
Public

To Microservices and
Beyond

Richard Všianský; Nodar Pylypyshak, SAP

November 07, 2024

Add partner
logo and alt text

2Public

Public

Agenda

1. Microservices

2. Microservices vs Monolith

3. Microservices disadvantages

4. Microservices communication patterns

5. Logging

6. Testing

7. Scalable deployment

3Public

Public

Microservices introduction

Microservice architecture allows developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an HTTP API.

It allows to distribute responsibilities of different parts of a product across multiple services

4Public

Public

Microservices introduction

Note: Monolith implementation might require communication with 3rd party services (0Auth for
example), but it does not make it microservice architecture

5Public

Public

Little bit of history

1960s - Large-Scale Software Challenges: Issues with large-scale software development began
surfacing, leading to a need for new design methods and structures.

1970s - Rise of Software Design Research

1980s - Early mentions of software architecture began

1990s - Foundation of Component-Based Software Engineering (CBSE)

Early 2000s - Service-Oriented Computing (SOC): aimed at managing the complexity of distributed
systems and using message-passing for service communication.

Today - Microservices Emergence: As a streamlined successor to SOA, microservices focused on
creating simple, single-function services to reduce complexity.

6Public

Public

Comparison of microservice and monolith architectures

1. Smaller codebase

2. Microservices bring team the autonomy and its own lifecycle.

1. you need to deploy multiple times a day? Good, you can do it

3. Microservice approach preferring that a team should own a product over its full lifetime.

1. “you build, you run it”, development team takes full responsibility for the software in production.

4. Microservices bring clear domain boundaries (but of course, you can mess everything)

5. With microservices its easier to introduce new library or any other dependency (just make sure
that library is compliant with company policies)

7Public

Public

Microservices disadvantages

Meme: https://knowyourmeme.com/memes/pepe-silvia

https://knowyourmeme.com/memes/pepe-silvia

8Public

Public

Microservices disadvantages

1. More complex maintenance

2. Increased security complexity

3. Data consistency and transaction

4. Local setup

5. Issue tracing becomes much more difficult with big amount of services

9Public

Public

Things to consider

1. Design to handle failures

2. Monitoring and alerting

3. Communication

10Public

Public

Design to handle failures

A consequence of using microserviсes is that
applications need to be designed so that they can
tolerate the failure of other services. Any service
call could fail due to unavailability, the client has
to respond to this as gracefully as possible.

11Public

Public

Monitoring and alerting

Since services can fail at any time, it's important to
be able to detect the failures quickly by using:

1. Metrics: Prometheus and Grafana

2. Centralized logging: Elasticsearch, Logstash
and Kibana

3. Error tracking: Sentry

4. Tracing: Jaeger and Zipkin

Grafana logo https://grafana.com/docs/grafana/latest/

Kibana logo https://www.elastic.co/kibana

Jaeger logo https://www.jaegertracing.io/

Sentry logo https://sentry.io/branding/

https://grafana.com/docs/grafana/latest/
https://www.elastic.co/kibana
https://www.jaegertracing.io/
https://sentry.io/branding/

12Public

Public

Grafana

Grafana example: https://grafana.com/grafana/dashboards/11159-nodejs-application-dashboard/

https://grafana.com/grafana/dashboards/11159-nodejs-application-dashboard/

13Public

Public

Kibana

Kibana example https://www.elastic.co/kibana

https://www.elastic.co/kibana

14Public

Public

Jaeger tracing

Jaeger example https://www.jaegertracing.io/docs/1.62/

https://www.jaegertracing.io/docs/1.62/

15Public

Public

Sentry

Sentry example https://sentry.io/welcome/

https://sentry.io/welcome/

16Public

Public

Do you really need all of this? Let us tell you a short story

17Public

Public

Communication types

1. Synchronous Communication – direct communication, client waits for server to respond

2. Asynchronous Communication – client doesn’t wait for the response

18Public

Public

How microservices communicate between each other?

1. HTTP/HTTPS

2. Messaging queues (RabbitMQ, Apache Kafka)

1. Send message to a queue, specific service will consume it

2. Example: Order Service sends a message to a queue and Shipping Service receives it

3. RPC (gRPC) – remove procedure calls

1. Allows to call another service endpoint as it is local method

4. Event streaming

1. Populate message to all services

2. Example: order was made so notification service, shipping service and other services got a message

19Public

Public

Communication and central logging demo

20Public

Public

Do you really need microservices?

Well, lets start from one important thing, what microservices bring in general?

“Microservices are more about the organisational structure than about organisation of your code” –
DHH, creator of Ruby on Rails

1. “Don’t have more microservices than users”.

• Sometimes you need to start small just one repo and nothing else

2. How much time it will take to split a monolith into smaller services?

3. What benefit it will bring you in the end?

21Public

Public

Our experience

Our part of product started to grow and we decided to split

22Public

Public

Things to consider before migration to microservices

1. Do you need to transform existing data before migration?

2. How you will migrate the data to a new database

• You need to create a migration script to migrate all data

• Make sure that you have proper logging and metrics during the whole process to not loose any data

• You should be able to rollback the whole migration in case or error

3. You might need to run old implementation of monolith together with a new microservice to
have a synced data (still, it’s a very tricky part)

23Public

Public

Vertical scaling

Vertical scaling – upgrading hardware (CPU, RAM, SSD, etc..) for existing services/instances

Picture from https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

24Public

Public

Horizontal scaling

Horizontal scaling – increase the number of instances (buying more servers or increasing number
of virtual machines)

Picture from https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

25Public

Public

Key points of vertical and horizontal scaling

1. Limitations

1. Vertical scaling is limited

2. For horizontal scaling you can add as many machines or virtual machines as you want

2. Costs

1. Vertical scaling is cheaper as you need to upgrade just one component

2. Horizontal scaling has high costs initially

3. Complexity of maintenance

1. Vertical scaling has low complexity

2. Horizontal scaling is more difficult to maintain

4. Failure resilience

1. Horizontal scaling has high resilience, because other servers will provide backup

2. Vertical has low resilience because there is only one point for access

26Public

Public

- An approach to bring Microservices
architecture to Frontend side

- Microservice team usually develop
also a microfrontend application

- Teams can use different frameworks, not blocked by others, code is separated

- Enable independent releases

- One client (shell) consists of several UI microfrontend applications

- Downsides

- Using different frameworks is not scalable (sharing components, knowledge, programmers)

- Frontend parts usually interact a lot with each other

- Serving different applications can increase application size

Microfrontends

C. Jackson, https://martinfowler.com/articles/micro-frontends.html

https://martinfowler.com/articles/micro-frontends.html

27Public

Public

Header

Client

(host application)

Dashboard

* https://www.signavio.com/products/process-intelligence/, Illustrative image

Notifications

https://www.signavio.com/products/process-intelligence/

28Public

Public

https://martinfowler.com/articles/micro-frontends.html

https://martinfowler.com/articles/micro-frontends.html

29Public

Public

Testing

End-to-end
tests

Component
tests

Integration tests

Unit tests

30Public

Public

Testing

End-to-end
tests

Component
tests

Integration tests

Unit tests

- Usually on level of class or a group of related
classes

- Tests expected behaviour

- Can serve as a documentation, explain what
a class/function does

- Consider costs of maintenance for having a
larger number of tests

31Public

Public

Testing

End-to-end
tests

Component
tests

Integration tests

Unit tests

- To verify the communication paths and
interactions between components

- On level of service layers

- Example - test between a service, a data
store and a cache

- Use unit testing and contract testing to
validate both sides of the communication

32Public

Public

Testing

End-to-end
tests

Component
tests

Integration tests

Unit tests

- A component is well-encapsulated, coherent
and independently replaceable part of a
system = a service itself

- Acceptance tests

- Provides controlled testing behaviour

- Usage of network interaction / in-memory
doubles

- Network interaction – more reliable

- In-memory doubles – faster

- A shim = API/network interceptor

33Public

Public

Testing

End-to-end
tests

Component
tests

Integration tests

Unit tests

- Verifies that a system meets external
requirements and achieves its goals

- Check correctness of messages
between services and also checks
network infrastructure

- Tested using exposed GUIs/APIs

- Reliability problems outside of team’s
control and asynchronous processes
lead to flaky tests

34Public

Public

Testing

End-to-end
tests

Component
tests

Integration tests

Unit tests

Slower

More effort

More integration

Faster

Low effort

More isolation

Test quantity

Manual
testing

35Public

Public

Live / video

E2E test example

36Public

Public

• An integration contract test verifies that the services meets the contract expected by a
consuming service

• Checks only inputs and outputs

• Allows to make safe changes

• Written by consumers and ran by producers

Contract testing

37Public

Public

• Load testing

• Testing high volume traffic

• Resiliency testing

• What happens if one service is down?

• Smoke testing

• Is application running?

• health_check endpoints are usually integrated in all services

• Security

• To discover exploit areas

• Static code analysis can be used (SonarQube, CodeQL, …)

• Performance

• Measuring performance metrics

Another types of testing

38Public

Public

• Traditional deployment

• Application code is built and deployed on a server/hardware

• Companies need to maintain the infrastructure

• Developer and server environments has to be compatible

Deployment

Application

Operating system

Hardware

39Public

Public

• A container includes all the code, runtime, libraries that an application needs to run

• Benefits

• Speed

• Agility and flexibility

• Resource utilization and optimization

• Run anywhere

• Docker, Podman

• Build image of your application (containing all you need to run the application)

• Run container of the application (one instance of your application)

• Docker Compose

• Allows to combine multiple Docker images to one (Application + Database example)

Container Deployment

https://medium.com/@goyalarchana17/why-containerised-deployment-6b0a87c68f1e

https://medium.com/@goyalarchana17/why-containerised-deployment-6b0a87c68f1e

40Public

Public

DockerFile of a simple Node Application

image to build, in this case latest Node.js LTS version

FROM node:lts-alpine

Change to the application directory

WORKDIR /app

Copy whole projecty

COPY . .

Install dependencies

RUN yarn install --production

Run the application

CMD ["node", "src/index.js"]

Expose the port the app runs on

EXPOSE 3000

41Public

Public

• Open-source container-orchestration system for automating application deployment,
scaling and management

• Containers synchronization

• Handles services crashes and errors

• Pod – smallest deployable units of computing

• – runs container

• Node – virtual or physical machine – multiple pods

• Cluster – a group of nodes or machines

• Deployments

• Specify your desired state

Kubernetes (K8s)

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/k8s-concepts.htm

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/k8s-concepts.htm

42Public

Public
https://docs.docker.com/get-started/workshop/02_our_app/

https://docs.docker.com/get-started/workshop/02_our_app/

43Public

Public

https://github.com/kubernetes/examples/blob/master/guestbook/frontend-deployment.yaml

https://github.com/kubernetes/examples/blob/master/guestbook/frontend-deployment.yaml

44Public

Public

• Cloud Computing Platforms allows to develop, run and manage applications without building
and maintaining the infrastructure

• Vendor provides computing resources and backend infrastructure

• Storage, servers, network, virtualization,

• Security is shared responsibility between vendor and customer

Infrastructure as a Service

45Public

Public

• Vendor provides and manages backend infrastructure, but also provides software and tools
needed for application development

• Configuration as Code approach

Platform as a Service (PaaS)

https://hazelcast.com/glossary/platform-as-a-service-paas/

https://hazelcast.com/glossary/platform-as-a-service-paas/

46Public

Public

• Microservices enables independent development and deployment

• Both Backend and Frontend applications can follow the pattern

• They are not suitable for all applications and situations

• Can be easily monitored and deployed

• Testing across multiple levels to ensure quality

• Ecosystems exist to facilitate microservice development

Summary

Contact information:

© 2024 SAP SE or an SAP affiliate company. All rights reserved. See Legal Notice on www.sap.com/legal-notice for use terms, disclaimers, disclosures , or restrictions related to this material.

Thank you.

Richard Všianský; Nodar Pylypyshak

richard.vsiansky@sap.com; nodar.pylypyshak@sap.com

48Public

Public

• Fowler M., Microservice Testing, https://martinfowler.com/articles/microservice-testing/

• History of microservices,
https://www.researchgate.net/publication/315664446_Microservices_yesterday_today_and_to
morrow

• More about microservices, https://blogs.newardassociates.com/blog/2023/you-want-modules-
not-microservices.html

• VMWare, Container Deployment, https://www.vmware.com/topics/container-deployment

• Vertical/Horizontal scaling, https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/

• Microservices according to DHH, https://www.youtube.com/watch?v=rkXGSLf-rVQ

Resources

https://martinfowler.com/articles/microservice-testing/
https://www.researchgate.net/publication/315664446_Microservices_yesterday_today_and_tomorrow
https://www.researchgate.net/publication/315664446_Microservices_yesterday_today_and_tomorrow
https://blogs.newardassociates.com/blog/2023/you-want-modules-not-microservices.html
https://blogs.newardassociates.com/blog/2023/you-want-modules-not-microservices.html
https://www.vmware.com/topics/container-deployment
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling/
https://www.youtube.com/watch?v=rkXGSLf-rVQ

	Slide 1: To Microservices and Beyond
	Slide 2: Agenda
	Slide 3: Microservices introduction
	Slide 4: Microservices introduction
	Slide 5: Little bit of history
	Slide 6: Comparison of microservice and monolith architectures
	Slide 7: Microservices disadvantages
	Slide 8: Microservices disadvantages
	Slide 9: Things to consider
	Slide 10: Design to handle failures
	Slide 11: Monitoring and alerting
	Slide 12: Grafana
	Slide 13: Kibana
	Slide 14: Jaeger tracing
	Slide 15: Sentry
	Slide 16: Do you really need all of this? Let us tell you a short story
	Slide 17: Communication types
	Slide 18: How microservices communicate between each other?
	Slide 19: Communication and central logging demo
	Slide 20: Do you really need microservices?
	Slide 21: Our experience
	Slide 22: Things to consider before migration to microservices
	Slide 23: Vertical scaling
	Slide 24: Horizontal scaling
	Slide 25: Key points of vertical and horizontal scaling
	Slide 26: Microfrontends
	Slide 27
	Slide 28
	Slide 29: Testing
	Slide 30: Testing
	Slide 31: Testing
	Slide 32: Testing
	Slide 33: Testing
	Slide 34: Testing
	Slide 35: E2E test example
	Slide 36: Contract testing
	Slide 37: Another types of testing
	Slide 38: Deployment
	Slide 39: Container Deployment
	Slide 40
	Slide 41: Kubernetes (K8s)
	Slide 42
	Slide 43
	Slide 44: Infrastructure as a Service
	Slide 45: Platform as a Service (PaaS)
	Slide 46: Summary
	Slide 47: Thank you.
	Slide 48: Resources

