
PV181 Laboratory of security

and applied cryptography

Seminar 10: Post Quantum Cryptography in Practice

Łukasz Chmielewski
chmiel@fi.muni.cz

| PV1811

Goals

• Why do we need post-quantum crypto?

– Why is it not called quantum crypto?

• Context + Main Schemes + Efficiency

• How to use it in Python / Java

• Homework

• In the first part I expect some discussions

• The intro is inspired by the work of Douglas Stebila,

an Associate Professor of cryptography from the

University of Waterloo, Canada.

2 | PV181

Outline

• Part 1: Discussion

– Introduction (also classic crypto reminder)

– Why do we need post-quantum crypto?

• Why is it not called quantum crypto?

• Security vs. Efficiency

• Part 2: Schemes

• Part 3: Libraries experimentation

• Homework

3 | PV181

Intro

4

encryption decryption

message
Alice

Public key of Bob

Bob

Adapted Source: Network and

Internetwork Security (Stallings)

Private key of Bob

Encrypted
message

Decrypted
original
message

| PV1815

Recall: Asymmetric cryptosystem

Recall: Digital signature scheme

6 | PV181

Signature

algorithm

Verification

algorithmmessage signed
message

Alice

Public key of Alice

Bob

Source: Network and

Internetwork Security (Stallings)

verified
message

Private key of Alice

Is there a difference?

Classic Crypto

• We experimented with classical crypto

– Also called “Pre-Post-Quantum” ☺

• Symmetric Crypto: AES, DES, ASCON, SHA-2

• Asymmetric Crypto: RSA, ECC, ECDSA, DSA

• Both kinds of primitives are constructed using

varying degrees of mathematical structure.

• The structure should imply that an adversary trying

to break the primitive needs to solve some hard

mathematical problem.

7 | PV181

RSA: reminder

1. Secret primes 𝑝, 𝑞: 𝑛 = 𝑝 ∙ 𝑞

2. Public exponent 𝑒:

gcd 𝑒, (𝑝 − 1) = gcd 𝑒, (𝑞 − 1) = 1

3. Private exponent 𝑑: 𝑑 ∙ 𝑒 ≡ 1 𝑚𝑜𝑑 𝜑 𝑛

Encryption (public 𝑛, 𝑒): 𝐸 𝑚 = 𝑚𝑒 𝑚𝑜𝑑 𝑛 = 𝑐

Decryption (private 𝑛, 𝑑): 𝐷 𝑐 = 𝑐𝑑 𝑚𝑜𝑑 𝑛 = 𝑚

8 | PV181

ECC: reminder
• Generating key pair

– Select a random integer d from [1,n − 1]

– Compute P = [d]G = d*G;

• Private key: d

• Public key: P,
– also: G, and curve details are also public

• Signature Algorithm: ECC

9 | PV181

RSA vs. ECC: what is easier?

• Which key is bigger: ECC or RSA?

• Why?

• Let N = p · q for random p, q such that log p ≈ log q.

• It takes at most 2 (log N)/2 ≈ 2 log p division attempts
– ECC is similar

• But there exist much faster attacks, such as the
(general number field sieve, GNFS) that takes the
following number of operations:

• Can it be done even faster?

10 | PV181

PQC Intro

11

Task 0

• Why “I know Kung-fu”?

• One single interesting point from the preparation

• Please be fast ☺

• You were asked to look at:

– https://en.wikipedia.org/wiki/Post-quantum_cryptography

12 | PV181

https://en.wikipedia.org/wiki/Post-quantum_cryptography

Quantum computing

• Processing using quantum

mechanics

• Processing information in

superposition can dramatically

speed up some computations

• But not everything (quantum

computers aren't magic)

• Troubles building above prototype.

• Quantum Cryptography?

– Exists but we do not discuss that

today.

13 | PV181

Douglas Stebila

Quantum supremacy?

• Quantum supremacy or "quantum advantage" is the

potential ability of quantum computing devices to solve

problems that classical computers practically cannot.

• Superpolynomial speedup over the best known or

possible classical algorithm.

• Was quantum supremacy achived?

• Yes, in a way (2022-)

• Wiki: In March of 2024, D-Wave Systems reported on an experiment using a

quantum annealing based processor that out-performed classical methods including

tensor networks and neural networks. They argued that no known classical approach

could yield the same results as the quantum simulation within a reasonable time-frame

and claimed quantum supremacy. The task performed was the simulation of the non-

equilibrium dynamics of a magnetic spin system quenched through a quantum phase

transition.

14 | PV181

https://en.wikipedia.org/wiki/D-Wave_Systems

Quantum supremacy?

15 | PV181

Quantum Known Vulnerabilities
(one slide summary)

16 | PV181

Douglas Stebila

When will a cryptographically relevant

quantum computer be built?

17 | PV181

https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/

PQC Schemes

18

Post-Quantum Cryptography
(Quantum Safe Against Grover and Schorr Algorithms)

19 | PV181

Douglas Stebila

Standardization of PQ cryptography

20 | PV181

Issue: Harvest now, decrypt later: record

encrypted communication now, decrypt it

once you have a quantum computer

Post-Quantum (PQ) Schemes

• NIST runs a standardization for PQ schemes:
– https://csrc.nist.gov/projects/post-quantum-cryptography

• What is scandalized?

– Digital Signatures

– Key Encapsulation Mechanisms

• PQ aspects:

– Lack of confidence in security

– Slow computation

– Large communication (big keys)

• There are many libraries, but often non-trivial to install:
– https://libpqcrypto.org/index.html

(not only standard installation but dependencies need to be installed separately)

21 | PV181

https://csrc.nist.gov/projects/post-quantum-cryptography
https://libpqcrypto.org/index.html

Task 1

• Discuss in pairs what Key Encapsulation

Mechanism is?

• What components could there be?

• Write pros of that solution?

• Write cons of that approach?

• What is the difference between PQC and ECC/RSA

in this context?

22 | PV181

Post-Quantum Cryptography
(Quantum Safe Against Grover and Schorr Algorithms)

23 | PV181

Based on Douglas Stebila’s presentation

Hash- & symmetric-based

• Can only be used to make

signatures, not public key

encryption

• Very high confidence in

hash-based signatures, but

large signatures required

for many signature-

systems

Code-based

• Long-studied

cryptosystems with

moderately high confidence

for some code families

• Challenges in

communication sizes

Multivariate quadratic

• Variety of systems with

various levels of

confidence and trade-offs

• Substantial break of

Rainbow algorithm in

Round 3

• Also crypt-currency based

on Rainbow broken

Lattice-based

• High level of academic

interest in this field, flexible

constructions

• Can achieve reasonable

communication sizes

• Cons: some quantum

concerns, patent concerns

Elliptic curve isogenies

• Newest mathematical

construction

• Small communication,

slower computation

• Full break of SIKE in

Round 4

NIST PQC standards

• Key encapsulation mechanisms

– ML-KEM (FIPS 203)
• a.k.a. Kyber

• Lattice-based

• Digital signatures

– ML-DSA (FIPS 204)
• a.k.a. Dilithium

• Lattice-based

– SLH-DSA (FIPS 205)
• a.k.a. SPHINCS+

• Stateless hash-based

– FN-DSA (draft pending)
• a.k.a. Falcon

• Lattice-based

24 | PV181

PQ vs Classic algorithm sizes

25 | PV181

Douglas Stebila

Task 2

26 | PV181

• Discuss in pairs how to approach “Lack of

confidence in PQ security”?

• After 5 minutes: propose the main approach.

• We select one approach and then for 10 min

discuss how would you implement it and:

– List 3 pros

– List 3 cons

The LWE problem: search and decision

• The Learning With Errors (LWE) problem asks to recover a

secret vector s=(s1,…sn), where each si is in Zq, given a

sequence of random, “approximate” linear equations on s.

27 | PV181

https://blog.cloudflare.com/post-quantum-key-encapsulation/

https://blog.cloudflare.com/post-quantum-key-encapsulation/

Task 3 (Python)

28 | PV181

• Check the code for ECC (ecc.py) and run it.

– What do you see? What is the speed?

– Add some averaging of multiple executions.

– Modify it so the slowest curve is used.

– Also, try the slow hash function.

• QuantCrypt: https://github.com/aabmets/quantcrypt

• Measure the time of two of the PQC schemes: one

KEM and one Digital Signature.

• An example (without measurements) is in IS:

pq1.py and pq2.py.

https://github.com/aabmets/quantcrypt

Task 4 (Optional, Java)

29 | PV181

• Have a look at MLDSAExample.java

• What does this code do?

• https://www.bouncycastle.org/

• Implement time measurements and check the size

of the keys, signatures etc.

https://www.bouncycastle.org/

Extra Materials

30 | PV181

• QuantCrypt code examples:

– https://github.com/aabmets/quantcrypt/wiki/Code-Examples

• Bouncy Castle

– PQC Almanac:

• https://downloads.bouncycastle.org/java/docs/PQC-Almanac.pdf

– Test Code Examples (that code you need to simplify for homework):

• https://github.com/bcgit/bc-

java/tree/main/core/src/test/java/org/bouncycastle/pqc/crypto/test

https://github.com/aabmets/quantcrypt/wiki/Code-Examples
https://downloads.bouncycastle.org/java/docs/PQC-Almanac.pdf
https://github.com/bcgit/bc-java/tree/main/core/src/test/java/org/bouncycastle/pqc/crypto/test
https://github.com/bcgit/bc-java/tree/main/core/src/test/java/org/bouncycastle/pqc/crypto/test

Assignment 8 – Efficiency of Signature

Generation Algorithms
• This is a programming assignment. Please upload your

scripts/code and the required analysis via the course webpage.

• The deadline for submission is Dec. 6, 2024, 8:00.

– -3 points for each started 24h after the deadline.

• Your code should be contained in one .py and one .java file.

Please name the submission file as <uco_number>_hw8.zip.

Put there both the python code, the java project folder, the

analysis document, and all data produced during analysis (as

long as the size is reasonable).

• The code must contain comments so that it is reasonably easy

to understand how to run the script for evaluating each answer.

36 | PV181

Assignment 8 - Tasks
1. Using quantcrypt implement the following signature schemes: Dilithium, Falcon, FastSphincs,

SmallSphincs. In particular, use the library to run key generation, signature generation, and

signature verification. [1 points]

2. Perform a performance time efficiency comparison analysis for these schemes. Analyze key

generation, signature generation, and signature verification separately. Write a summary of your

results, which primitive seems to be the best, and for which use case. Attach such a summary to

your exercise submission. To have reliable results, perform operations a number of times and

average results. Compare the results for ECDSA (using the same file) using the curve used during

the seminar (SECP521R1, SHA3_512). [4 points]
Remarks: (1) For the sake of computational time, use a small message (i.e., the alice.txt file from IS) to be signed.

The same message should be used for all comparisons. (2) By “use case”, I mean a scheme, for example, some

algorithms are slow but have fast verification, which might make them suitable for some applications. 3) The page

limit on the attached analysis is 3 pages in total.

3. Perform a similar analysis with respect to the public key size, private key size, and signature size.

Compare the results ECDSA (using the same file) using the curve used during the seminar

(SECP521R1, SHA3_512) [1.5 points]

4. Implement a hybrid scheme and comment on its efficiency with respect to both execution time and

sizes like in point 3 [1 point]

5. Implement Dilithium (ML-DSA) and Falcon (see the last link in extra materials) in Java and compare

the efficiency results to quantcrypt. Can you comment on the results? The functionality should be

analogical. [2.5 points]

Good luck!!!

37 | PV181

38 | PB173 Org. & Introduction

Questions

	Slide 1: PV181 Laboratory of security and applied cryptography
	Slide 2: Goals
	Slide 3: Outline
	Slide 4: Intro
	Slide 5
	Slide 6: Recall: Digital signature scheme
	Slide 7: Classic Crypto
	Slide 8: RSA: reminder
	Slide 9: ECC: reminder
	Slide 10: RSA vs. ECC: what is easier?
	Slide 11: PQC Intro
	Slide 12: Task 0
	Slide 13: Quantum computing
	Slide 14: Quantum supremacy?
	Slide 15: Quantum supremacy?
	Slide 16: Quantum Known Vulnerabilities (one slide summary)
	Slide 17: When will a cryptographically relevant quantum computer be built?
	Slide 18: PQC Schemes
	Slide 19: Post-Quantum Cryptography (Quantum Safe Against Grover and Schorr Algorithms)
	Slide 20: Standardization of PQ cryptography
	Slide 21: Post-Quantum (PQ) Schemes
	Slide 22: Task 1
	Slide 23: Post-Quantum Cryptography (Quantum Safe Against Grover and Schorr Algorithms)
	Slide 24: NIST PQC standards
	Slide 25: PQ vs Classic algorithm sizes
	Slide 26: Task 2
	Slide 27: The LWE problem: search and decision
	Slide 28: Task 3 (Python)
	Slide 29: Task 4 (Optional, Java)
	Slide 30: Extra Materials
	Slide 36: Assignment 8 – Efficiency of Signature Generation Algorithms
	Slide 37: Assignment 8 - Tasks
	Slide 38

