 17:24:57.284 (interval: Auto - 30 minutes)
k loglevel
7l messogs = Columns ¢ 1field sorted ©
L @timestamp (© v log.level “ message v
\ Available fields 39 ) L . L -
Jun 15, 2022 © 22:43:87.584 error failed to publish events: 503 Service Unavailable: {"error”:{"root_cause’:[{"type":"cluster_block_exception”,"reason":"blocked by:
_id [SERVICE_UNAVAILABLE/2/no master];"}], "type":"cluster_block_exception”,"reason”:“blocked by: [SERVICE_UNAVAILABLE/2/no
master];"}, “status”:503}
_index
Jun 15, 2022 © 22:43:86.480 error failed to perform any bulk index operations: 503 Service Unavailable: {"error”:{"root_cause":
| ~sc0re: [{"type":"cluster_block_exception”, “reason”:"blocked by: [SERVICE_UNAVAILABLE/2/no
% agent.ephemeral_id master];"}], "type":"cluster_block_exception”, "reason”:"blocked by: [SERVICE_UNAVAILABLE/2/no master];"},"status":503}
¥] agentid 7 Jun 15, 2022 © 22:42:26.861 error failed to publish events: temporary bulk send failure
& agent.name ] Jun 15, 2022 © 22:42:26.899 error failed to publish events: temporary bulk send failure
k agent.type 7 Jun 15, 2022 © 22:42:25.963 error failed to publish events: temporary bulk send failure
k agent.version s Jun 15, 20822 @ 22:42:25.568 error failed to publish events: temporary bulk send failure
) St atrenmudtaset Jun 15, 2022 @ 22:42:25.513 error failed to publish events: temporary bulk send failure
k data_stream.namespace
Jun 15, 2022 © 22:42:25.452 error failed to publish events: temporary bulk send failure
k data_stream.type
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k ecs.version
Jun 15, 2022 © 22:42:24.830 error failed to publish events: temporary bulk send failure
K elastic_agent.id
Jun 15, 2022 © 22:42:24.523 error failed to publish events: temporary bulk send failure
@ elastic_agent.snapshot
B slasia agentvarion Jun 15, 2022 © 22:42:24.259 error failed to publish events: temporary bulk send failure
8 Add a field Rows per page: 100 v 123 45 »

Kibana example https://www.elastic.co/kibana
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Jaeger tracing
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50 spans astomer(t) | ariver(t) | frontend2) | mysaitt) | resisisn) | rovtetto) 09:12:08 am (a few seconds ago)
frontend: HTTP GET /dispatch 758.7ms
51 spans customar(y) | arveriny | toncenaza) | mvsai | resssiza) || routeto) 09:12:08 am (a few seconds ago)
frontend: HTTP GET /dispatch 743.08ms
50spans customer 1) driver (1) l frontend (24) ' mysal {1 redis (13) route {10) 09:12:07 am (a few seconds ago)
frontend: HTTP GET /dispatch 718.63ms
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Jaeger example https://www.jaegertracing.io/docs/1.62/
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Sentry
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Issues
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54 }).catch((err) => {
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throw new Error(

|—‘ Error & 0 Open this line in GitHub ‘P Openin Codecov

500 - In
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New

60 vt

61 )

62 i

Sentry example hitps://sentry.io/welcome/
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'Internal Server Error'].join(

5.4k
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Do you really need all of this? Let us tell you a short story
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Communication types

1.

2.

Public

Synchronous Communication — direct communication, client waits for server to respond

Asynchronous Communication — client doesn't wait for the response
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How microservices communicate between each other?

1. HTTP/HTTPS

2. Messaging queues (RabbitMQ, Apache Kafka)
1. Send message to a queue, specific service will consume it
2. Example: Order Service sends a message to a queue and Shipping Service receives it

3. RPC (gRPC) - remove procedure calls
1. Allows to call another service endpoint as it is local method

4. Event streaming
1. Populate message to all services
2. Example: order was made so notification service, shipping service and other services got a message

Public
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Communication and central logging demo
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Do you really need microservices?

Well, lets start from one important thing, what microservices bring in general?

“Microservices are more about the organisational structure than about organisation of your code” -
DHH, creator of Ruby on Rails

1. “Don't have more microservices than users”.
«  Sometimes you need to start small just one repo and nothing else

2. How much time it will take to split a monolith into smaller services?

3.  What benefit it will bring you in the end?

Public 20



Our experience

Our part of product started to grow and we decided to split

our domain

Monolith f Monolith Microservice
(r N [ = separate table (7 ~N) s N
some all Some
entities Metrics k entities y - [ Metrics
other K_/ migroction of codebase to kotlin 4 ) .
Tech = other tech Punctions other Tables
\ Punctions ‘ m‘.gf‘a“b?on scr‘ip't \ y >
Var‘-‘;aue,s ( VMI&B'&S
T_?;S;s access rights
o, 2 ——

— Q‘\ separate table N\ ﬂ/

one table with 2 ‘type,s of ol-:.\‘]e_c‘ts
( can be e_xpano!e,d in the future )

Public 21
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Things to consider before migration to microservices

1.

2.

3.

Public

Do you need to transform existing data before migration?

How you will migrate the data to a new database
You need to create a migration script to migrate all data

Make sure that you have proper logging and metrics during the whole process to not loose any data
You should be able to rollback the whole migration in case or error

You might need to run old implementation of monolith together with a new microservice to
have a synced data (still, it's a very tricky part)
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Vertical scaling

Vertical scaling — upgrading hardware (CPU, RAM, SSD, etc..) for existing services/instances

1 CPU Dual-Core CPU Quad-Core CPU
8 GB RAM 16 GB RAM 32 GB RAM
1 TB SSD 3 TB SSD 5 TB SSD

Picture from https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

Public
Public
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Public

Horizontal scaling

Horizontal scaling — increase the number of instances (buying more servers or increasing number
of virtual machines®

Pool of servers that
One server distribute the load

1 CPU 3 CPU
8 GB RAM 24 GB RAM
1TB SSD 3 TB SSD

Picture from https://www.cloudzero.com/bloo/horizontal-vs-vertical-scaling/

Public

24
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Key points of vertical and horizontal scaling

1. Limitations
1. Vertical scaling is limited
2. For horizontal scaling you can add as many machines or virtual machines as you want

2. Costs
1. Vertical scaling is cheaper as you need to upgrade just one component
2. Horizontal scaling has high costs initially

3. Complexity of maintenance
1. Vertical scaling has low complexity
2. Horizontal scaling is more difficult to maintain

4. Failure resilience
1. Horizontal scaling has high resilience, because other servers will provide backup
2. Vertical has low resilience because there is only one point for access

Public
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MicrOfrontendS Source control  Build and test pipeline Production

Micro frontend A —_— —_— Three apps composed
into one in production

- An approach to bring Microservices o frontend & g—.m—.-_, -D-
architecture to Frontend side

. . Micro frontend C E—bm—r-/
- Microservice team usually develop

a|SO a miCI’Ofrontend application C. Jackson, https://martinfowler.com/articles/micro-frontends.html

- Teams can use different frameworks, not blocked by others, code is separated
- Enable independent releases
- One client (shell) consists of several Ul microfrontend applications

- Downsides
- Using different frameworks is not scalable (sharing components, knowledge, programmers)
- Frontend parts usually interact a lot with each other
- Serving different applications can increase application size

Public 26
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Public * https://www.signavio.com/products/process-intelligence/, lllustrative image 27
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Team ~ owns
Micro frontend ~

Forms

Validation |

Team B owns
Micro frontend B

Forme
Vldaon

Team C owns

Micro frontend C

3 product-oriented, "vertical" teams ¢

Public
Public

AN

Avoid "horizontal"
teams like this @
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Testing

Public

End-to-end
tests

Component
tests

Integration tests

Unit tests
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Testing

- Usually on level of class or a group of related
classes

- Tests expected behaviour

- Can serve as a documentation, explain what
a class/function does

- Consider costs of maintenance for having a
larger number of tests

Unit tests

Public 30
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Testing

Public

Integration tests

To verify the communication paths and
interactions between components

On level of service layers

Example - test between a service, a data
store and a cache

Use unit testing and contract testing to
validate both sides of the communication
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Testing

Public

Component
tests

A component is well-encapsulated, coherent
and independently replaceable part of a
system = a service itself

Acceptance tests
Provides controlled testing behaviour

Usage of network interaction / in-memory
doubles

- Network interaction — more reliable
- In-memory doubles - faster

A shim = APIl/network interceptor
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Testing

Public

End-to-end
tests

Verifies that a system meets external
requirements and achieves its goals

Check correctness of messages
between services and also checks
network infrastructure

Tested using exposed GUIs/APls

Reliability problems outside of team’s
control and asynchronous processes
lead to flaky tests
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. Manual
Testing testing

Slower
More effort End-to-end
tests
More integration
Component
tests

Integration tests

Faster

Unit tests Low effort
More isolation

—
Test quantity
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E2E test example

Live / video

Public
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Contract testing

An integration contract test verifies that the services meets the contract expected by a
consuming service

Checks only inputs and outputs

Allows to make safe changes

Written by consumers and ran by producers , \

Public
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Another types of testing

Load testing
« Testing high volume traffic

Resiliency testing
« What happens if one service is down? _/O

Smoke testing
» Is application running?

» health_check endpoints are usually integrated in all services

Security
« To discover exploit areas
« Static code analysis can be used (SonarQube, CodeqQl, ...)

Performance
» Measuring performance metrics

Public 37
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Deployment

Traditional deployment
» Application code is built and deployed on a server/hardware
« Companies need to maintain the infrastructure
» Developer and server environments has to be compatible

Public

Application

Operating system

Hardware
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Container Deployment

- A container includes all the code, runtime, libraries that an application needs to run

- Benefits
» Speed
« Agility and flexibility
» Resource utilization and optimization

* Run anywhere

Traditional Deployment Virtualized Deployment Container Deployment

https://medium.com/@goyalarchanal7/why-containerised-deployment-6b0a87c68f1e

- Docker, Podman
« Build image of your application (containing all you need to run the application)
« Run container of the application (one instance of your application)

- Docker Compose
« Allows to combine multiple Docker images to one (Application + Database example)

Public 39
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Public

# DockerFile of a simple Node Application
# image to build, in this case latest Node.js LTS version
FROM node:lts-alpine

# Change to the application directory
WORKDIR /app

# Copy whole projecty
COPY..

# Install dependencies

RUN yarn install --production

# Run the application
CMD ["node", "src/index.js"

# Expose the port the app runs on
EXPOSE 3000

Public
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Kubernetes (K8s)

Open-source container-orchestration system for automating application deployment,
scaling and management

Kubernetes Cluster

Kés API

Containers synchronization .

Handles services crashes and errors Node Poot

Pod - smallest deployable units of computing -

* —runs container L
Node - virtual or physical machine — multiple pods = W ' W W

Cluster — a group of nodes or machines

Deployments
« Specify your desired state hitps: mbridgesemantics.com/anzo/v5.4/userdoc/k8s-concepts.htm
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Public

1 apiVersion: apps/vi

2 kind: Deployment
3 metadata:
4 name: frontend
5 spec:
selector:
matchlLabels:
app: guestbook
tier: frontend
replicas: 3
template:
metadata:

labels:
app: guestbook
tier: frontend

spec:

containers:

- name: php-redis
image: gcr.io/google-samples/gh-frontend:vé4
resources:

requests:
cpu: 100m
memory: 100Mi
env:
- name: GET_HOSTS_FROM
value: dns

ports:
- containerPort:

43
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Public

Infrastructure as a Service

Cloud Computing Platforms allows to develop, run and manage applications without building
and maintaining the infrastructure

Vendor provides computing resources and backend infrastructure
» Storage, servers, network, virtualization,
» Security is shared responsibility between vendor and customer

O\ AAzu re
1i'amazon ) )
' O Google Cloud Alibaba Cloud

Public
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Platform as a Service (PaaS)

- Vendor provides and manages backend infrastructure, but also provides software and tools
needed for application development

- Configuration as Code approach on bremise ... ... -
a Service Service Service

J

e

Applications Applications Applications Applications

g IHIIEHHI

Jopuap Ag paBeuey

Data

Managed by You

J

Managed by You

Middleware Middleware Middleware

Managed by You
r

Virtualization Virtualization

sopuap Ag paBeuey

sopuap Ag paBeuely

LS

Storage Storage Storage Storage

MNetworking

https://hazelcast.com/glossary/platform-as-a-service-paas/

MNetworking

[
\
\
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Summary

Public

Microservices enables independent development and deployment
Both Backend and Frontend applications can follow the pattern
They are not suitable for all applications and situations

Can be easily monitored and deployed

Testing across multiple levels to ensure quality

Ecosystems exist to facilitate microservice development
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Thank you.

Contact information:

Richard VSiansky; Nodar Pylypyshak
richard.vsiansky@sap.com; nodar.pylypyshak@sap.com

=07 Bring out your best.

© 2024 SAP SE oran SAP affiliate company. All rights reserved. See Legal Notice on www.s ap.com/legal-notice for use terms, disclaimers, disclosures, orrestrictions related to this material.
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Resources

Public

Fowler M., Microservice Testing, https://martinfowler.com/articles/microservice-testing/

History of microservices,
https://www.researchgate.net/publication/315664446_Microservices_yesterday_today_and_to
MOorrow

More about microservices, https://blogs.newardassociates.com/blog/2023/you-want-modules-
not-microservices.html

VMWare, Container Deployment, https://www.vmware.com/topics/container-deployment

Vertical/Horizontal scaling, https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

Microservices according to DHH, https://www.youtube.com/watch?v=rkXGSLf-rvVQ
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