
PV181 Laboratory of security

and applied cryptography

Seminar 9:

Crypto-libraries protected against hardware attacks

| PV1811

Łukasz Chmielewski
Email: chmiel@fi.muni.cz

Consultations: A406, 9.00-11.00 on Fridays

mailto:chmiel@fi.muni.cz

Outline

• Recall + goal of this seminar

– Digital signatures

– RSA and a bit about ECC

• Side Channel + Fault Injection speed run

• Secured X25519 library: sca25519

– Optionally (but unlikely): Demo

• Assignment this week:

– Securing RSA execution

2 | PV181

encryption decryption

message
Alice

Public key of Bob

Bob

Adapted Source: Network and

Internetwork Security (Stallings)

Private key of Bob

Encrypted
message

Decrypted
original
message

| PV1813

Recall: Asymmetric cryptosystem

Recall: Digital signature scheme

4 | PV181

Signature

algorithm

Verification

algorithmmessage signed
message

Alice

Public key of Alice

Bob

Source: Network and

Internetwork Security (Stallings)

verified
message

Private key of Alice

Is there a difference?

RSA (recall)

5

RSA: reminder

1. Secret primes 𝑝, 𝑞: 𝑛 = 𝑝 ∙ 𝑞

2. Public exponent 𝑒:

gcd 𝑒, (𝑝 − 1) = gcd 𝑒, (𝑞 − 1) = 1

3. Private exponent 𝑑: 𝑑 ∙ 𝑒 ≡ 1 𝑚𝑜𝑑 𝜑 𝑛

Encryption (public 𝑛, 𝑒): 𝐸 𝑚 = 𝑚𝑒 𝑚𝑜𝑑 𝑛 = 𝑐

Decryption (private 𝑛, 𝑑): 𝐷 𝑐 = 𝑐𝑑 𝑚𝑜𝑑 𝑛 = 𝑚

6 | PV181

RSA-CRT + demo

• Optimization of computing a signature giving about 3 or 4-fold speed-up

• Precompute the following values:

– Find dp = d (mod p-1), computed as dp = e-1 (mod p-1)

– Find dq = d (mod q-1)

– Compute iq = q-1 (mod p)

• Computations using mp = m (mod p) and mq = m (mod q)

• Signature or encryption (forgetting about hashing):

– sp = 𝑚𝑑𝑝 (mod p)

– sq = 𝑚𝑑𝑞 (mod q)

– Garner’s method (1965) to recombine sp and sq:

• s = sq + q · (iq(sp − sq) (mod p))

• Computations using mp = m (mod p) and mq = m (mod q)

• Open RSA.py and run it. Analyze it, what are your conclusions?

– What is the speed improvement?

7 | PV181

ECC (recall)

8

Recall: RSA vs. ECC

9 | PV181

• exponentiation ≈ scalar

multiplication

• multiplication ≈ points addition

• squaring ≈ point doubling

• The next few slides be ECC recall

Elliptic curve example

• Example

• y2 = x3 - 3 x2 + 5 over ℚ, and ∞

• How would it look over a finite field,

• for example: Fp? for p = 7919

10 | PV181

Can you see a pattern?

Elliptic curve implementations

• Group operation over the curve: addition and doubling

11 | PV181

Elliptic curve implementations’ details

• Above operations on the finite field:

• …

12 | PV181

ECC keys
• Generating key pair

– Select a random integer d from [1,n − 1]

– Compute P = [d]G = d*G;

– Hard to get d from P and G!

• Private key: d

• Public key: P,
– also: G, and curve details are also public

• For 256-bit curve
– the private key d will be approx. 256-bit long

– the public key P is a point on the curve – will be approx
512-bit long, unless compressed

14 | PV181

SCA & FI

15

Why is hardware security important?

16 | PV181

Identity Theft

• Premium
Content Theft

Impersonation

Card / Money Theft

Phone / Money Theft

Cookies Example

17 | PV181

https://www.simplethread.com/great-scott-timing-attack-demo/

https://www.simplethread.com/great-scott-timing-attack-demo/

Passive vs Active Side Channels

18 | PV181

Passive: analyze device behavior Active: change device behavior

Recent Practical Attacks

19 | PV181

What can be attacked & why?

• Type of device?

• What kind of primitive?

• How much control do you have?

• What can you access?

• What would be the attacker’s goal?

• What is your goal?

• Where is the money?

• …

21 | PV181

Some Practical Setups

22 | PV181

Simple Power Analysis (SPA) on RSA

23 | PV181

1996.

A = 1
for (i = n-1; i≥0; i−−)

A = A2 mod N
if (di = =1)

A = A*c mod N
end if

end for
Return A = cd mod N

ModExp(c){

}

M M M MS S S …

S

M

… S S S S S S S S S

1 0 1 0 0 0 1 0 0 1 0
Probe

“By carefully measuring the amount of time required to perform
private key operations, attackers may be able to find […] RSA

keys.”

Differential (Correlation) Power Analysis

24 | PV181

1999

1999

2004

random

inputs

…

n
 t
ra

c
e
s

Guess 𝒅 bits target state

User:

• HW of a register

• HD between current and previous register state

• ID model (value of a register)

𝑓𝑖 = Selection Function(random inputs, 𝒅, target state)

DPA = Difference of Means

𝑓𝑖 = ቊ
0 𝑖𝑓 𝐻𝑊 ≤ 16
1 𝑖𝑓 𝐻𝑊 > 16

𝑓𝑖 = 𝐻𝑊(𝑟𝑒𝑔_𝑠𝑡𝑎𝑡𝑒)

CPA = Pearson correlation

ModExp(𝒅)

Goals of Fault Injection

26 | PV181

• The goal is to change a critical value or to change

the flow of a program.

• Faults can be injected in several ways:
– Power glitches

– Optical glitches with laser

– Clock manipulation by introducing a few very short clock cycles

– Cutting the power to the processor while performing important

computations

• Differential Fault Analysis (DFA)

RSA-CRT: Differential Fault Analysis

https://eprint.iacr.org/2012/553.pdf

• Optimization of computing a signature giving about 3 or 4-fold speed-up

• Precompute the following values:

– Find dp = d (mod p-1), computed as dp = e-1 (mod p-1)

– Find dq = d (mod q-1)

– Compute iq = q-1 (mod p)

• Computations using mp = m (mod p) and mq = m (mod q)

• Signature or encryption (forgetting about hashing):

– sp = 𝑚𝑑𝑝 (mod p)

– sq = 𝑚𝑑𝑞 (mod q)

– Garner’s method (1965) to recombine sp and sq:

• s = sq + q · (iq(sp − sq) (mod p))

• Due to a limited time, we need to skip the math details on how to recover

p and q, but it is possible with one fault!

– If you are interested, ask me after the seminar; it is a so-called Bellcore attack, see for

example: https://eprint.iacr.org/2012/553.pdf

29 | PV181

https://eprint.iacr.org/2012/553.pdf

How to protect against FI?

30 | PV181

• You have to check that the operations was correctly

executed, for example:

– Duplication of operations;

– For signature generation you can verify the result

– Some SCA countermeasures will work even for FI

• But not all

Warm-up Question (1-2):
Software for PIN code verification

31 | PV181

• What is the problem here?

• What are the execution times of

the process for PIN inputs?

• [0,1,2,3], [5,3,0,2], [5,9,0,0]

• The execution time increases as

we get closer to

• [5,9,0,2]

• How would you perform a fault

injection attack here?

Warm-up Task – parity check for DES key

32 | PV181

Warm-up Task – parity check for DES key
cont’d

33 | PV181

Tell me what is the key ☺

34 | PV181

Warm-up Task – parity check for DES key
cont’d

Question 1:
faster and more secure modexp - Montgomery ladder

35 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
if dj=0

x1=x0*x1; x0=x0
2

else
x0=x0*x1; x1=x1

2

x1=x1 mod N
x0=x0 mod N
}
return x0

Both branches with the same

number and type of operations

(unlike square and multiply on

previous slide)

Is it constant-time & secure? Why?

Question 2:
even more secure modexp

36 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
b=dj

x(1-b)=x0*x1; xb=xb
2

x1=x1 mod N
x0=x0 mod N
}
return x0

Memory access often is not

constant time!

Especially in the presence of

caches.

Is it constant-time & secure? Why?

Question 3:
even more secure modexp

37 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
b=dj

x(1-b)=x0*x1; xb=xb
2

x1=x1 mod N
x0=x0 mod N
}
return x0

Memory access often is not

constant time!

Especially in the presence of

caches.

Is it constant-time & secure? Why?

Question 4:
even more more secure modexp

38 | PV181

x0=x; x1=x2; sw = 0
for j=k-2 to 0 {

b=dj

cswap(x0,x1,b⊕sw)
sw = sw⊕di
x1=x0*x1; x0=x0

2

x1=x1 mod N
x0=x0 mod N
}
return x0

Constant-time? Depends on the

cswap… but it can be ☺

Other-side channels? Depends

Is it constant-time & secure? Why?

Message and exponent blinding

41 | PV181

𝒄 = 𝒎𝒅𝒎𝒐𝒅𝑵

1. 𝒎𝒓 = 𝒎. 𝒓−𝒆𝒎𝒐𝒅 𝑵

2. 𝒅𝒓 = 𝒅 + 𝒓 ∗ 𝝋(𝒏)
3. 𝒄𝒓 = 𝒎𝒓

𝒅𝒓 𝒎𝒐𝒅 𝒏

4. 𝒄 = 𝒄𝒓 ∗ 𝒓 𝒎𝒐𝒅 𝒏

message blinding

message “unblinding”

exponent blinding

blinded exponentiation

The sequence of operations (S, M) is related to the exponent bits.

However:

• If d is random: the sequence of exponent bits changes for every RSA execution

• If m is random: Intermediate data is random (masked) → hardly predicted!

Message and exponent blinding

42 | PV181

𝒄 = 𝒎𝒅𝒎𝒐𝒅𝑵

1. 𝒎𝒓 = 𝒎. 𝒓−𝒆𝒎𝒐𝒅 𝑵

2. 𝒅𝒓 = 𝒅 + 𝒓 ∗ 𝝋(𝒏)
3. 𝒄𝒓 = 𝒎𝒓

𝒅𝒓 𝒎𝒐𝒅 𝒏

4. 𝒄 = 𝒄𝒓 ∗ 𝒓 𝒎𝒐𝒅 𝒏

message blinding

message “unblinding”

exponent blinding

blinded exponentiation

• Message blinding is the same!

• Exponent blinding needs to be done twice:

sp = 𝑚𝑑𝑝 (mod p) = 𝑚𝑑𝑝+r*(p-1) (mod p)

sq = 𝑚𝑑𝑞 (mod q) = 𝑚𝑑𝑞+r*(q-1) (mod q)

• That does not stop FI attacks!

Why do coordinate and scalar blinding

protect ECC against SCA?

43 | PV181

𝑴 = 𝒔 𝑷 = 𝒔 𝑿, 𝒀 = [𝒔](𝒙, 𝒚, 𝟏)

1.𝑴 = [𝒔](𝒙. 𝒛, 𝒚. 𝒛, 𝒛)

2. 𝒔𝒓 = 𝒔 + 𝒓. |𝑬|

3. 𝑴𝒓 = [𝒔𝒓](𝒙. 𝒛, 𝒚. 𝒛, 𝒛)

4.

coordinate blinding

no unblinding

scalar blinding

blinded scalar mult.

The same situation as for RSA. Point blinding is also possible but not presented above.

Note: there are of course differences in some detailed countermeasures.

CODE INSPECTION
PROTECTED CRYPTO LIBRARY

44

SCA&FI-protected Elliptic Curve library

• A protected library for ECDH

– key exchange & session key establishment

– It will be published in TCHES2023 volume 1 and

• presented at Ches 2023 in Prague

• Code library available from GitHub

• Useful links:

– https://eprint.iacr.org/2021/1003

– https://github.com/sca-secure-library-sca25519/sca25519

• Taking care of ECDSA:

– https://eprint.iacr.org/2022/1254

– I will add it to the repository later on.
45 | PV181

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://eprint.iacr.org/2022/1254

What to do first

• Download (or clone) the code from:

– https://github.com/sca-secure-library-sca25519/sca25519

• If you do not know C then it will be tricky but in this

case try to be intuitive.

• Task 1: have a look at the STM32F407-unprotected:

– Please find the starting point.

– Please find the scalar multiplication function.

• And the scalar multiplication loop.

– What the code is doing?

46

https://github.com/sca-secure-library-sca25519/sca25519

Task 1: Unprotected Crypto Library

47

Task 1: Unprotected Crypto Library cont’d

48

Protected Crypto Library – other

implementations

Ephemeral & Static increase complexity

49

Task 2: Ephemeral Crypto Library

• Have a look at the STM32F407-ephermeral (and

STM32F407-static):

– Find scalar multiplication functions and the scalar multiplication loops

• Try to find one side-channel countermeasure and one fault

injection countermeasure. Have also a look at the list of

implemented countermeasures in:

– https://tches.iacr.org/index.php/TCHES/issue/view/312

• Can you explain the countermeasures?

• If you have time, then try to find one or two more

countermeasures

Remark: do not worry – this is a hard exercise.

50

https://tches.iacr.org/index.php/TCHES/issue/view/312

Task 2: Ephemeral Crypto Library - FI

51

Find the same countermeasure

in the static implementation.

Task 2: Ephemeral Crypto Library - SCA

52

Task 2: Ephemeral Crypto Library – SCA
cont’d

53

Task 3: Static Crypto Library – SCA

• Find scalar splitting (similar to blinding):

1. Generate 64-bit r and computer r-1

2. Compute P’ = [r-1*k]*P

3. Compute [r]*P’ = [k]P

• Does it work?

• Find this countermeasure in the static SCA code:

Steps 2 and 3.

54

Exercise: Protected Crypto Library 3

Step 2 Step 3

55

Efficiency Demo (Optionally)

56

Demo Instructions

• Open in a browser: https://github.com/sca-secure-

library-sca25519/sca25519

• And follow the instructions from there

– There are some issues related to the libopencm3 library

• You need a Discover board and an FTDI cable

• git clone https://github.com/sca-secure-library-

sca25519/sca25519.git

57

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519.git
https://github.com/sca-secure-library-sca25519/sca25519.git

CONCLUSIONS & QUESTIONS

58

Assignment 7 – Countermeasures

• This is a programming assignment. Please upload your

scripts/code and the required analysis via the course webpage.

• The deadline for submission is Nov. 28, 2024, 8:00.

– -3 points for each started 24h after the deadline.

• Your code should be contained in one .py file. Please name the

submission file as <uco_number>_hw7.zip. Put there both the

python code, the analysis document, and all data produced

during analysis (as long as the size is reasonable).

• The code must contain comments so that it is reasonably easy

to understand how to run the script for evaluating each answer.

59 | PV181

Assignment 7 - Tasks
1. Have a look at the RSA_homework.py file. There are some comments for you there too.

Protect the CRT implementation with exponent blinding in the function TCR_protected! First, test and then

modify the code (the result should be the same). In a separate report (max 2 pages), write why the

countermeasure works (does not affect the correctness of the result).

Then, perform a useful analysis of the efficiency cost of the countermeasure (repeat the experiment a

number of times and report a percent increase). [2.0 points]

2. Protect the CRT implementation with message blinding! Note that this will require knowledge of the public

exponent e. In the document, write why the countermeasure works. Then, perform a useful analysis of the

cost of the countermeasure. [3.0 points]

3. Protect the CRT implementation against fault injection! Any countermeasure is OK. In the document, write

why the countermeasure works. Then, perform a useful analysis of the cost of the countermeasure. [1.5]

4. Combine all the countermeasures and measure the time of all additional countermeasures and how well

they work. Write that in the report. [1.5 points]

5. Instead of exponent blinding, implement exponent splitting. How does it compare to blinding efficiency-

wise? Order the countermeasures with respect to their efficiency. [2 point]

6. Bonus:

- Implement another extra countermeasure (any, it can be either SCA or FI). What is its cost? [1 point]

Remark: we are securing Python code and, for the sake of this exercise, assume that the code is directly

executed by the processor (and not interpreted etc.)

Consultation: Friday at 9:00 in A406.

Good luck!!!

60 | PV181

	Slide 1: PV181 Laboratory of security and applied cryptography
	Slide 2: Outline
	Slide 3
	Slide 4: Recall: Digital signature scheme
	Slide 5: RSA (recall)
	Slide 6: RSA: reminder
	Slide 7: RSA-CRT + demo
	Slide 8: ECC (recall)
	Slide 9: Recall: RSA vs. ECC
	Slide 10: Elliptic curve example
	Slide 11: Elliptic curve implementations
	Slide 12: Elliptic curve implementations’ details
	Slide 14: ECC keys
	Slide 15: SCA & FI
	Slide 16: Why is hardware security important?
	Slide 17: Cookies Example
	Slide 18: Passive vs Active Side Channels
	Slide 19: Recent Practical Attacks
	Slide 21: What can be attacked & why?
	Slide 22: Some Practical Setups
	Slide 23: Simple Power Analysis (SPA) on RSA
	Slide 24: Differential (Correlation) Power Analysis
	Slide 26: Goals of Fault Injection
	Slide 29: RSA-CRT: Differential Fault Analysis
	Slide 30: How to protect against FI?
	Slide 31: Warm-up Question (1-2): Software for PIN code verification
	Slide 32: Warm-up Task – parity check for DES key
	Slide 33: Warm-up Task – parity check for DES key cont’d
	Slide 34: Warm-up Task – parity check for DES key cont’d
	Slide 35: Question 1: faster and more secure modexp - Montgomery ladder
	Slide 36: Question 2: even more secure modexp
	Slide 37: Question 3: even more secure modexp
	Slide 38: Question 4: even more more secure modexp
	Slide 41: Message and exponent blinding
	Slide 42: Message and exponent blinding
	Slide 43: Why do coordinate and scalar blinding protect ECC against SCA?
	Slide 44: CODE INSPECTION PROTECTED CRYPTO LIBRARY
	Slide 45: SCA&FI-protected Elliptic Curve library
	Slide 46: What to do first
	Slide 47: Task 1: Unprotected Crypto Library
	Slide 48: Task 1: Unprotected Crypto Library cont’d
	Slide 49: Protected Crypto Library – other implementations
	Slide 50: Task 2: Ephemeral Crypto Library
	Slide 51: Task 2: Ephemeral Crypto Library - FI
	Slide 52: Task 2: Ephemeral Crypto Library - SCA
	Slide 53: Task 2: Ephemeral Crypto Library – SCA cont’d
	Slide 54: Task 3: Static Crypto Library – SCA
	Slide 55: Exercise: Protected Crypto Library 3
	Slide 56: Efficiency Demo (Optionally)
	Slide 57: Demo Instructions
	Slide 58: CONCLUSIONS & QUESTIONS
	Slide 59: Assignment 7 – Countermeasures
	Slide 60: Assignment 7 - Tasks

