# RSA algorithm is a public key encryption technique and is considered as the most secure way of encryption. # Resource: https://www.di-mgt.com.au/rsa_alg.html#note5 import sympy import time import os def gcd(a, b): if b == 0: return a else: return gcd(b, a % b) def convert_to_int(text): converted = [] for letter in text: converted.append(ord(letter) - 96) return converted def convert_to_ascii(text): converted = '' for number in text: converted = converted + chr(number + 96) return converted def choose_e(phi, n): print('Choosing e...') for e in range(2 ** 31, 2, -1): if gcd(e, phi) == 1 and gcd(e, n) == 1: return e def modular_inverse(a, m): # modular inverse of e modulo phi m0 = m y = 0 x = 1 if m == 1: return 0 while a > 1: q = a // m t = m m = a % m a = t t = y y = x - q * y x = t if x < 0: x = x + m0 return x def encrypt(text, public_key): key, n = public_key ctext = [pow(ord(char), key, n) for char in text] return ctext def decrypt(ctext, private_key): key, n = private_key text = [chr(pow(char, key, n)) for char in ctext] return "".join(text) def RSA(): enc = [] dec = [] p = sympy.nextprime(2 ** 2047) q = sympy.nextprime(p) print('p = ', p, ' q = ', q) n = p * q print('n = ', n) phi = (p - 1) * (q - 1) time_start1 = time.time() print('phi = ', phi) e = choose_e(phi, n) print('e = ', e) d = modular_inverse(e, phi) print('d = ', d) text = 'pythonisthebest' print('Plaintext: ', text) converted = convert_to_int(text) for number in converted: enc.append(pow(number, e, n)) print('Encrypted text: ', enc) for number in enc: dec.append(pow(number, d, n)) decrypted = convert_to_ascii(dec) print('Decrypted text: ', decrypted) time_finish1 = time.time() print('Time for classic decryption: ', time_finish1 - time_start1) return p, q, e, d, enc # The CRT method of decryption is about four times faster overall # Even though there are more steps in this procedure, # the modular exponentiation to be carried out uses much shorter exponents and so it is less expensive in the end def TCR(p, q, dP, dQ, c): qInv = modular_inverse(q, p) m1 = pow(c, dP, p) m2 = pow(c, dQ, q) h = (qInv * (m1 - m2)) % p m = m2 + h * q return m # In this code I only mention the tasks that you should do with respect to the code no the analysis. # Remark: do not base your conclusions with respect to time on one execution. Execute the functions several times and average the results. # Task 1: protect the implementation with exponent blinding! First test and then modify the code below and test the time. def TCR_protected(p, q, dP, dQ, c): qInv = modular_inverse(q, p) # m1 = pow(c, dP, p) # m2 = pow(c, dQ, q) h = (qInv * (m1 - m2)) % p m = m2 + h * q return m # Task 2: protect the implementation with message blinding (in a separate function)! This will require knowledge of e. # Task 3: add an fi countermeasures (in a separate function) # Task 4: combine all countermeasures till now (in a separate function) # Task 5: implement exponent splitting (in a separate function) def main(): print('------ RSA ------') p, q, _, d, enc = RSA() time_start2 = time.time() dp = d % (p - 1) dq = d % (q - 1) text = '' time_start2 = time.time() for number in enc: text = text + chr(TCR(p, q, dp, dq, number) + 96) print('Decrypted using TCR: ', text) time_finish2 = time.time() print('Time for TCR decryption: ', time_finish2 - time_start2) text = '' time_start3 = time.time() for number in enc: text = text + chr(TCR_protected(p, q, dp, dq, number) + 96) print('Decrypted using TCR_protected: ', text) time_finish3 = time.time() print('Time for TCR_protected decryption: ', time_finish3 - time_start3) main()