
Overview of crypto

standards

Zdeněk Říha

Hash functions

o MD5 (128 bit output) – defined v RFC 1321

o RIPEMD-128/RIPEMD-160 in ISO/IEC 10118-3

o BLAKE2b, BLAKE2s defined in RFC 7693.

Symmetric crypto

 Modes of operation (FIPS 81)

 ECB (Electronic Code Book)

 CBC (Ciper Block Chaining)

 CFB (Cipher Feedback Mode)

 OFB (Output Feedback Mode)

 Newer modes of operation

 CTR (Counter Mode) [FIPS SP 800-38A]

 CMAC [FIPS SP 800-38B], CCM [FIPS SP 800-38C],

GCM [FIPS SP 800-38D], XTS-AES [FIPS SP 800-

38E]

 Other in FIPS SP 800-38F, FIPS SP 800-38G

See:

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Padding

 ISO 9797 method 1 padded with values 0x00

 to remove the padding the length of the original message is needed

 ISO 9797 method 2 (ISO 7816-4, EMV’96) – first the value 0x80 is

added, then bytes of 0x00 are added

 PS = ‘80 00‘, if 2 bytes are needed

 PS = ‘80 00 00 00 00 00 00 00‘, if 0 bytes are needed (full block added)

 • PKCS#5 – the padding string is made from value n-(||M|| mod n)

 for (3)DES n=8, AES n=16

 e.g. PS = 02 02 - if 2 bytes are needed

 e.g. PS = 08 08 08 08 08 08 08 08 – if 0 bytes are needed and n=8

(3DES)

Symmetric crypto

 DES – defined in FIPS PUB 46 (-1 a -2)

 key 56 bits, block 64 bits

 3DES – defined in FIPS PUB 46-3

 key either 112 or 168 bits, block 64 bits

 AES – (Rijndael), defined v FIPS PUB 197

 key 128, 192 or 256 bits, block 128 bits

Asymmetric crypto

 Certificates X.509

 ITU-T, ISO/IEC, RFC

 DER / PEM

PKCS

 PKCS#1 – defines RSA encryption

 PKCS#3 – defines Diffie-Hellman protocol

 PKCS#5 – symmetric encryption based on a password

 PKCS#7 – format for digital signatures and asymmetric encryption

 PKCS#8 – defines the private key format

 PKCS#10 – defines format for certificate requests

 PKCS#11 – API for communication with cryptographic tokens

 PKCS#12 – format for storing private keys including public key

certificates, all protected by a password

 PKCS#13 – defines encryption based on elliptic curves

 PKCS#15 – defines cryptographic token information format

RSA Padding

 E.g. RSA 2048 bits

 Modulus n is 2048 bits, public exponent e usually small

 Message m is 2048 bits in total, usual hash functions provide

hashes much shorter. Therefore we need padding.

 BTW No padding needed for DSA and ECDSA

RSA Padding algorithms

 ANSIX 9.31

 6b bb … bb ba || Hash(M) || 3x cc

(where x=3 for sha1, x=1 for ripemd160)

 PKCS#1 v1.5

 00 01 ff … ff 00 || HashAlgID || Hash(M)

 PSS

 00 || H || G(H) [salt || 00 … 00] (where H = Hash(salt, M), salt

is random, and G is a mask generation function)

Assignments

1. Write a program (in any programming language) that will prepare a

padded block for RSA signature with PKCS#1 v1.5 padding. Input

is a file and RSA key size; output is the padded octet string (print it

in hex). Use SHA-256 as the hash function. Do not use crypto

library for the padding itself [5 points].

2. Write a program that will generate 2048 bit DH parameters in DER

format. Use any cryptolibrary and any programming language (no

shell script). Check whether the optional privateValueLength is

included (submit a screenshot). Recommendation: Openssl & C &

functions DH_new, DH_generate_parameters_ex,

i2d_DHparams_bio. [5 points].

Good luck

 Good luck and good fun while reading the

standards

 Email: zriha@fi.muni.cz

