
PV181 Laboratory of security
and applied cryptography

Introduction to Applied Cryptography
Part 2, seminar 3: Asymmetric cryptography & OpenSSL

| PV181

David Rajnoha and Łukasz Chmielewski
(based on the slides of Marek Sys)
Email: 492758@mail.muni.cz and chmiel@fi.muni.cz
Consultations (Łukasz): A406, 9.00-11.00 on Fridays

1

mailto:492758@mail.muni.cz
mailto:chmiel@fi.muni.cz

The Topic for Today

• Working with OpenSSL
• Public keys, encryption, signing
• Public Key Certificates and the Chain of Trust
• In assignment, we will return to Python

Cryptography package
− https://cryptography.io/en/latest/

| PV1812

https://cryptography.io/en/latest/

Plan for Today

• Crypto with OpenSSL
• Digital certificates
• Certificates with OpenSSL
• Trust Models
• Building the chain of trust

| PV1813

OpenSSL and public-key crypto

• A command line tool for using various cryptographic
functions

• Can be used for (within this course)
– Create and manage public and private keys
– Calculation of Message digest
– Public-key cryptographic operations
– Encryption and decryption with Ciphers
– Creation of X.509 certificates, CSRs and CRLs

| PV1814

encryption decryption

message
Alice

Bob’s Public key

Bob

Adapted Source: Network and
Internetwork Security (Stallings)

Bob’s Private key

Encrypted
message

Decrypted
original
 message

| PV181

Asymmetric cryptosystem – RSA

6

RSA with OpenSSL
• Generate key pairs

openssl genrsa

• Extract the public key
openssl rsa

• Encrypt and decrypt
openssl pkeyutl

| PV1817

Task 1: OpenSSL genrsa
● Generate a RSA4096 key using OpenSSL
● Extract the public key from the generated key
● Encrypt bob.txt into ciphertext.txt
● Decrypt back ciphertext.txt

● Try to encrypt file alice.txt with Alice's public key into
ciphertext.txt – does it work?

| PV1818

Digital signature scheme

| PV181

Signature

 algorithm

Verification

algorithm
message signed

message

Alice

Alice’s public key

Bob

Source: Network and
Internetwork Security (Stallings)

verified
message

Alice’s private key

9

| PV181

RSA DSA ECDSA
Keys Public + Private

Key Pair
Public + Private Key
Pair

Public + Private Key
Pair

Nonce Required No Yes Yes
Underlying Principle Prime Factorization Discrete Logarithm DL on Elliptic Curves

Equivalent Key Size 3072 bits 3072 bits 256 bits
Signing Performance Slower Faster Fastest

Verification Perf. Faster Slower Fast
Vulnerabilities Improper Padding,

Small Key Sizes
Nonce Reuse, Weak
RNGs

Nonce Reuse,
Side-Channel Attacks

Security Level High (with large
key sizes)

High (but depends on
nonce security)

High (with smaller key
sizes)

Use Cases General-purpose,
widely adopted

Digital Signatures
(FIPS compliant)

Modern applications
(cryptocurrencies,
SSL/TLS)

10

| PV181

The scheme
remains the
same!

11

Digital signature scheme

Signature

 algorithm

Verification

algorithm
message signed

message

Alice

Alice’s public key

Bob

Source: Network and
Internetwork Security (Stallings)

verified
message

Alice’s private key

ECDSA with OpenSSL
• Generate key pairs

openssl ecparam

• Generate corresponding public key
openssl ec

• Sign and verify
openssl pkeyutl
openssl dgst

| PV18112

Task 2: OpenSSL ECDSA
● Generate an ECDSA keypair using OpenSSL

− It will be also used in further tasks.

● Sign a file using the private key

● Verify the signature using the public key

● What is the difference between openssl pkeyutl and
openssl dgst ?

| PV18113

Digital Certificates

• Purpose: Prove ownership of a public key.

• Function: Bind a public key to an identity (e.g., name,
email).

• Verification: Signed by a trusted third party called a
Certification Authority (CA).

• Models: Implemented through centralized and
decentralized systems.

| PV18114

Public Key Infrastructure (PKI)
• A framework of roles and procedures for managing digital

certificates and public keys.
- Issue, maintain, revoke, suspend, reinstate, and renew digital

certificates.

- Create and manage a repository for public keys.

• Certification Authority (CA) – stores, issues, signs certs
• Registration Authority (RA) – verifies the identity, could be

part of CA
• Central directory – cert requests issued and revoked,
• Management system
• Certificate policies

| PV18115

X.509 PKI certificate

• Certification Authority – trusted third party
• Certificate revocation lists (CRL) – certificates no

longer be trusted (compromised key, CA,…)
• RFC5280 – defines format and semantics of certs

and CRLs
• X.509 versions 1,2,3

| PV1811616

X.509 PKI certificate content
Serial Number: unique ID of cert
Subject: ID of entity
Signature algorithm:
Signature:
Issuer: verifier of info and issued cert
Valid–From: date cert is first valid from
Valid–To: expiry date
Key-Usage: purpose of PK (signature, cert signing, …)
Public Key:
Thumbprint algorithm: to compute hash of PK cert
Thumbprint (fingerprint): hash of abbreviated PK cert

| PV18117

Self-signed certificate
● Signed directly by the requester rather than a trusted third

party.

● Contradicts the traditional role of certificates, which typically
rely on a trusted CA to establish credibility.

● Testing Purposes: Often used in development and testing
environments where establishing trust is unnecessary.

● Internal or Limited Use: Suitable in scenarios where authority
verification is not required, but the format of a certificate is
necessary.

| PV18118

OpenSSL: CSR and self-signed certificate
• Create a certificate signing request (CSR)

openssl req -key alice_private.pem -new -out alice_domain.csr

• Create both key and CSR with one command
openssl req -newkey rsa:4096 -keyout alice_private.pem -out
alice_domain.csr

• Create a self-signed certificate
openssl x509 -signkey alice_private.pem -in alice_domain.csr -req -days
365 -out alice_domain.crt

• You can verify your CSR (this checks the signature of the file)
openssl req -text -in alice_domain.csr -noout -verify
What happens when you modify the signature or any field of the certificate?

• Create a CSR with the key you have generated and self-sign it.
– Which fields do you identify?

• An OpenSSL cook book (for quick reference):
https://www.feistyduck.com/books/openssl-cookbook/

| PV18119

https://www.feistyduck.com/books/openssl-cookbook/

OpenSSL: CSR and certificate cont’d
• Sign CSR to create certificate

openssl x509 -req -in alice_domain.csr -CA ca_cert.crt -CAkey
ca_key.pem -out alice_domain.crt -days 365

• Check the (SSL) key and verify the consistency
openssl rsa -in alice-private.key -check -noout
(without printing the key)

• The hash values of the certificate and key; hash values can be
compared to verify the certificate and key match

• openssl x509 -noout -modulus -in alice_domain.crt | openssl sha256

• openssl rsa -noout -modulus -in alice_private.pem | openssl sha256

• Try it with your key and self-signed certificate.

| PV18120

Task 3: Self-signed
● Generate a self-signed x509 certificate using OpenSSL

for the key created in the task 2
− Use sha256

− Set the validity for 1 year

− Use the interactive mode

● What is the option for self-signed certificate, what is the one for
creating CSR?

● What additional information were you asked for?

| PV18121

Task 4: Certificate Signing Request

● Create a (CSR) for a new key:
− Specify a Different Identity (CN, Organization...)

− Use the -newkey option to generate a new key and the -keyout
option to specify the key file's output location.

● Sign the CSR with the Self-Signed Certificate from
Task 3
− Use -CA and -CAkey options

● Verify the contents of the newly created certificate
− Do you see different subject and issuer?

| PV18122

• Create pairs
• Create CSR
• Send CSR to your partner
• Verify their CSR
• Issue their certificate
• Send the certificate back

For the certificate sharing, you can use the shared folder:
https://drive.google.com/drive/folders/1-CQBWajT2JaG3SZtl
aSjRaqH41Z_MrET?usp=drive_link

Task 5: Building Chain Loop of Trust

| PV18126

https://drive.google.com/drive/folders/1-CQBWajT2JaG3SZtlaSjRaqH41Z_MrET?usp=drive_link
https://drive.google.com/drive/folders/1-CQBWajT2JaG3SZtlaSjRaqH41Z_MrET?usp=drive_link

Certificate issuing

https://help.bizagi.com/process-modeler/en/index.html?cloud_auth_certificates.htm

| PV18128

Certificates hierarchy

• root CA (trust anchor) - self-signed certificate
• Intermediate CA’s
• End entity – user certificate

| PV18129

Chain of trust

| PV181

https://en.wikipedia.org/wiki/Chain_of_trust

30

https://en.wikipedia.org/wiki/Chain_of_trust

Certificate verification

Checking single cert:
• current date against validity period
• current validity of CA public key
• signature of CA on cert
• check whether the certificate is revoked
• policies

| PV18131

Certificate validation path

Input: cert path, trust anchor

Path validation:
1. Check all certs if still valid
2. Check revocation status of certs
3. Check issuer = of previous cert subject
4. Check policy constraints
5. …

| PV18132

Revocation

• Reasons for revocation
– key compromise (most common), CA compromise,

affiliation change,…
• Two states:

– revoked – irreversibly for compromised private key
– hold – unsure user about key compromising, can be

reinstalled
• Checked using:

– CRL – list of revoked certs
– Online Certificate Status Protocol – on demand

| PV18133

Introduction to Asymmetric Cryptography
(Recall Slides)

READ BEFORE THE SEMINAR

| PV18136

Public vs private key cryptography

• Private (symmetric)
– both parties share secret (private)
– Pros: fast encryption
– Cons: key distribution requires secure channel

• Public (asymmetric)
– one key is public
– Pros - key distribution – insecure channel is OK
– Cons - slow encryption

• Practice - private + public:
– public used to establish key for private key system

| PV18138

Asymmetric cryptography

• Two related keys – created by one party
– different inverse operations (encryption - decryption,

signing – signature verification)
• Properties - hard to compute private from public key

– based on hard mathematical problems
• Hard problems and cryptosystems:

– Integer factorization – RSA, Rabin, …
– Discrete logarithm problem (DLP): ElGamal, EC, DSA, …
– Others (DH, decoding,…) – Diffie-Helman, McElliece,…

| PV18139

encryption decryption

message
Alice

Public key of

Bob

Bob

Adapted Source: Network and
Internetwork Security (Stallings)

Private key of

Bob

Encrypted
message

Decrypted
original
 message

| PV181

Asymmetric cryptosystem

40

Asymmetric cryptosystem

• Bob generates both keys:
– Public is sent to Alice
– Private is kept secret

• Alice encrypts a message with her public key and
sends it to Bob

• Bob decrypts the ciphertext using his private key
• Are big messages encrypted?

– Usually not. Only symmetric keys are encrypted and
those are used to encrypt big messages. Why?
• Symmetric crypto is more efficient than asymmetric.

| PV18141

Digital signature

• Asymmetric cryptography
– Private key – signature generation (usually only hash of

data is signed not data itself)
– Public key – a verification procedure

• Data integrity + data origin + non-repudiation:
• Non-repudiation - correct signatures can be

generated only by those with the private key –
differently than for MAC!

• The digital signature itself does not give any
guarantees concerning signing time.

| PV18142

Digital signature scheme

| PV181

Signature

 algorithm

Verification

algorithm
message signed

message

Alice

Public key of

Alice

Bob

Source: Network and
Internetwork Security (Stallings)

verified
message

Private key

of Alice

43

Digital signature

• Alice generates key pair
– Public key is published (sent to Bob) for verification of

signature
• Alice sign a document using her private key
• Bob use public key to verify the digital signature
• Classical examples: RSA, ECC
• PQC example: Dilithium

| PV18144

RSA: mathematics

1. Secret primes :
2. Public exponent :

3. Private exponent :

Encryption (public):
Decryption (private):

• RSA-1024: means has 1024 bits and
– Is 1024 bit secure?

| PV18145

RSA: example
• Intentionally small numbers (not secure)
• We generate parameters:

• Public exponent is selected:
– 3

• Private exponent is computed:

• The public key is:
• The private key is:
• Encryption/decryption:

– Message
– Encryption
– Decryption 65

| PV18146

RSA Padding example (PKCS#1 v1.5)

• Document
– “00 01 02 03 04 05 06 07 07 06 05 04 03 02 01”

• Hash of the document (sha-1)
– “b3 39 90 4c d2 a0 10 e6 19 37 eb e5 b5 83 37 8c 5d 10

51 95”
• Padded hash

– “00 01 ff 00
30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 b3 39 90
4c d2 a0 10 e6 19 37 eb e5 b5 83 37 8c 5d 10 51 95”

| PV18148

RSA in practice: Various Paddings
• μ(M) = 6b bb … bb ba || Hash(M) || 3x cc

where x = 3 for SHA-1, 1 for RIPEMD-160
– ANSI X9.31

• μ(M) = 00 01 ff … ff 00 || HashAlgID || Hash(M)
– PKCS #1 v1.5

• μ(M) = 00 || H || G(H) ⊕ [salt || 00 … 00]
where H = Hash(salt, M), salt is random, and G is a
mask generation function
– Probabilistic Signature Scheme (PSS)

| PV18149

Hard problems

| PV181

•

50

 Digital Signature Standard (DSS)

| PV18152

Digital Signature Algorithm (DSA)
• Proposed in 1991 by NIST
• In 1994 the selection procedure for Digital Signature Standard

(DSS) was concluded – DSA (Digital Signature Algorithm) was
selected.

• Modified version of ElGamal algorithm, based on discrete
logarithm in .

• Became FIPS standard FIPS 186 in 1993.
• Slightly modified in 1996 as FIPS 186-1.
• Extended in 2000 as FIPS 186-2.
• Updated in 2009 as FIPS 186-3 (new key sizes).

• Now NIST FIPS 186-3 supports RSA & DSA & ECDSA.

| PV18153

DSA: keys

• Key generation
– Choose random x, such that 0 < x < q.
– Calculate y = gx mod p.

• Private key: x.
• Public key: y & (p, q, g).

| PV18156

DSA: math recall
• Signature generation

– Generate a random per-message value k such that 0 < k < q.
– Calculate r = (gk mod p) mod q
– Calculate s = (k−1(H(m) + x*r)) mod q
– The signature is (r, s).

• Signature verification
– w = (s)−1 mod q
– u1 = (H(m)*w) mod q
– u2 = (r*w) mod q
– v = ((gu1*yu2) mod p) mod q
– The signature is valid if v = r

• For DSA (1024,160) the signature size will be 2x160 bits.
| PV18157

Elliptic curve DSA (ECDSA)

• Elliptic curves invented by Koblitz & Miller in 1985.
• ECDSA proposed in 1992 by Vanstone
• Became ISO standard (ISO 14888-3) in 1998
• Became ANSI standard (ANSI X9.62) in 1999

• ECDSA is a version of DSA based on elliptic
curves.

• More about this topic later…

| PV18159

Digital certificate

| PV18164

Digital certificate

• is used to prove ownership of the public key

• binds a public key to identity (identity, email,…)

• Public key certificate is signed by a trusted third
party – Certification Authority (CA)

• two models: centralized and decentralized

| PV18165

Digital certificate – typical use case
• Two-way authentication Alice and Bob can verify each other’s public

key and identity with their corresponding certificates obtained from
CA.

• Alice and Bob get each other’s key through the corresponding
certificates and not directly.

• In practice, business transactions rely on one-way authentication
• Example

– When a client (my laptop) establishes a connection with Amazon, it is essential that
the client authenticates the website; The company does not really care who the
client is as long as the payment information is correct.

– The client will request Amazon's certificate, verify its validity and then send the
encrypted session key to Amazon's website.

| PV18166

